WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA
|
|
- Paweł Arkadiusz Kowalczyk
- 5 lat temu
- Przeglądów:
Transkrypt
1 WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników: Wewnątrz przewodnika E = 0. W pobliżu powierzchni przewodnika pole E jest prostopadłe do powierzchni. Nieskompensowany ładunek może występować jedynie na powierzchni przewodnika. Potencjał w izolowanym od otoczenia przewodniku jest stały, V = const. Przewodnik jest ciałem ekwipotencjalnym.
2 WNĘKA W PRZEWODNIKU Jeżeli we wnętrzu przewodnika znajduje się wnęka, to pole E wewnątrz wnęki jest równe zeru. powierzchnia Gaussa E = 0 E = 0
3 KLATKA FARADAYA W pustej wnęce, bez ładunku, pole E jest zerowe.
4 WNĘKA W PRZEWODNIKU Jeżeli we wnętrzu przewodnika znajduje się wnęka z ładunkiem q w jej obszarze, to pole E wewnątrz wnęki jest różne od zera. Ładunek q indukuje ładunek przeciwny na powierzchni wnęki. Ładunek na powierzchni wnęki modyfikuje rozkład ładunku na powierzchni przewodnika, tak by pole w jego wnętrzu (po za obszarem wnęki) pozostało zerowe.
5 Rozkład ładunku na powierzchni przewodników Przewodzące kule połączone przewodzącym drutem: 1 4πε 0 q 2 R 2 = 1 4πε 0 q 1 R 1 potencjał cienkiej sfery na jej powierzchni (patrz wcześniejsze wykłady) q 2 R 2 = q 1 R 1 σ 2 4π R = σ 4π R 1 1 σ R 2 R 2 R 2 = σ 1 R 1 1 im mniejszy promień tym większa gęstość ładunku Openstax, Fizyka dla szkół wyższych, tom 2
6 Rozkład ładunku na powierzchni przewodników Większą gęstość ładunku obserwujemy w miejscach o małym promieniu krzywizny powierzchni. Openstax, Fizyka dla szkół wyższych, tom 2
7 Pole elektryczne na powierzchni przewodnika σ! E d! A " = E da " = EA EA = Q ε 0 = σ A ε 0 E = σ ε 0 Im większa gęstość ładunku powierzchniowego, tym pole elektryczne na powierzchni przewodnika jest większe.
8 Rozkład ładunku na powierzchni przewodników Większą gęstość ładunku obserwujemy w miejscach o małym promieniu krzywizny powierzchni. Zjawisko wykorzystuje się w piorunochronach. Openstax, Fizyka dla szkół wyższych, tom 2
9 Wyładowanie elektryczne w powietrzu E Energie jonizacji molekuł powietrza: I N2 = 15.5 ev - jonizacja molekuł powietrza !! powstaje lawina elektronów, którym towarzyszy światło i dźwięk I O2 = 12.5 ev Średnia droga elektronu pomiędzy zderzeniami z cząsteczkami powietrza (tzw. droga swobodna): Δx = 1 µm Teoretyczne wartość pola, przy którym następuje przebicie : E = ΔV Δx V 107 m Pomiary eksperymentalne pokazują, że w rzeczywistości przebicie w suchym powietrzu występuje przy natężeniu pola równym w przybliżeniu 3 x 10 6 V/m V/cm.
10 Pojemność elektryczna izolowanego przewodnika V Izolowany przewodnik naładowany ładunkiem Q charakteryzuje się potencjałem V (potencjał odniesienia w nieskończoności). Pojemność izolowanego (odosobnionego) przewodnika określa stosunek wartości bezwzględnej ładunku zgromadzonego na przewodniku do wartości bezwzględnej jego potencjału. Jednostką pojemności elektrycznej jest Farad, [F = C/V]. pojemność elektryczna izolowanego przewodnika: C = Q V
11 Pojemność elektryczna przewodzącej sfery R V = Q 4πε 0 R C = Q V = 4πε 0 R Q Pojemność nie zależy od ładunku Q, tylko od geometrii przewodnika. Pojemność jest wielkością geometryczną! R C 6400 km (promień Ziemi) ~ 700 μf 0.3 m (czasza van de Graaff) ~ 20 pf 1 cm ~ 1 pf
12 Butelka lejdejska pierwszy kondensator 81
13 Dlaczego szok elektryczny był tak duży? Elektrony gromadzące się w butelce wymuszały ruch elektronów z dłoni w kierunku Ziemi. Im dłoń była bardziej pozytywna tym więcej elektronów gromadziło się w butelce. Proces ten napędzał się aż osiągnięto maksymalną pojemność ładunku (zależną od różnicy potencjałów pomiędzy ziemią i kulą).
