Wojciech Dąbrowski Instrukcja do ćwiczenia 1 z budowy kanałów PK budownictwo studia inżynierskie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wojciech Dąbrowski Instrukcja do ćwiczenia 1 z budowy kanałów PK budownictwo studia inżynierskie"

Transkrypt

1 Wojcech Dąbrowsk Istrukcja do ćwczea z budowy kaałów P budowctwo studa żyerske Oblczae rówowag węglaowej ma zaczee dla ocey korozyjośc wody w odeseu do stal, żelwa betou. Aczkolwek deks asycea SI, jak azwao go w eaktualej orme PN-7/C-04609, czy zgode z lteraturą aglosaską Ideks Nasycea Lagelera LSI, jest tylko jedym z klku podstawowych deksów opsujących rówowagę węglaową, a wstępa ocea korozyjośc wód jest oparta a klkuastu parametrach jakośc wody, to jedak oblczee LSI jest stote z uwag a potrzebę kotrolowaa wyku stablzacj wody w zakładach uzdataa jak z uwag a wybór materałów rur do budowy sec stalacjach wewętrzych. Ideks Nasycea Lagelera zdefoway jest wzorem w którym ph s ozacza wartość ph asycea wody węglaem wapa, a ph wartość pomerzoą. LSI = ph - ph s () Dla wód aturalych wartość ph s moża ze stosukowo dobrym przyblżeem oblczyć prostym wzoram przyblżoym podaym w przestarzałej orme polskej PN-7/C Nemej zastosowao tutaj pełą procedurę prowadzea oblczeń ph s z uwzględeem współczyków aktywośc, jak róweż występowaa kompleksów eorgaczych wapa magezu. Jedakże przede wszystkm przedstawoa tutaj za lteraturą metodyka oblczeń ph s oparta jest a rówaach o jaso określoej terpretacj chemczej fzyczej w przecweństwe do prostych oblczeń zalecaych w orme PN-7/C Pomjając ajperw powstawae kompleksów eorgaczych wapa magezu wartość ph s oblczyć moża z układu rówań ()..(6) opsujących rówowagę węglaową w wodze dodając do ego rówae (7) a loczy rozpuszczalośc węglau wapa odosząc cały układ rówań ()...(7) do stau rówowag termodyamczej. Merzoe są wartośc zasadowośc ogólej Alk, ph stężee wapa [Ca. Natomast ewadomym są pozostałe welkośc, a węc [H O, [HCO -, [H CO, [OH -, [CO -, ph s. Stałe rówowagowe, a węc stałe perwszorzędowej drugorzędowej dysocjacj kwasu węglowego,, a dalej loczy joowy wody w, loczy rozpuszczalośc węglau wapa s oblczae są w fukcj temperatury bezwzględej z rówań (8)...(). Współczyk aktywośc joów f oblcza sę w zależośc od mocy joowej roztworu wodego I

2 zdefowaej rówaem () oblczaej z rówaa empryczego (), w których C jest stężeem joów, Z ch wartoścowoścą, a DS suchą pozostałoścą po prażeu wyrażaą w mlgramach a ltr. W zależośc od mocy joowej roztworu wodego I współczyk aktywośc joów oblcza sę z rówań (4)...(7). Poeważ rówaa ()...(7) e są lowe węc układ te ma węcej ż jedo rozwązae jak wadomo jedo z ch dotyczy zakresu ph , a druge ph od 9.6 wzwyż. Poeważ ph wody wodocągowej e przekracza zakresu węc oblczea ph s przeprowadzoo według rówaa (8), staowącego stosukowo dokłade przyblżee perwszego z rozwązań układu rówań ()...(7) względem ph s. = f m = [ H O [ HCO [ H CO () = f d = [ H O [ CO [ HCO () w = W f = [H O [OH - (4) m - - Alk = 0.5[HCO [CO 0.5[OH [H O (5) ph = - log{f m [H O } (6) S S = = [Ca - eq [CO eq (7) f d 705 p = 5. lg (8) p = (9) p w = lg (0) () p s = ( ) I = 0.5C Z () I =.5*0-5 (DS-0) () log(f ) = -AZ I 0,5 for I<0,005M (4)

