Światłowodowe elementy polaryzacyjne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Światłowodowe elementy polaryzacyjne"

Transkrypt

1 Światłowodowe elementy polaryzacyjne elementy wykorzystujące własności przenoszenia polaryzacji w światłowodach jednorodnych i dwójłomnych polaryzatory izolatory optyczne depolaryzatory kompensatory i rotatory polaryzacji modulatory fazy i polaryzacji Zastosowanie: transmisja koherentna interferometria optyczna w zamkniętym obiegu światła

2 Polaryzator światłowodowy PS PS otrzymujemy przez selekcję jednego z modów P x lub P y z modu podstawowego HE 11 Za polaryzatorem liniowym światłowód prowadzi jeden mod własny reprezentujący liniową polaryzację Miara jakości polaryzatora ekstynkcja: ε = 10 log (I max / I min ) Konstrukcje: polaryzator z mechanicznym pokryciem L kilka mm P x tłumiona ok. 1% silniej niż P y Wady: konieczna długa droga oddziaływania, duża stratność pozostałej polaryzacji, energia modu tłumionego zamienia się w ciepło (naprężenia)

3 Polaryzator metaliczny z odcięciem modu (realizacja dla zmniejszenia efektów termicznych) naruszona cylindryczna symetria rdzenia P y wypromieniowuje P x przechodzi odcinek z warstwą metaliczną jako fala powierzchniowo-plazmowa Zalecana bardzo cienka warstwa metalu (Al, Ag, Au) aby zminimalizować straty P x

4 Polaryzator z metalowym płaszczem Efekt tłumienia jednego z modów polaryzacji na odcinku światłowodu, na którym pole zanikające modu HE 11 sięga powierzchni metalowego płaszcza

5 Polaryzator z kryształem dwójłomnym Uwaga:kryształ dwójłomny tak wycięty, aby n 1 było dopasowane do n 4= (horyzontalnej osi kryształu) n było dopasowane do n 4 (osi pionowej kryształu) Zanikające pole elektryczne HE 11 oddziałujące z kryształem P x odsprzęglone i wypromieniowane przez kryształ P y pozostaje we włóknie (bo n 4 = n )

6 W-tunelowy polaryzator światła Δλ - szerokość widma polaryzatora światłowód typu W dwójłomny ma różne długości fali odcięcia dla każdego modu polaryzacji dobór λ tak aby jedna z polaryzacji nie mogła się rozchodzić

7 Polaryzator ze zwiniętego włókna dwójłomnego nawinięcie włókna dwójłomnego na walec o odpowiednio dobranej średnicy zgięcie włókna powoduje selektywne tłumienie modów polaryzacji Pasmo transmisji przesuwa się w kierunku fal krótszych gdy maleje promień nawinięcia. Zalety: duża szerokość widmowa pasma transmisji duża stabilność termiczna ( C)

8 Parametry techniczne wybranych polaryzatorów PMP polaryzator z metalicznym pokryciem POM polaryzator metaliczny z odcięciem modu PKD polaryzator z kryształem dwójłomnym P-W polaryzator W-tunelowy PZW polaryzator ze zwiniętego włókna dwójłomnego PM polaryzator z metalowym płaszczem

9 Kompensator polaryzacji Zadanie: kompensacja zmian stanu polaryzacji wynikających z przypadkowych zaburzeń struktury włókna polaryzacja eliptyczna na wy Dwa elementy sterujące bo konieczność kompensacji: ε - eliptyczności polaryzacyjnej ϕ- azymutu polaryzacyjnego M0, M45 elektromagnesy ściskające w kierunku 0 i 45 L1, L dwa odcinki światłowodu dwójłomnego

10 Kompensator polaryzacji Opis układu kompensatora polaryzacji w formalizmie macierzowym Jonesa E = K wy + ( R K1 R ) Ewe gdzie K j macierz Jonesa dwójłomnego światłowodu 1 K j = 0 e 0 iδ j Δ j = φ fj φ sj j=1, realizacja: IL straty, CK ciągłość regulacji, SR szybkość reakcji, ZM zmęczenie mechaniczne, OT ograniczenie termiczne pracy

11 Obrotowe pętle światłowodowe jako kompensatory polaryzacji dwójłomność indukowana zgięciem 1 pętla wprowadza różnicę faz modów polaryzacji Δϕ 1 =90 pętla Δϕ = 180 Dowolna polaryzacja eliptyczna przetworzona na polaryzację liniową przez ustawienie kąta pierwszej pętli kąt ustawienia pętli daje odpowiedni azymut wyjściowej polaryzacji liniowej Aby otrzymać analog płytki fazowej λ/m dla danego światłowodu wyliczamy promień pętli πar λ ( ) = Nm R N,m a = 0,133 stała dla światłowodu kwarcowego r promień włókna, N liczba zwojów