14 Kondensator Kondensator to układ dwóch przewodników (okładek) rozdzielonych dielektrykiem (czyli izolowanych od siebie), na których znajdują się jednakowe (co do wartości bezwzględnej) ładunki o przeciwnych znakach. Kondensatory wykorzystywane są do magazynowania ładunku i energii elektrycznej!
15 Pojemność kondensatora Kondensator charakteryzuje pojemność określająca zdolność kondensatora do gromadzenia ładunku i energii: C = Q ΔV AB V A V B Q -Q Q wartość bezwzględna ładunku zgromadzonego na jednej okładce ΔV AB wartość bezwzględna napięcia (różnica potencjałów) między okładkami kondensatora
16 Pojemność kondensatora kulistego r A V A = k Q r A V B = k Q r B r B ΔV AB = V A V B = k Q ( r r A B ) r A r B Q -Q C = Q ΔV AB = 1 k r A r B r A r B
17 Pojemność kondensatora płaskiego ΔV / = Ed, E = σ ε 0 = Q Aε 0 C = Q A = ε ΔV 0 / d
18 Symulacja kondensatora płaskiego
19 Energia zgromadzona w kondensatorze A E = 0 σ d E = 0 E = σ ε 0 σ Elektrostatyczna energia potencjalna zgromadzona w kondensatorze płaskim: U = ε 0 2 cala przestrzen E 2 dτ = ε 0 2 σ 2 ε 0 2 dτ = ε 0 2 ε Ad = ε 0 σ 2 A d σ d ε 0 2 U = 1 2 CΔV 2 słuszne dla każdego kondensatora!
20 Energia zgromadzona w kondensatorze
21 Zastosowania energii zgromadzonej w kondensatorze Defibrylator- aż do 360 J może być zmagazynowanych w polu elektrycznym kondensatora w tym urządzeniu. Energia ta w całości dostarczana jest pacjentowi w przeciągu 2 ms, odpowiada to mocy ok. 180 kw! Błyski lampy w aparacie fotograficznym powstają przez rozładowanie energii zmagazynowanej w kondensatorze (energia elektryczna zamieniana jest na energię świetlną). Błyski lampy stroboskopowej powstają przez ciągłe ładowanie i rozładowywanie kondensatora.
22 Dielektryk w kondensatorze 0 0 E 0 E 0 = ΔV 0 d polaryzacja dielektryka, na jego powierzchni powstają ładunki związane, wewnątrz dielektryka indukuje się pole o wartości E ind = be 0, b < 1 W wyniku polaryzacji dielektryka natężenie pola elektrycznego w obszarze kondensatora maleje! E = E 0 E ind = = E ( 0 1 b) = = E 0 κ, 1 κ = 1 b ( ) κ - stała dielektryczna
23 Stała dielektryczna różnych materiałów
24 Dielektryk w kondensatorze E = ΔV d E 0 κ = ΔV 0 κ d woltomierz Wstawienie dielektryka pomiędzy okładki kondensatora powoduje spadek napięcia na na kondensatorze: ΔV = ΔV 0 κ, κ > 1 Ponieważ ładunek Q 0 na okładkach kondensatora nie zmienia się, oznacza to, że pojemność kondensatora wzrosła! C = κc 0
25 Dielektryk w kondensatorze E = ΔV d E 0 κ = ΔV 0 κ d woltomierz Energia zgromadzona w kondensatorze bez dielektryka: U 0 = 1 2 C ΔV Energia zgromadzona w kondensatorze z dielektrykiem: U = 1 2 κc 0 ΔV 0 2 κ 2 = 1 κ U 0 Energia zmniejszyła się ponieważ kondensator wykonał pracę wciągając dielektryk w obszar między płytkami. Wyjmując kondensator energia rośnie ponieważ ty my wykonujemy pracę nad układem.
26 Dielektryk w kondensatorze podłączonym do zasilacza (baterii) Zasilacz wymusza stałe napięcie na kondensatorze! Wstawienie dielektryka pomiędzy okładki kondensatora podłączonego do zasilacza powoduje wzrost ładunku na okładkach kondensatora: Q = κq 0, κ > 1 Ponieważ zasilacz wymusza stałe napięcie na kondensatorze, oznacza to, że pojemność kondensatora wzrasta, ale pole elektrycznie nie zmienia się! C = κc 0, E = E 0.
