Arch. Min. Sci., Vol. 56 (2011), No 3, p

Wielkość: px
Rozpocząć pokaz od strony:

Download "Arch. Min. Sci., Vol. 56 (2011), No 3, p"

Transkrypt

1 Arch. Min. Sci. Vol. 56 (2011) No 3 p Electronic version (in color) of this paper is available: MAREK CAŁA* MARIAN PALUCH* ANTONI TAJDUŚ* STATIC FORMULATION OF MASS POINTS METHOD FOR CALCULATION OF JOINT DISPLACEMENT AND AXIAL FORCES IN THE MEMBERS OF SPACE TRUSS STATYCZNE UJĘCIE METODY PUNKTÓW MASOWYCH DO OBLICZENIA PRZEMIESZCZEŃ WĘZŁÓW I SIŁ OSIOWYCH W PRĘTACH KRATOWNICY PRZESTRZENNEJ The space trusses are engineering constructions applied in civil engineering and underground construction. In the process of designing of space truss (geometry material member s cross-sections ) the values of joint displacements support reaction forces and axial forces in members must be calculated for assumed load acting on the construction. This paper shows formulation of the static mass point method. The theoretical description was accompanied with working example. The presented method is very comfortable for static space truss calculations both statically determinable and undeterminable. Keywords: truss static space calculations mass point method Kratownice przestrzenne są konstrukcjami inżynierskimi stosowanymi zarówno w budownictwie naziemnym jak i podziemnym. Można tu wymienić kratowe mosty kolejowe maszty słupy energetyczne górnicze klatki wież wyciągowych itp. Przy ich projektowaniu a więc doborze odpowiedniej geometrii konstrukcji materiału przekrojów poprzecznych prętów należy obliczyć wielkości przemieszczeń węzłowych sił reakcji podporowych i sił osiowych w prętach dla zadanego obciążenia działającego na konstrukcję. W pracy omówiono statyczne ujęcie metody punktów masowych. Przedstawiona na rys. 1 kratownica składa się z pięciu węzłów i dziesięciu prętów zaś obciążenie zewnętrzne którym jest siła F 1 i podpory przyłożone są w węzłach kratownicy. Do węzłów A 2 A 3 A 4 A 5 przyłożone są podpory przegubowe. W węźle A 2 jest podpora przegubowa nieprzesuwna łożysko stałe przegubowa nieprzesuwna łożysko stałe w węzłach A 4 i A 5 podpory przegubowo-przesuwne zezwalające na przesuw wzdłuż jednej osi zaś w węźle A 3 podpora przegubowo-przesuwna zezwalająca na przesuw w płaszczyźnie prostopadłej do osi pręta stanowiącego tę podporę. Analizowana kratownica jest układem trzykrotnie statycznie niewyznaczalnym. Podstawowymi niewiadomymi przy wyznaczeniu sił osiowych w prętach kratownicy oraz sił reakcji podporowych (rys. 2b) są przemieszczenia punktów węzłowych kratownicy (rys. 2a). Składowe przemieszczeń kolejnych węzłów i zewnętrznych sił przyłożonych do kratownicy którymi są siła F 1 i reakcje podporowe są zapisane w globalnym układzie odniesienia A 2 xyz (rys. 2). Rozważmy pręt A i A j kratownicy przestrzennej znajdujący się pomiędzy węzłami A i oraz A j (rys. 3). Konfiguracja początkowa pręta A i A j określona jest położeniem węzłów A i A j. Pręt doznaje deformacji na którą składa się translacja (równoległe przesunięcie) rotacja (obrót np. wokół punktu A i ) i właściwe