12 Obrotowa ramka światłowodu Działanie analogiczne jak w układzie obrotowych pętli. Pętla zastąpiona półpętlą wygiętą na odpowiednio ukształtowanych ramkach kształt indukuje dwójłomność przez zgięcie, ramki mogą zmieniać nachylenie kątowe względem siebie

13 Rotator światłowodowy FR1, FR rotatory Faradaya, Pλ/4 ćwierćfalówka światłowodowa Rotator FR1 określa stan polaryzacji w punkcie B, po przejściu przez pętlę polaryzacja liniowa w punkcie C, FR obraca jej kierunek

14 Optyczny rotator światłowodowy ϕ = Rotator Faradaya V Hdl l H natężenie pola magnetycznego l długość światłowodu w polu magnetycznym V stała Verdeta (maleje ze wzrostem długości fali, należy stosować źródło o wąskim widmie promieniowania) W przypadku ogólnym kąt skręcenia zależy od natężenia pola H i stopnia dwójłomności światłowodu

15 Rotator z użyciem światłowodu izotropowego Prąd wytwarza pole magnetyczne o kierunku równoległym do osi światłowodu i w efekcie skręcenie płaszczyzny polaryzacji o wartość ϕ = VH

16 Rotator z użyciem światłowodu dwójłomnego W światłowodzie dwójłomnym nie występuje obrót płaszczyzny polaryzacji pod wpływem pola magnetycznego. Pobudzenie światłowodu dwójłomnego światłem spolaryzowanym pod kątem 45 względem osi optycznej powoduje w światłowodzie periodycznie zmienny stan polaryzacji od liniowego w punktach różnicy faz modów polaryzacji równej 0, π, π do ogólnie eliptycznego. Okres zmian fazy w przedziale 0 - π wynosi L P (droga dudnień). Jeśli w zasięgu oddziaływania pola H mieści się kilka stref polaryzacji liniowej l to otrzymamy sumaryczne zjawisko Faradaya na danym odcinku światłowodu. Odstęp l 1 między cewkami powinien wynosić L P, a długość cewki l = L P /.

17 Rotator z użyciem światłowodu dwójłomnego z kompensacją dwójłomności Niepożądaną dwójłomność światłowodu można skompensować przez zwinięcie światłowodu w formie pętli lub cewki. Przy odpowiednim ustawieniu osi optycznych światłowodu i doborze promienia zwoju R można przywrócić izotropowość optyczną światłowodu. Umieszczając zwinięty światłowód w obszarze oddziaływania pola magnetycznego otrzymamy efekt skręcenia płaszczyzny polaryzacji. Maksymalnie skuteczne oddziaływanie pola będzie na odcinkach światłowodu równoległych do linii oddziaływania pola.

18 Optyczny izolator światłowodowy Schemat ideowy Realizacja techniczna Objętościowy izolator optyczny składa się z krystalicznego rotatora Faradaya o kącie obrotu płaszczyzny polaryzacji 45 i polaryzatora. Fala optyczna liniowo spolaryzowana przechodzi przez polaryzator i rotator, odbita wraca do źródła. Sumaryczny kąt obrotu płaszczyzny polaryzacji wynosi =90, a polaryzator nie przepuszcza fali o polaryzacji prostopadłej do polaryzacji wejściowej. Rotator krystaliczny może być zastąpiony rotatorem światłowowowym.

19 Modulator światłowodowy Modulacja fazowa polega na cyklicznej zmianie fazy wiązki świetlnej propagującej w światłowodzie jednomodowym. Fala przechodząc przez światłowód o długości l i współczynniku załamania n ma zdefiniowaną fazę: Zmiana fazy: Δφ = φ = βl = k0nl ( nδl + lδn) = k ( nle + l n) k0 0 3 Δ gdzie β stała propagacji, Δn zmiana współczynnika załamania e 3 osiowe odkształcenie światłowodu Odpowiednio dla modów o ortogonalnych polaryzacjach: n Δφ1 = k 0nle3 ( p11e1 + p1e + p1e3 ) n Δφ = k 0nle3 ( p1e1 + p11e + p1e3 ) gdzie e i -główne odkształcenia ortogonalnych osi p 11, p 1 współczynniki elastooptyczne