27 POJEMNOŚĆ ZASTĘPCZA UKŁADU KONDENSATORÓW POŁĄCZONYCH RÓWNOLEGLE Łączenie równoległe kondensatorów: C 1 C 2 C 3 C n ΔV - = C zast ΔV - Pojemność zastępcza układu: ( ) Q 1 Q 2 Q 3... Q n = ΔV C 1 C 2 C 3... C!###"### $ n C zast Q = ΔVC zast C zast = C 1 C 2 C 3... C n
28 POJEMNOŚĆ ZASTĘPCZA UKŁADU KONDENSATORÓW POŁĄCZONYCH SZEREGOWO Łączenie szeregowe kondensatorów: C 1 C 2 C 3 C n -Q Q -Q Q -Q Q -Q Q - ΔV Pojemność zastępcza układu: ΔV = ΔV 1 ΔV 2 ΔV 3... ΔV n = Q C 1 C 2 C 3 C n!#### "#### $ = C zast 1 - ΔV ΔV = Q C zast 1 C zast C zast = 1 C 1 1 C 2 1 C C n
29 Znaleźć pojemność zastępczą układu przedstawionego na rysunku:
Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
Bardziej szczegółowoPojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Bardziej szczegółowoWykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21
Bardziej szczegółowoPojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Bardziej szczegółowoElektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Bardziej szczegółowoPrzewodniki w polu elektrycznym
Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po
Bardziej szczegółowoLekcja 43. Pojemność elektryczna
Lekcja 43. Pojemność elektryczna Pojemność elektryczna przewodnika zależy od: Rozmiarów przewodnika, Obecności innych przewodników, Ośrodka w którym się dany przewodnik znajduje. Lekcja 44. Kondensator
Bardziej szczegółowokondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.
Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności
Bardziej szczegółowoPodstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Bardziej szczegółowoWykład 9: Elektrostatyka cd Katarzyna Weron
Wykład 9: Elektrostatyka cd Katarzyna Weron Matematyka Stosowana Natężenie pola w przewodniku Gdzie się zgromadzi nadmiar ładunku? W jednym miejscu w środku Równomiernie w środku Równomiernie na zewnątrz
Bardziej szczegółowoUKŁADY KONDENSATOROWE
UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej
Bardziej szczegółowo21 ELEKTROSTATYKA. KONDENSATORY
Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność
Bardziej szczegółowoWykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Bardziej szczegółowoLinie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
Bardziej szczegółowoStrumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Bardziej szczegółowoDielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
Bardziej szczegółowoElektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Bardziej szczegółowoWykład 17 Izolatory i przewodniki
Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy
Bardziej szczegółowoŁadunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Bardziej szczegółowoPojemność elektryczna
Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)
Bardziej szczegółowoPodstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO
Bardziej szczegółowoNatężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
Bardziej szczegółowoElektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami
Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,
Bardziej szczegółowoElektrostatyka, cz. 2
Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q
Bardziej szczegółowoDielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Bardziej szczegółowoELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5
ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki
Bardziej szczegółowoElektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka
Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Bardziej szczegółowoPrzykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Bardziej szczegółowoPojemnośd elektryczna
Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto
Bardziej szczegółowoKondensator. Kondensator jest to układ dwóch przewodników przedzielonych
Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze
Bardziej szczegółowoElektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D
Bardziej szczegółowoPOLE ELEKTRYCZNE PRAWO COULOMBA
POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim
Bardziej szczegółowoElektrostatyczna energia potencjalna. Potencjał elektryczny
Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi
Bardziej szczegółowocz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Bardziej szczegółowoELEKTROSTATYKA. cos tg60 3
Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki
Bardziej szczegółowoŹródła siły elektromotorycznej = pompy prądu
Źródła siły elektromotorycznej = pompy prądu komórki elektrochemiczne ogniwo Volty akumulator generatory elektryczne baterie I urządzenia termoelektryczne E I I Prądnica (dynamo) termopara fotoogniwa ogniwa
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowoSegment B.X Kondensatory Przygotował: dr Winicjusz Drozdowski
Segment B.X Kondensatory Przygotował: dr Winicjusz Drozdowski Zad. 1 Układ Ziemia - jonosfera stanowi swoisty kondensator o pojemności C = 1.8 F, naładowany ładunkiem Q = 5.4 10 5 C. Ile wynosi różnica
Bardziej szczegółowo2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Potencjał pola elektrycznego U ab ΔV W q b a F dx q b a F q dx b a (x)dx U gradv ab ΔV b a dv dv dv x,y,z i j k (x)dx dx dy dz Natężenie pola wskazuje kierunek w którym potencjał
Bardziej szczegółowoELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
Bardziej szczegółowo25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. (od początku do prądu elektrycznego)
Włodzimierz Wolczyński 25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do prądu elektrycznego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
Bardziej szczegółowoRozdział 1. Pole elektryczne i elektrostatyka
Rozdział 1. Pole elektryczne i elektrostatyka 2018 Spis treści Ładunek elektryczny Prawo Coulomba Pole elektryczne Prawo Gaussa Zastosowanie prawa Gaussa: Izolowany przewodnik Zastosowanie prawa Gaussa:
Bardziej szczegółowoWymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Bardziej szczegółowoMateriały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Bardziej szczegółowoElektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Bardziej szczegółowoWykład 18 Dielektryk w polu elektrycznym
Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.