2 428 odkształcenie (wydłużenie bądź skrócenie). Konfigurację końcową (po deformacji) pręta określają punkty A i A j. Wykorzystując rys. 3 i twierdzenie Pitagorasa możemy dla obu konfiguracji pręta A i A j napisać następujące równanie (7). Po odjęciu stronami równań (7) i podzieleniu tak otrzymanej równości przez 2l ij dochodzimy do równania (8) w którym pomijamy człony nieliniowe. Następnie biorąc pod uwagę prawo Hooke a otrzymujemy (14) wartość siły osiowej N ij w pręcie A i A j. Dla i-tego węzła kratownicy w którym schodzi się k-prętów musi być spełnione równanie równowagi sił (16). Po rozpisaniu równań (16) dla wszystkich węzłów kratownicy i rozwiązaniu ich otrzymujemy wielkości przemieszczeń węzłowych a dalej sił reakcji podporowych i sił osiowych w prętach kratownicy. Następnie przedstawiono przykład liczbowy dla przestrzennej kratownicy obciążonej w węźle A 1 siłą F 1 (rys. 1). Wyznaczono składowe przemieszczeń węzłów siły reakcji podporowych oraz siły osiowe we wszystkich prętach kratownicy. Sformułowano równania równowagi węzłów kratownicy i obliczono elementy diad (15) występujących w równaniach równowagi węzłów. Określono siły zewnętrzne przyłożone do węzłów i wektory przemieszczeń węzłowych. Wyliczone elementy diad wstawiono do równań równowagi węzłów otrzymując układ równań algebraicznych. Równania zapisano w dwóch podgrupach a to: pierwszej zawierającej równania z niewiadomymi przemieszczeniami węzłów i drugiej zawierającej równania w których niewiadomymi są siły reakcji podporowych. Po rozwiązaniu równań i znalezieniu wartości przemieszczeń wstawiono je do drugiej podgrupy uzyskując wartości sił reakcji. Następnie dokonano sprawdzenia poprawności wykonanych obliczeń. Na rys. 4 zaznaczono wszystkie siły zewnętrzne działające na analizowaną kratownicę przestrzenną. Układ tych sił powinien być w równowadze co wiąże się ze spełnieniem równań równowagi układu sił. Ponieważ równania równowagi układu sił są spełnione to układ sił zewnętrznych działający na kratownicę jest w równowadze. Omówiona w pracy metoda służy do wyznaczenia przemieszczeń węzłowych sił osiowych i sił reakcji podporowych w kratownicach przestrzennych niezależnie od stopnia statycznej niewyznaczalności konstrukcji. Można z niej również korzystać w przypadku gdy geodezyjne pomierzone są składowe przemieszczeń węzłów kratownicy a nie znamy odpowiadających im sił osiowych w prętach i sił reakcji podporowych. Zaproponowana do obliczeń metoda jest bardzo prosta i skuteczna. Metoda ta jest bardzo wygodna do obliczeń statycznych kratownic zarówno wyznaczalnych jak i niewyznaczalnych. Słowa kluczowe: kratownice obliczanie przestrzennych kratownic metoda punktów masowych 1. Introduction Let s consider the space truss (Fig. 1) consisted of simple members connected in joints in such a way that member s axis are placed exactly in the joints. We also assume the joints are perfectly smooth. The external load (force F 1) and support are placed exactly in truss joints The space truss presented on fig. 1 consists of five joints and ten trusses. The joints A 2 A 3 A 4 A 5 are pivot bearings. Joint A 2 has fixed pivot bearing joints A 4 i A 5 have fixed-roller bearings allowing movement along one axis. Joint A 3 has a fixed-roller Bering allowing movement in the plane perpendicular to the axis of support member. The analyzed space truss is three-times statically undeterminable system (compare with Paluch 2004) because the condition for the number of members in the statically determinable truss is given as: where: p number of members w number of joints. p = 3w 6 = = 9 The space truss has ten members and the support reaction number is equal eight. For to unknowns we have only six equilibrium equations.

3 429 Fig. 1. The example space truss Than we have: (10 9) + (8 6) = 3 The basic unknowns (compare with Gawędzki 1985) that would be used for estimation of axial forces in truss members and support reaction forces (Fig. 2b) are the displacements of truss joints (Fig. 2a). Fig. 2. a displacements of truss joints; b support reaction forces

4 430 In the global reference system A 2 x y z fig. 2 we may write down the components of joints displacements and external forces acting on the space truss which are force F 1 and support reaction forces. Joint A 1 Joint A 2 Joint A 3 A 1 (0 0 3) [m] u 1 = (u 1 v 1 w 1 ) [m] F 1 = ( ) [kn] A 2 (0 0 0) [m] u 2 = (0 0 0) [m] R 2 = (H 2 V 2 W 2 ) [kn] Joint A 4 Joint A 5 A 4 (4 0 0) [m] A 5 (4 3 0) [m] u 4 = (u 4 0 0) [m] R 4 = (0 V 4 W 4 ) [kn] u 5 = (0 v 5 0) [m] R 5 = (H 5 0 W 5 ) [kn] A 3 (0 3 0) [m] u 3 = (u 3 v 3 0) [m] R 3 = (0 0 W 3 ) [kn] 2. Derivation of equilibrium equations of mass points method Let s consider the member A i A j of space truss placed between joints A i and A j (Fig. 3) Initial configuration (Pietrzak et al. 1986) of member A i A j is given by location of joints A i A j. The member undergoes the deformation consisting from translation (parallel movement) rotation (i.e. turn around point A i ) and strain (elongation of shortage). The final member configuration (after deformation) is given by points A i A j. Fig. 3. The member A i A j of space truss placed between joints A i and A j

5 431 The description for fig. 3: A i A j Joints of member A i A j l ij Length of member before deformation l ij + l ij Length of the member after deformation e x e y e z The base of global reference system e ij Versor of section connecting points A i A j (1) where: (2) Are coordinates of versor e ij in the global reference system A ij = A Cross-section of member A i A j E ij = E Young s moduli of the member A i A j E ij A ij = EA Stiffness of member A i A j (for compression or tension) Stiffness moduli of the member (for compression r tension) N ij The value of axial force in the member A i A j N ij Axial force in the member A i A j (3) u i u j Displacement vectors for joint points A i A j (4) (5) (6)

6 432 With the application of fig. 3 and the Pythagorean theorem the following equations may be presented for both configurations of member A i A j : (7) After diminishing sides of equation (7) and dividing such given equation by 2l ij we have: (8) Due to the fact that we analyse of member for linear elasticity theory and we consider small displacements than in the equation (8) we ignore nonlinear parts. Than the elongation of member A i A j is equal: (9) For linear elasticity theory Hook s low is obligatory: where: σ = Eε (10) (11) Inputing (11) to (10) we have: (12) Comparing the equations (9) and (12) we obtain an equation for the value of axial force N ij in the member A i A j (13)

7 433 Than axial force N ij in the member A i A j may be expressed as; (14) The dyad D ij in the equation (14) is an exterior product of versors e i e j: (15) The equations (14) and (15) ties the force N ij in member A i A j of truss with displacement of joints A i A j. The space truss is in equilibrium because all its joints are in equilibrium. In that case for the i-th joint of the truss where meets k members the equilibrium equation must be fulfilled: (16) In the equation (16) F i is a sum of external forces applied to i-th joint and j is the number of following member starting from that joint. After describing equations (16) for all the joints of space truss and its solution we may obtain joint displacements support reaction forces and axial forces in every member. Thank to the method presented above we may utilise it instead the force method applied for solution of statically undeterminable trusses. The name of the method is taken from Böhm (1992). 3. Example calculation For space truss (Fig. 1) loaded in joint A 1 with force F 1 estimate the components of joint s displacements support reaction forces and axial forces in all truss members. It was assumed for calculation: F 1 = ( ) [kn] Equal stiffness modulus for all the members: Unknown joint s displacements (Fig. 2a) are: u 1 v 1 w 1 u 3 v 3 u 4 v 5 Unknown support reaction forces (Fig. 2b) are: H 2 V 2 W 2 W 3 V 4 W 4 H 5 W 5

8 434 Coordinates of joint points: A 1 (0 0 3) A 2 (0 0 0) A 3 (0 3 0) A 4 (4 0 0) A 5 (4 3 0) The lengths of truss members (Fig. 1): l A1 A 2 = l 12 = 3 [m] l A1 A 3 = l 13 = 3 2 [m] l A1 A 4 = l 14 = 5 [m] l A1 A 5 = l 15 = 34 [m] l A2 A 3 = l 23 = 3 [m] l A2 A 4 = l 24 = 4 [m] l A2 A 5 = l 25 = 5 [m] l A3 A 4 = l 34 = 5 [m] l A3 A 5 = l 35 = 4 [m] l A4 A 5 = l 45 = 3 [m] Coordinates of member s versors in global coordinate system: Member A 1 A 2 e 12 = (0 0 1) Member A 1 A 3 Member A 1 A 4 e 14 = (08; 0; 06) Member A 1 A 5 Member A 2 A 3 e 23 = (0 1 0) Member A 2 A 4 e 24 = (1 0 0) Member A 2 A 5 e 25 = (08; 06; 0) Member A 3 A 4 e 34 = (08; 06; 0) Member A 3 A 5 e 35 = (1 0 0) Member A 4 A 5 e 45 = (0 1 0) Equilibrium equations for truss joints Joint A 1 Joint A 2 Joint A 3 Joint A 4 Joint A 5 Calculation of dyads elements equation 15 for joints in equilibrium equations:

9 435

10 436 External forces applied to joints Joint A 1 F 1 = ( ) [kn] Joint A 2 R 2 = (H 2 V 2 W 2 ) [kn] Joint A 3 R 3 = (0 0 W 3 ) [kn] Joint A 4 R 4 = (0 V 4 W 4 ) [kn] Joint A 5 R 5 = (H 5 0 W 5 ) [kn] Joint displacement vectors Joint A 1 u 1 = (u 1 v 1 w 1 ) [m] Joint A 2 u 2 = (0 0 0) [m] Joint A 3 u 3 = (u 3 v 3 0) [m] Joint A 4 u 4 = (u 4 0 0) [m] Joint A 5 u 5 = (0 v 5 0) [m] Calculated elements of dyad s are implemented to joint equilibrium equations obtaining the following algebraic system of equations a) Joint A 1 b) Joint A 2 c) Joint A 3 d) Joint A 4 e) Joint A 5

11 437 Let s write down this equation into two subgroups: first subgroup covers equations with unknown joint displacements second subgroup covers equations with unknown support reaction forces: The first subgroup of algebraic equations has the following solution: This solution we put to the second subgroup of equations for obtaining the support reaction forces: Fig. 4. shows all the external forces acting on the space truss.

12 438 Verification of correctness of performed calculations. Fig. 4. External forces acting on the space truss The force system should be in equilibrium what follows fulfilment the equations of system equilibrium: Because the system equilibrium equations are fulfilled than the system of external forces acting on the space truss s in equilibrium. Calculation of axal forces in the truss members:

13 Attention! Sign - with the force means that member is under compression. 439

14 440 Fig. 5. shows the axial forces for members of space truss Fig. 5. Axial forces for members of space truss 4. Summary This paper shows a very simple way of solution for statically determinate or statically indeterminate space trusses. The discussed method of mass points is attractive comparing wih finite element method. It may be utilised even in the case when we have measured space joint displacements and we do not know the axial forces produced by these displacements. References Böhm F Fahrzeugdynamik bei Berücksichtigung elastischer und plasticher Deformationen sowie Reibung VDI Berichte Nr 1007 s Jakubowicz A. Orłoś Z Wytrzymałość materiałów. WNT Warszawa (in polish). Gawęcki A Podstawy mechaniki konstrukcji prętowych. Politechnika Poznańska Poznań (in polish). Paluch M Statyczne ujęcie metody punktów masowych do wyznaczenia sił osiowych w prętach kratownicy płaskiej. Górnictwo i Geoinżynieria AGH z. 3/1 Kraków (in polish). Paluch M Podstawy mechaniki budowli podręcznik akademicki dla studentów wyższych szkół technicznych. Edition. 2. Edited by Katedra Geomechaniki Budownictwa i Geotechniki AGH Kraków (in polish). Pietrzak J. Rakowski G. Wrześniowski K Macierzowa analiza konstrukcji. PWN Warszawa-Poznań (in polish). Received: 24 May 2011

Lecture 18 Review for Exam 1

Lecture 18 Review for Exam 1 Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February

Bardziej szczegółowo

METODA OBLICZANIA KRATOWNIC STATYCZNIE NIEWYZNACZALNYCH W DWÓCH ETAPACH

METODA OBLICZANIA KRATOWNIC STATYCZNIE NIEWYZNACZALNYCH W DWÓCH ETAPACH Prof. dr hab. inż. arch. Janusz RĘBIELAK Politechnika Krakowska METODA OBLICZANIA KRATOWNIC STATYCZNIE NIEWYZNACZALNYCH W DWÓCH ETAPACH Streszczenie: Przedmiotem pracy jest dwuetapowa metoda obliczeń kratownic

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Knovel Math: Jakość produktu

Knovel Math: Jakość produktu Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających

Bardziej szczegółowo

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo POPRAWKA do POLSKIEJ NORMY ICS 29.060.10 PNEN 50182:2002/AC Wprowadza EN 50182:2001/AC:2013, IDT Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo Poprawka do Normy Europejskiej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia kratownicy płaskiej Wykonał: dr

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku Jerzy-Andrzej Nowakowski, Walenty Osipiuk (Politechnika Bialostocka) PROBLEMY REALIZACJI NAPIFCIA WSTF~PNEGO JEDNORZF~DOWYCH ŁOŻYSK

Bardziej szczegółowo

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich

Bardziej szczegółowo

Krótko, co nas czeka na zajęciach. Jak realizujemy projekty. Jak je zaliczamy. Nieobecności Wykład nr 1

Krótko, co nas czeka na zajęciach. Jak realizujemy projekty. Jak je zaliczamy. Nieobecności Wykład nr 1 O czym dzisiaj Krótko, co nas czeka na zajęciach. Jak realizujemy projekty. Jak je zaliczamy. Nieobecności Wykład nr Co nas czeka na zajęciach Spis ćwiczeń projektowych: Wyznaczanie wykresów sił wewnętrznych

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Analiza porównawcza przemieszczeń ustroju prętowego z użyciem programów ADINA, Autodesk Robot oraz RFEM

Analiza porównawcza przemieszczeń ustroju prętowego z użyciem programów ADINA, Autodesk Robot oraz RFEM Zeszyty Naukowe Politechniki Częstochowskiej nr 24 (2018), 262 266 DOI: 10.17512/znb.2018.1.41 Analiza porównawcza przemieszczeń ustroju prętowego z użyciem programów ADINA, Autodesk Robot oraz RFEM Przemysław

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

MECHANIKA CIAŁA ODKSZTAŁCALNEGO. 1. Przedmiot i cel wytrzymałości materiałów STATYKA POLSKIE NORMY PODSTAWOWE POJĘCIA, DEFINICJE I ZAŁOŻENIA 1

MECHANIKA CIAŁA ODKSZTAŁCALNEGO. 1. Przedmiot i cel wytrzymałości materiałów STATYKA POLSKIE NORMY PODSTAWOWE POJĘCIA, DEFINICJE I ZAŁOŻENIA 1 ODSTWOWE OJĘC, DEFNCJE ZŁOŻEN 1 Wytrzymałość ateriałów - dział mechaniki stosowanej zajmujący się zachowaniem ciał stałych pod wpływem różnego typu obciążeń. Celem analizy tego zachowania jest wyznaczenie

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Wytrzymałość materiałów Rok akademicki: 2013/2014 Kod: GGiG-1-414-n Punkty ECTS: 5 Wydział: Górnictwa i Geoinżynierii Kierunek: Górnictwo i Geologia Specjalność: Poziom studiów: Studia I

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1 Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Z1/1. ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH ZADANIE 1

Z1/1. ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH ZADANIE 1 Z/. NLZ KNEMTYCZN PŁSKCH UKŁDÓW PRĘTOWYCH ZDNE Z/. NLZ KNEMTYCZN PŁSKCH UKŁDÓW PRĘTOWYCH ZDNE Z/.. Kratownica numer Sprawdzić czy kratownica płaska przedstawiona na rysunku Z/. jest układem geometrycznie

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima

Bardziej szczegółowo

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,

Bardziej szczegółowo

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH 1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej

Bardziej szczegółowo

1.Otwieranie modelu Wybierz opcję Otwórz. W oknie dialogowym przechodzimy do folderu, w którym znajduje się nasz model.

1.Otwieranie modelu Wybierz opcję Otwórz. W oknie dialogowym przechodzimy do folderu, w którym znajduje się nasz model. 1.Otwieranie modelu 1.1. Wybierz opcję Otwórz. W oknie dialogowym przechodzimy do folderu, w którym znajduje się nasz model. 1.2. Wybierz system plików typu STEP (*. stp, *. ste, *.step). 1.3. Wybierz

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 017/018 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN Budownictwo i Architektura 12(4) (2013) 219-224 Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN 1992-1-1 Politechnika Lubelska, Wydział Budownictwa i Architektury,

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

WSPÓŁCZYNNIK PRACY ZŁĄCZA CIERNEGO GÓRNICZEJ, KORYTARZOWEJ OBUDOWY PODATNEJ

WSPÓŁCZYNNIK PRACY ZŁĄCZA CIERNEGO GÓRNICZEJ, KORYTARZOWEJ OBUDOWY PODATNEJ GÓRNICTWO I GEOLOGIA 211 Tom 6 Zeszyt 1 Jarosław BRODNY Politechnika Śląska, Gliwice Instytut Mechanizacji Górnictwa WSPÓŁCZYNNIK PRACY ZŁĄCZA CIERNEGO GÓRNICZEJ, KORYTARZOWEJ OBUDOWY PODATNEJ Streszczenie.

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor POLITECHNIKA POZNAŃKA INTYTUT KONTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli Ćwiczenie nr 4 WYZNACZANIE IŁ W PRĘTACH KRATOWNIC PŁAKICH Prowadzący: mgr inŝ. A. Kaczor Wykonał: Dariusz Włochal gr. B6 rok

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

WGNIECENIA NAD PODPORAMI PODCZAS BADAŃ BELEK Z DREWNA KLEJONEGO POD WPŁYWEM OBCIĄŻEŃ WIELOKROTNIE POWTARZALNYCH

WGNIECENIA NAD PODPORAMI PODCZAS BADAŃ BELEK Z DREWNA KLEJONEGO POD WPŁYWEM OBCIĄŻEŃ WIELOKROTNIE POWTARZALNYCH AGATA LACHIEWICZ-ZŁOTOWSKA WGNIECENIA NAD PODPORAMI PODCZAS BADAŃ BELEK Z DREWNA KLEJONEGO POD WPŁYWEM OBCIĄŻEŃ WIELOKROTNIE POWTARZALNYCH DISPLACEMENTS OVER THE SUPPORT POINT IN GLUELAM BEAMS UNDER THE

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

Wykład 2 Układ współrzędnych, system i układ odniesienia

Wykład 2 Układ współrzędnych, system i układ odniesienia Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych

Bardziej szczegółowo

BADANIA MODELOWE ZŁĄCZA CIERNEGO OBCIĄŻONEGO UDAREM MASY

BADANIA MODELOWE ZŁĄCZA CIERNEGO OBCIĄŻONEGO UDAREM MASY GÓRNICTWO I GEOLOGIA 2012 Tom 7 Zeszyt 1 Jarosław BRODNY Politechnika Śląska, Gliwice Instytut Mechanizacji Górnictwa BADANIA MODELOWE ZŁĄCZA CIERNEGO OBCIĄŻONEGO UDAREM MASY Streszczenie. Prowadzenie

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Installation of EuroCert software for qualified electronic signature

Installation of EuroCert software for qualified electronic signature Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

typowego rusztowania

typowego rusztowania Budownictwo i Architektura 13(2) (2014) 325-332 Wpływ imperfekcji na pracę statyczno-wytrzymałościową typowego rusztowania Ewa Błazik-Borowa 1, Jakub Gontarz 2 1 Katedra Mechaniki Budowli, Wydział Budownictwa

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia ramy płaskiej obciążonej siłą skupioną

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej Podstawy mechaniki 2018_2019 Równowaga bryły sztywnej Równowaga bryły sztywnej Ogólne warunki równowagi Przypadek płaskiego (dwuwymiarowego) układu sił Obiekty w równowadze Podpory i ich modele O czym

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Podstawowe pojęcia Wytrzymałość materiałów, projektowanie konstrukcji, siły wewnętrzne, siły przekrojowe, naprężenie Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

ZWROTNICOWY ROZJAZD.

ZWROTNICOWY ROZJAZD. PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 EKSPLOATACJA U ZWROTNICOWY ROZJAZD. DEFINICJ, 6 Streszczenie: ruchem kolejowym. Is rozjazd, W artykule autor podj w rozjazd. 1. sterowania

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka

Bardziej szczegółowo

Z-LOG-0133 Wytrzymałość materiałów Strength of materials

Z-LOG-0133 Wytrzymałość materiałów Strength of materials KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Extraclass. Football Men. Season 2009/10 - Autumn round

Extraclass. Football Men. Season 2009/10 - Autumn round Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+

Bardziej szczegółowo