3 log(f )= -AZ {I 0,5 /(I 0,5 ) } for I<0,M (5) log(f )= -AZ {I 0,5 /(I 0,5 ) -0,I} for I<0,5M (6) log(f )=-AZ {I 0,5 /(B*b*I 0,5 ) C I} for I<,0M (7) gdze : A,8 0 6 (78,) -,5 b jest średcą jou [A 0 (b=4 dla HCO -, b=6 dla Ca, b=9 dla H O, b= dla OH - ) B 50, (78, ) 0,5, C stężee joów, temperature [, DS sucha pozostałość po prażeu [mg/l, Z ładuek jou I (-, - td.). ph s =p p[ca -p s p{[alk -[OH - [H O }-p [ H O gdze: p - ozacza {-log} = / f d, s = s /f d. -pf m (8) W wodach o szczególe wysokej meralzacj powo sę uwzględć to, że część joów wapa e jest dostępa dla rówowag węglaowej gdyż pozostają oe zwązae w kompleksach eorgaczych. Wpływ występowaa tych kompleksów a oblczoe wartośc ph s, a w kosekwecj róweż a LSI, jest skutecze łagodzoy przez zmay - zasadowośc Alk wywołae zwązaem w kompleksach częśc aoów HCO CO -. Ozaczając poprzez doly deks całkowte stężee zarówo stężee joów wapa dostępych dla rówowag węglaowej jak zmeoą wartość zasadowośc ogólej Alk oblcza sę z rówań (9), (0). [Ca = [Ca - [CaOH - [CaHCO - [CaCO 0 - [CaSO 4 0 (9) Alk = [CO - - [CaCO 0 - [MgCO [HCO [CaHCO [MgHCO -0.5 [H O 0.5 [OH - (0) Po uwzględeu rówań a udzał joów HCO - (), CO - (4) w całkowtym stężeu węgla eorgaczego (5) oblcza sę stężee wapa dostępego dla rówowag

4 węglaowej oraz ową wartość zasadowośc ogólej z rówań () () w których, 4, 5, 6, 7, 8 są stałym kompleksów zdefowaym oblczaym według rówań zebraych w tabel. [Ca = [ Ca W [ [ 4 αc 5 α C 6 SO4 H O () Alk = c {α (- 5 [Ca - 8 [Mg ) 0.5α (-Κ 4 [Ca 7 [Mg ) } w /{[H O } - 0.5[H O () α = [ H O α = [ H O [ HO [ H O () (4) C = [H CO [CO [HCO - [CO - (5) = f d = 4 = f d 4 = 5 = f d 5 = [ CaOH [ Ca [ OH = 0 (6) [ CaHCO [ Ca [ HCO [ CaCO [ Ca [ CO = 0 (7) 5 = (8) 6 = f [ CaSO4 d 6 = 6 = 0 [ Ca [ SO4 (9) [ MgHCO 7 = 7 = f d 7 = [ Mg [ HCO 0 (0) 8 = f d 8 = [ MgCO [ Mg [ CO 0 8 = () 6.4. Rówowaga węglaowa w meszae wód Gdy w przewodach wodocągowych meszają sę wody z różych ujęć bez kotaktu z powetrzem atmosferyczym moża zastosować te same procedury oblczeowe dla 4

5 meszay co dla każdej z poszczególych wód po wyzaczeu temperatury, suchej pozostałośc po prażeu DS, stężea wapa [Ca oraz stężea całkowtego węgla eorgaczego C z rówań blasu masy ()...(5). Natomast wartość ph meszay wód wyzacza sę z układu rówań (4), (6), (),(4),(5),(6). mx = () DS mx = DS () [Ca mx = C mx = C [ Ca (4) (5) Alk mx = [ Alk (6) 6.4. Procedura algorytm oblczaa pojemośc buforowej wody Pojemość buforowa wody zdefowaa jest rówaem (7) w którym C ozacza stężee slego jedoprotoowego kwasu, albo slej zasady z jedą grupą hydroksylową, dodaej do dc β = (7) dph Dla wód aturalych, w których rówowaga węglaowa decyduje o zasadowośc ogólej wody, pojemość buforową wody oblczyć moża z rówaa (8) przy czym przy tej samej wartośc ph czym wększa zasadowość ogóla tym wększa pojemość buforowa. 5