Bardziej szczegółowoPodstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Bardziej szczegółowoWykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
Bardziej szczegółowoElektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola
Bardziej szczegółowoWykład 8: Elektrostatyka Katarzyna Weron
Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory
Bardziej szczegółowoWykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie
Bardziej szczegółowoPodstawy Elektroniki i Elektrotechniki
Podstawy Elektroniki i Elektrotechniki Sławomir Mamica mamica@amu.edu.pl Obwody prądu elektrycznego http://main5.amu.edu.pl/~zfp/sm/home.html Plan. Krótko o elektryczności Ładunek elektryczny Pole elektryczne
Bardziej szczegółowoLinia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q
Bardziej szczegółowoBADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA
ĆWIENIE 65 BADANIE PESÓW ŁADWANIA I ŁADWANIA KNDENSATA el ćwiczenia: Wyznaczenie przebiegów ładowania i rozładowania kondensatora oraz wyznaczenie stałej czasowej układów agadnienia: prawa hma i Kirchhoffa,
Bardziej szczegółowoBADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA
BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA Cel ćwiczenia: wyznaczenie przebiegów ładowania i rozładowania kondensatora oraz wyznaczenie stałej czasowej układów RC. Zagadnienia: prawa Ohma i
Bardziej szczegółowoPole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Bardziej szczegółowoElektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład siódmy 19 marca 2019 Z ostatniego wykładu Siła działająca na okładkę kondensatora Energia
Bardziej szczegółowoSTAŁY PRĄD ELEKTRYCZNY
STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam
Bardziej szczegółowoObwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Obwód elektryczny i jego schemat. Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu. Schemat
Bardziej szczegółowoOdp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Bardziej szczegółowoElektryczność i magnetyzm
Elektryczność i magnetyzm Pole elektryczne, kondensatory, przewodniki i dielektryki. Zadanie 1. Dwie niewielkie, przewodzące kulki o masach równych odpowiednio m 1 i m 2 naładowane ładunkami q 1 i q 2
Bardziej szczegółowoWykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Bardziej szczegółowo4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku
Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka
Bardziej szczegółowoTEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne
TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem
Bardziej szczegółowoWykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Bardziej szczegółowoWykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek
Bardziej szczegółowoWykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Bardziej szczegółowoMomentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Bardziej szczegółowoŁadunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Bardziej szczegółowoF = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Bardziej szczegółowoWykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego
Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa
Bardziej szczegółowoRozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
Bardziej szczegółowoWykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Bardziej szczegółowo25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych
Bardziej szczegółowoBadanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Bardziej szczegółowoPole elektryczne w ośrodku materialnym
Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała
Bardziej szczegółowo1 K A T E D R A F I ZYKI S T O S O W AN E J
1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku
Bardziej szczegółowoZad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
Bardziej szczegółowoFizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Bardziej szczegółowoWyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO
Bardziej szczegółowoCzłowiek najlepsza inwestycja
Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.
Bardziej szczegółowoPole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Bardziej szczegółowo46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W]
Włodzimierz Wolczyński 46 POWTÓRKA 8 PRĄD STAŁY Zadanie 1 Oblicz i wpisz do tabeli R 1 = 4 Ω RR 22 = = 22 Ω I 2 = 1,5 A R 4 = 2 Ω R 3 = 6 Ω R 1 = 4 Ω R 2 = 2 Ω R 3 = 6 Ω R 4 = 2 Ω r = 1 Ω SEM ogniwa wynosi
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory Cel ćwiczenia: Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 (przenikalności
Bardziej szczegółowoĆwiczenie nr 31: Modelowanie pola elektrycznego
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola
Bardziej szczegółowoWykład FIZYKA II. 1. Elektrostatyka
Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni
Bardziej szczegółowoĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO.
ĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO. ŁADUNKI STATYCZNE. POLE ELEKTROSTATYCZNE. Wprowadzenie Oddziaływaniem
Bardziej szczegółowo