20 Modulator fazy na piezoelektrycznej ceramice (PZT) Radialne drgania modulatora pod wpływem przyłożonego napięcia powodują okresowe rozciąganie światłowodu Piezoelektryczny modulator zaciskowy Modulator wytwarza zogniskowane radialnie w osi włókna pole sprężyste

21 Modulator z cylindrycznym elementem piezoelektrycznym Modulator światłowodowy z PVF (piezoaktywny polimer fluorek poliwinylowy)

22 Soczewki gradientowe Zasada działania Typowe rodzaje

23 n Profil rozkładu współczynnika załamania 4 () r = n ( 0) 1 ( gr) + h ( gr) + h ( gr) W pierwszym przybliżeniu n 6 [ +...] [ ] () r = n ( 0) 1 ( gr) lub oznaczając A=g () n( 0) n r 1 = 4 A r Opis trajektorii promienia r r& 3 3 = n 0 sin ( ) ( A L) cos A L ; n( 0) A ( ) A sin( A L) cos( A L) 6 r r& Soczewki gradientowe Jeśli na czoło soczewki pada wiązka promieni równoległych ( r& 0 = 0) r = 3 r0 cos( A L) Promienie biegnące przez soczewkę mają trajektorię sinusoidalną o okresie π P = A 0 0

24 Soczewki gradientowe zastosowania Tworzenie obrazu Sprzęgacz kierunkowy Multipleksowanie obrazu

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej

Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Cel ćwiczenia: Celem ćwiczenia jest demonstracja i ilościowa analiza wybranych metod dyskretnej i ciągłej zmiany fazy w interferometrach

Bardziej szczegółowo

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

Wykład 12: prowadzenie światła

Wykład 12: prowadzenie światła Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Anteny i Propagacja Fal

Anteny i Propagacja Fal Anteny i Propagacja Fal Seminarium Dyplomowe 26.11.2012 Bartosz Nizioł Grzegorz Kapusta 1. Charakterystyka promieniowania anteny określa: P: unormowany do wartości maksymalnej przestrzenny rozkład natężenia

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Światłowody telekomunikacyjne

Światłowody telekomunikacyjne Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie

Bardziej szczegółowo

Fotonika. Plan: Wykład 3: Polaryzacja światła

Fotonika. Plan: Wykład 3: Polaryzacja światła Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi.

Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi. Parametry anten Polaryzacja anteny W polu dalekim jest przyjęte, że fala ma charakter fali płaskiej. Podstawową właściwością tego rodzaju fali jest to, że wektory natężenia pola elektrycznego i magnetycznego

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Interferometry światłowodowe Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Wprowadzenie Układy te stanowią nową klasę czujników, gdzie podstawowy mechanizm

Bardziej szczegółowo

Optyka Ośrodków Anizotropowych. Wykład wstępny

Optyka Ośrodków Anizotropowych. Wykład wstępny Optyka Ośrodków Anizotropowych Wykład wstępny Cel kursu Zapoznanie z podstawami fizycznymi w optyce polaryzacyjnej. Jak zachowuje się fala elektromagnetyczna w ośrodku materialnym? Omówienie zastosowania

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej

Bardziej szczegółowo

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

1. Wzmacniacze wiatłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprz enia zwrotnego).

1. Wzmacniacze wiatłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprz enia zwrotnego). Wzmacniacze światłowodowe, Wykład 9 SMK J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej, WKŁ W-wa 1999 1. Wzmacniacze światłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprzężenia

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

Nanowłókna krzemowe (włókna o średnicy poniżej długości fali) oraz włókna chiralne. Silica Nanofibres (Subwavelength-Diameter) and Chiral Fibres

Nanowłókna krzemowe (włókna o średnicy poniżej długości fali) oraz włókna chiralne. Silica Nanofibres (Subwavelength-Diameter) and Chiral Fibres Nanowłókna krzemowe (włókna o średnicy poniżej długości fali) oraz włókna chiralne Silica Nanofibres (Subwavelength-Diameter) and Chiral Fibres Wprowadzenie (nanowłókna) Prowadzenie mocy Wytwarzanie krzemowego

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

MODULATOR CIEKŁOKRYSTALICZNY

MODULATOR CIEKŁOKRYSTALICZNY ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek

Piotr Targowski i Bernard Ziętek Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Laserów ZEWNĘTRZNA MODULACJA ŚWIATŁA Zadanie IV Zakład Optoelektroniki Toruń

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację

Bardziej szczegółowo

ANTENY I PROPAGACJA FAL RADIOWYCH

ANTENY I PROPAGACJA FAL RADIOWYCH ANTENY I PROPAGACJA FAL RADIOWYCH 1. Charakterystyka promieniowania anteny określa: unormowany do wartości maksymalnej przestrzenny rozkład natężenia pola, Odpowiedź prawidłowa ch-ka promieniowania jest

Bardziej szczegółowo

Elementy optyki relatywistycznej

Elementy optyki relatywistycznej Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL PL 217542 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217542 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 395085 (22) Data zgłoszenia: 01.06.2011 (51) Int.Cl.

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1 TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design Podstawy prowadzenia światła we włóknach oraz ich budowa Light-Guiding Fundamentals and Fiber Design Rozchodzenie się liniowo-spolaryzowanego światła w światłowodzie Robocza definicja długości fali odcięcia

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek ZEWNĘTRZNA MODULACJA ŚWIATŁA

Piotr Targowski i Bernard Ziętek ZEWNĘTRZNA MODULACJA ŚWIATŁA Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna ZEWNĘTRZNA MODULACJA ŚWIATŁA Zadanie IV Zakład Optoelektroniki Toruń

Bardziej szczegółowo

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

1. Dyfrakcja Fraunhofera: a) zachodzi gdy promienie padajace na przegrode i promienie biegnace do punktu obserwacji sa niemal rownolegle

1. Dyfrakcja Fraunhofera: a) zachodzi gdy promienie padajace na przegrode i promienie biegnace do punktu obserwacji sa niemal rownolegle 1. Dyfrakcja Fraunhofera: a) zachodzi gdy promienie padajace na przegrode i promienie biegnace do punktu obserwacji sa niemal rownolegle 2. Odbicie dyfuzyjne: a) rozproszone odbicie swiatla - zachodzace

Bardziej szczegółowo

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04 RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) 174585 PO LSK A (13)B1 U rząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 304405 (22) Data zgłoszenia: 22.07.1994 (51) Int.Cl.6: G01N

Bardziej szczegółowo

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...

Bardziej szczegółowo

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU

Bardziej szczegółowo

Wykład 2 Transmisja danych i sieci komputerowe. Rodzaje nośników. Piotr Kolanek

Wykład 2 Transmisja danych i sieci komputerowe. Rodzaje nośników. Piotr Kolanek Wykład 2 Transmisja danych i sieci komputerowe Rodzaje nośników Piotr Kolanek Najważniejsze technologie Specyfikacja IEEE 802.3 przedstawia m.in.: 10 Base-2 kabel koncentryczny cienki (10Mb/s) 100 Base

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie 5. Wyznaczanie stałych optycznych cienkich warstw metodą

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie 5. Wyznaczanie stałych optycznych cienkich warstw metodą Instytut Fizyki Politechniki Wrocławskiej Laboratorium Fizyki Cienkich Warstw Ćwiczenie 5 Wyznaczanie stałych optycznych cienkich warstw metodą elipsometryczną Opracowanie: Krystyna Żukowska Wrocław, 2006

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

DEPOLARYZATOR ŚWIATŁA DLA ŚWIATŁOWODOWEGO CZUJNIKA PRĄDU Z PRZETWARZANIEM ZEWNĘTRZNYM

DEPOLARYZATOR ŚWIATŁA DLA ŚWIATŁOWODOWEGO CZUJNIKA PRĄDU Z PRZETWARZANIEM ZEWNĘTRZNYM ELEKTRYKA 2014 Zeszyt 2-3 (230-231) Rok LX Kamil BARCZAK Politechnika Śląska w Gliwicach DEPOLARYZATOR ŚWIATŁA DLA ŚWIATŁOWODOWEGO CZUJNIKA PRĄDU Z PRZETWARZANIEM ZEWNĘTRZNYM Streszczenie. Światłowodowy

Bardziej szczegółowo

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) 1 Schemat żyroskopu Wiązki biegnące w przeciwną stronę Nawinięty światłowód optyczny Źródło światła Fotodioda Polaryzator

Bardziej szczegółowo

Czujniki światłowodowe

Czujniki światłowodowe Czujniki światłowodowe Pomiar wielkości fizycznych zaburzających propagację promieniowania Idea pomiaru Dioda System optyczny Odbiornik Wejście pośrednie przez modulator Wielkość mierzona wejście czujnik

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Prądy wirowe (ang. eddy currents)

Prądy wirowe (ang. eddy currents) Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko

Bardziej szczegółowo