6 ß=,{[α ([0,5Alk -[OH - [H O )([H O /([H O 4 ))/[( ( /[H O ) [H O [OH - } (8) Czym wększa pojemość buforowa tym mejsza różca ph wody uwęzoej w porach aturalej warstwy ochroej pokrywającej obszary aodowe katodowe tym wolejsza korozja. ak węc oblczoe wartośc pojemośc buforowej mają zaczee dla ocey korozyjośc wody ale przede wszystkm dla długośc odcków stalowych żelwych rurocągów, które moża jedorazowo poddać atryskow wyprawą cemetową. Długość ta zależy róweż od średcy przewodu cemetu zastosowaego do produkcj wyprawy Lteratura [ Beefeld L. D., Judks J. F., Wead B. L. 98. Process chemstry for water ad wastewater treatmet. Pretce-Hall, Ic. Eglewoods Clffs. New Jersey [ Buchta R., 998,Carboate equlbrum drkg water mxtures, PhD. Dssertato, Cracow Uversty of echology, raków ( Polsh) [ Czarowska M., Agresywośc korozyja wód wodocągowych w ektórych mastach Polsk w odeseu do stejących materałów stalacyjych., Istal, 995,5,- Rutkewcz A., rwałość materałów stalacyjych a skład wody wodocągowej, Ochroa Środowska, 995, (58), [4 Dąbrowsk W., Buchta R., Macke R.I., 004, Impact of water bledg o calcum carboate equlbrum water dstrbuto systems techcal ote, Joural of Evrometal Egeerg, ASCE, September, 0,9, [5 Dąbrowsk W.,. Dąbrowska B., Zela M., aewsk J., Gajewsk A., 004, Dfferece betwee buffer capactes of water flowg through lad of varous geologcal org, XXI Cogresso Nazoale d Merceologa co partecpazoe terazoale, Fogga, -4 September,( CD-rom edto) [6 Dąbrowsk W, Buchta R, 000 Statstcal evaluato of calcum carboate equlbrum atural water, Lakes&Reservors: Research ad Maagemet, 5, [7 Jorda C he mea ph of mxed fresh waters. Water Resources. (0): 4. [8 Lageler W.F. 96. he aalytcal cotrol of at-corroso water treatmet. Joural AWWA. 8(0): 500. [9 Pakow J.E. 99. Aquatc Chemstry Cocepts. Lews Publshers. Mchga. [0 Psga R. A. Sgley J. E Calculatg the ph of Calcum Carboate Saturato. Joural AWWA. October: 8-9. [ Roques H Chemcal Water reatmet Prcples ad Practce. CH Publshers Ic. New York Wehem-Cambrdge. [ Rossot H. 99. Io equlbrum. Państwowe Wydawctwo Naukowe. Warszawa ( Polsh). [ Stadards Methods. For the Examato of Water ad Wastewater Amerca Publc Health Assocato. 05 Ffteeth Street NW. Washgto. DC [4 Stumm W Ivestgato o the corrosve behavor of waters. Joural of the Satary Egr. Dv. Proc. ASCE. 86(SA 6):

7 [5 Stumm W., Morga J. J. 98. Aquatc chemstry. d edto. Wley. New York. [6 Śwderska-Bróż M., Wolska M., orozyjość wody wodocągowej a zjawska zachodzące w systeme dystrybucj, 00,,0-5 [7 Praca zborowa, Zalecea dla projektatów stalacj zmej cepłej wody wodocągowej oraz wodych stalacj grzewczych w zakrese wyboru łaczea materałów, uwzględające agresywość korozyją wód wodocągowych w 5 mastach w Polsce, techka Istalacyja w Budowctwe, 00 7

Związki kompleksowe w roztworach wodnych. Wyznaczanie stałych trwałości kompleksów prostych metodą potencjometryczną

Związki kompleksowe w roztworach wodnych. Wyznaczanie stałych trwałości kompleksów prostych metodą potencjometryczną Uwersytet Opolsk, Wydzał Chem, Katedra Chem Neorgaczej Chema Neorgacza II..PBN.CHE09 ĆWICZENIE Zwązk kompleksowe w roztworach wodych. Wyzaczae stałych trwałośc kompleksów prostych metodą potecjometryczą

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Przeliczanie wyników analiz, które muszą być podawane jako stężenia form pierwiastkowych (S, N, P) dokonuje się stosując poniższą ogólną formułę:

Przeliczanie wyników analiz, które muszą być podawane jako stężenia form pierwiastkowych (S, N, P) dokonuje się stosując poniższą ogólną formułę: ANEKS Zasady oblczeń przelczeń daych. przelczae ze stężea joów a stężea perwastków Przelczae wyków aalz, które muszą być podawae jako stężea form perwastkowych (S, N, P) dokouje sę stosując poższą ogólą

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

WPŁYW WZROSTU LEPKOŚCI ŚRODOWISKA REAKCYJNEGO NA KINETYKĘ PROCESU POWSTAWANIA POLIMERU LINIOWEGO W POLIMERYZACJI ŻYJĄCEJ

WPŁYW WZROSTU LEPKOŚCI ŚRODOWISKA REAKCYJNEGO NA KINETYKĘ PROCESU POWSTAWANIA POLIMERU LINIOWEGO W POLIMERYZACJI ŻYJĄCEJ Proceedgs of ECOpole Vol. 4, No. 00 Stasław GJD, a MEDERSK Tadeusz MEDERSKI WPŁYW WZROSTU LEPKOŚCI ŚRODOWISK REKCYJNEGO N KINETYKĘ PROCESU POWSTWNI POLIMERU LINIOWEGO W POLIMERYZCJI ŻYJĄCEJ EFFECT OF VISCOSITY

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ Ćwczee 56 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ 56.. Wadomośc ogóle Rozpatrzmy wąską skolmowaą wązkę prome γ o atężeu I 0, padającą a płytkę substacj o grubośc x (rys. 56.). Natężee promeowaa

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzyczej Uwersytetu Łódzkego Wyzaczae współczyka podzału Nersta w układze: woda aceto chloroform metodą refraktometryczą opracowała dr hab. Małgorzata Jóźwak ćwczee r 0 Zakres zagadeń obowązujących

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Paliwa stałe, ciekłe i gazowe

Paliwa stałe, ciekłe i gazowe Palwa stałe, cekłe gazowe Podstawowe właścwośc alw gazowych Wydzał Eergetyk Palw Katedra Techolog Palw Gaz Gaz doskoały jest to hotetyczy gaz, którego droby e rzycągają sę wzajeme, są eskończee małe sztywe

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Wyrażanie niepewności pomiaru. Andrzej Kubiaczyk Wydział Fizyki, Politechnika Warszawska

Wyrażanie niepewności pomiaru. Andrzej Kubiaczyk Wydział Fizyki, Politechnika Warszawska Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 0 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Niepewności pomiarów. DR Andrzej Bąk

Niepewności pomiarów. DR Andrzej Bąk Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w

Bardziej szczegółowo

INŻYNIERIA RZECZNA Konspekt wykładu

INŻYNIERIA RZECZNA Konspekt wykładu INŻYNIERIA RZECZNA Kospekt wykładu Wykład 4 Charakterystyka przepływu wody w korytach rzeczych Klasyfkacja ruchu wody. Ruch eustaloy zmey przepływ a długośc rzek w czase: ruch fal wezbraowych ruch wody

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 6

INSTRUKCJA DO CWICZENIA NR 6 INSTRUKCJA DO CWICZENIA NR 6 Temat ćwczea: Pomar twardośc metodą Rockwella Cel ćwczea Celem ćwczea jet ozaczee twardośc metal metodą Rockwella pozae zwązków pomędzy twardoścą a bdową tych materałów ym

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH

METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH DODATEK NR 2. METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH Układy rówań występujące w etodze eleetów skończoych charakteryzują sę duży rzadk dodato określoy acerza. Metody rozwązywaa układów rówań

Bardziej szczegółowo

Podstawy elektrochemii i korozji

Podstawy elektrochemii i korozji Podstawy elektrochem korozj wykład dla III roku kerunków chemcznych Wykład V Dr Paweł Krzyczmonk Pracowna Elektrochem Korozj Unwersytet Łódzk marzec 015 1 Podstawy korozj Krzywa polaryzacyjna Dagram Pourbx

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Probabilistyka i statystyka. Korelacja

Probabilistyka i statystyka. Korelacja 06-05-08 Probablstyka statystyka Korelacja Probablstyka statystyka - wykład 9 dla Elektrok Korelacja Aalza korelacj zajmuje sę badaam stea zależośc lowej mędzy dwema cecham X Y. Podstawową marą jest współczyk

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwzee r 4 Temat: Wyzazee współzyka załamaa ezy refraktometrem Abbego.. Wprowadzee Śwatło, przy przejśu przez graę dwóh ośrodków, zmea swój

Bardziej szczegółowo

LOGISTYKA DYSTRYBUCJI ćwiczenia 3 LOKALIZACJA PODMIOTÓW (POŚREDNICH) METODA ŚRODKA CIĘŻKOŚCI. AUTOR: mgr inż. ROMAN DOMAŃSKI

LOGISTYKA DYSTRYBUCJI ćwiczenia 3 LOKALIZACJA PODMIOTÓW (POŚREDNICH) METODA ŚRODKA CIĘŻKOŚCI. AUTOR: mgr inż. ROMAN DOMAŃSKI LOGISTYKA DYSTRYBUCJI ćwczea 3 LOKALIZACJA PODIOTÓW (POŚREDNICH) ETODA ŚRODKA CIĘŻKOŚCI AUTOR: mgr ż. ROAN DOAŃSKI Lokalzacja podmotów (pośredch) metoda środka cężkośc Lteratura Potr Cyplk, Dauta Głowacka-Fertch,

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika

WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika WYKŁAD IV Aalza przejśca fal powodzowej Odpływ ze zborka może być: - kotroloway: regulacja wydatku urządzeń zrzutowych a stały przepływ sekudowy (Q odp =cost.) przy pomocy zamkęć ruchomych. - ekotroloway:

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA TERMODYNAMIKA PROCESOWA I TECHNICZNA Wykład IX Fugatywość substacj czystych Układy weloskładkowe - roztwory FUGATYWNOŚĆ SUBSTANCJI CZYSTYCH - defcja Pojęce tzw. fugatywośc jest bardzo użyteczym sosobem

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

ROZMIESZCZENIE OBIEKTÓW NOCLEGOWYCH W ŁODZI W 2013 ROKU W ŚWIETLE MIAR CENTROGRAFICZNYCH 1

ROZMIESZCZENIE OBIEKTÓW NOCLEGOWYCH W ŁODZI W 2013 ROKU W ŚWIETLE MIAR CENTROGRAFICZNYCH 1 A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA GEOGRAPHICA SOCIO-OECONOMICA 6, 204 Marta Nalej ROZMIESZCZENIE OBIEKTÓW NOCLEGOWYCH W ŁODZI W 203 ROKU W ŚWIETLE MIAR CENTROGRAFICZNYCH Artykuł

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Załącznik 3.1.2.a Test C.1 Ogólna ocena stanu chemicznego JCWPd wg danych z 2012 r. w podziale na 161 JCWPd

Załącznik 3.1.2.a Test C.1 Ogólna ocena stanu chemicznego JCWPd wg danych z 2012 r. w podziale na 161 JCWPd Załącznik 3.1.2.a Test C.1 Ogólna ocena JCWPd wg w podziale na 161 JCWPd Monitoring oraz ocena jednolitych części wód podziemnych w dorzeczach w latach 2012 2014 Nr JCWPd wziętych do JCWPd wg, w których

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 432

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 432 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 432 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 14 Data wydania: 6 lipca 2016 r. Nazwa i adres: AB 432 PRZEDSIĘBIORSTWO

Bardziej szczegółowo

CHARAKTERYSTYKA AWARII RUROCIĄGÓW TRANZYTOWYCH NA PRZYKŁADZIE PRZEWODÓW BIEGNĄCYCH Z UJĘCIA W DOBCZYCACH DO KRAKOWA

CHARAKTERYSTYKA AWARII RUROCIĄGÓW TRANZYTOWYCH NA PRZYKŁADZIE PRZEWODÓW BIEGNĄCYCH Z UJĘCIA W DOBCZYCACH DO KRAKOWA MAŁGORZATA NIEDZIOŁEK *, WOJCIECH DĄBROWSKI *, TADEUSZ ŻABA **, MICAJAH McGARITY ***, KRZYSZTOF GLÓD * CHARAKTERYSTYKA AWARII RUROCIĄGÓW TRANZYTOWYCH NA PRZYKŁADZIE PRZEWODÓW BIEGNĄCYCH Z UJĘCIA W DOBCZYCACH

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

Wymiarowanie przekrojów stalowych

Wymiarowanie przekrojów stalowych Wmarowae przekrojów stalowch Program służ o prostch, poręczch oblczeń ośośc przekrojów stalowch. Pozwala o a oblczea przekrojów obcążoch: mometem zgającm [km], mometem zgającm [km], słą połużą [k]. Przekroje

Bardziej szczegółowo

WYBRANE MIARY OCENY STOPNIA DYWERSYFIKACJI PORTFELI INWESTYCYJNYCH

WYBRANE MIARY OCENY STOPNIA DYWERSYFIKACJI PORTFELI INWESTYCYJNYCH Studa Ekoomcze. Zeszyty Naukowe Uwersytetu Ekoomczego w Katowcach ISSN 2083-86 Nr 340 207 Iformatyka Ekoometra 0 Agata Gluzcka Uwersytet Ekoomczy w Katowcach Wydzał Iformatyk Komukacj Katedra Badań Operacyjych

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Ryzyko inwestycji w spółki sektora TSL na Warszawskiej Giełdzie Papierów Wartościowych

Ryzyko inwestycji w spółki sektora TSL na Warszawskiej Giełdzie Papierów Wartościowych CZYŻYCKI Rafał 1 PURCZYŃSKI Ja Ryzyko westycj w spółk sektora TSL a Warszawskej Gełdze Paperów Wartoścowych WSTĘP Elemetem erozerwale zwązaym z dzałaloścą westorów a całym ryku kaptałowym jest epewość

Bardziej szczegółowo

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary.

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary. Statystyka opsowa Roma Syak Statystyka opsowa Stawa sę pytaa: pytae co? poprzedza pytae jak?. Najperw potrzeba jest mara, potem moża badać zmay tej mary. Potrzebe są mary zborcze, charakteryzujące zborowośc

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE TECHNOLOGII WYTWARZANIA ODLEWÓW

KOMPUTEROWE WSPOMAGANIE TECHNOLOGII WYTWARZANIA ODLEWÓW KOMPUEROWE WSPOMAGANIE ECHNOLOGII WYWARZANIA ODLEWÓW Jausz LELIO Mchał SZUCKI Paweł ŻAK Faculy of Foudry Egeerg Deparme of Foudry Processes Egeerg AGH Uversy of Scece ad echology Krakow I KLIEN CAD CAE

Bardziej szczegółowo

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM Arur MACIĄG Sreszczee: W pracy przedsawoo echk aalzy szeregów czasowych w zasosowau do plaowaa progozowaa produkcj w przewórswe spożywczym.

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo