Rok 2008/2009, tematy z kolokwium 20 i 21 XII 2008, studia niestacjonarne Wyższa Szko la Zarz adzania i Bankowości.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rok 2008/2009, tematy z kolokwium 20 i 21 XII 2008, studia niestacjonarne Wyższa Szko la Zarz adzania i Bankowości."

Transkrypt

1 Rok 2008/2009, tematy z kolokwium 20 i 21 XII 2008, studia niestacjonarne Wyższa Szko la Zarz adzania i Bankowości. 1.A.Punkt materialny o masie m=6kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 3cos(πt), y(t) = 5 + t 3, gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć 1.B.Punkt materialny o masie m=1kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 3 + 2t 2, y(t) = 2sin( π t), gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć 2 1.C.Punkt materialny o masie m=3kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 3cos(πt), y(t) = 3sin(πt) gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć 1.D.Punkt materialny o masie m=4kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 2cos( πt), y(t) = 2sin( π t), gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć E.Punkt materialny o masie m=2kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 3t cos(πt), y(t) = 5 + t, gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć 1.F.Punkt materialny o masie m=7kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 2t 2, y(t) = 2t sin(πt), gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć 1.G.Punkt materialny o masie m=5kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = 4cos(πt), y(t) = sin(πt) gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć 1.H.Punkt materialny o masie m=9kg porusza siȩ po p laszczyźnie zgodnie ze wzorem x(t) = cos( πt), y(t) = 2sin( π t), gdzie wszystkie wielkości s a wyrażone w jednostkach SI. Znaleźć I.Cia lo o masie m = 4kg porusza siȩ po p laszczyźnie poziomej z przyspieszeniem a = 5m/s 2 pod wp lywem si ly F = 30N. Obliczyć si lȩ tarcia T i wspó lczynnik tarcia f. Przyspieszenie Ziemi przyj ać jako g = 10m/s 2. 1.J.Wspó lczynnik tarcia f = 0.4. Ile wynosi minimalna si la pozioma potrzebna do ruszenia cia la o masie m = 4kg spoczywaj acego na p laszczyźnie poziomej. Przyspieszenie Ziemi przyj ać jako g = 10m/s 2. 1.K.Cia lo o masie m = 2kg porusza siȩ po p laszczyźnie poziomej z przyspieszeniem a = 6m/s 2 pod wp lywem sta lej si ly F. Ile wynosi si la F, jeżeli wspó lczynnik tarcia f = L.Ile wynosi masa cia la m poruszaj acego siȩ po p laszczyźnie poziomej z przyspieszeniem a = 13m/s 2 pod wp lywem sta lej si ly F = 16N, jeżeli wspó lczynnik tarcia f = 0.7.

2 1.M.Ile wynosi stosunek R pracy do pokonania tarcia od punktu A do punktu B po pó lokrȩgu i po prostej od A do B. 1.N.Ile wynosi stosunek R pracy do pokonania tarcia od punktu A do punktu B w trójk acie równobocznym ABC po trasie przez punkt C i po prostej od A do B. 1.O.Lokomotywa o masie m = 200ton ci agnie z si l a F = N sk lad 3 wagonów o masach, licz ac od lokomotywy, 2m, m i m. Z jakim przyspieszeniem porusza siȩ ten sk lad i ile wynosi naprȩżenie na l aczeniu lokomotywy z reszt a sk ladu. 1.P.Lokomotywa o masie m = 200ton ci agnie z si l a F = N sk lad 3 wagonów o masach, licz ac od lokomotywy, 2m, m i m. Z jakim przyspieszeniem porusza siȩ ten sk lad i ile wynosi naprȩżenie na l aczeniu z ostatnim wagonem. 1.Q.Lokomotywa o masie m = 200ton ci agnie z si l a F = N sk lad 3 wagonów o masach, licz ac od lokomotywy, 2m, m i 2m. Z jakim przyspieszeniem porusza siȩ ten sk lad i ile wynosi naprȩżenie na l aczeniu lokomotywy z reszt a sk ladu. 1.R.Lokomotywa o masie m = 200ton ci agnie z si l a F = N sk lad 3 wagonów o masach, licz ac od lokomotywy, 2m, m i 2m. Z jakim przyspieszeniem porusza siȩ ten sk lad i ile wynosi naprȩżenie na l aczeniu z ostatnim wagonem. 1.S.Lokomotywa o masie m = 200ton ci agnie z si l a F = N sk lad 2 wagonów o masach, licz ac od lokomotywy, 2m i m pod górȩ z nachyleniem 30 o. Z jakim przyspieszeniem porusza siȩ ten sk lad i ile wynosi naprȩżenie na l aczeniu lokomotywy z reszt a sk ladu. 1.T.Lokomotywa o masie m = 200ton ci agnie z si l a F = N sk lad 2 wagonów o masach, licz ac od lokomotywy, 2m i m pod górȩ z nachyleniem 30 o. Z jakim przyspieszeniem porusza siȩ ten sk lad i ile wynosi naprȩżenie na l aczeniu z ostatnim wagonem. Przyspieszenie Ziemi przyj ać jako g = 10m/s 2. 2.A.Dla soczewki skupiaj acej o ogniskowej f = 25cm otrzymano rzeczywisty obraz przedmiotu w odleg lości y od soczewki takiej samej jak odleg lość x soczewka-przedmiot. Gdzie dok ladnie znajduje siȩ obraz? 2.B.Gdzie należy umieścić ekran w celu otrzymania ostrego obrazu przedmiotu umieszczonego w odleg lości x = 1m od soczewki o ogniskowej f = 50cm. 2.C.Dla soczewki wykonanej z materia lu o wspó lczynniku za lamania n = 1.5 ogniskowa f = 1m. Ile wyniesie ogniskowa f takiej samej soczewki wykonanej z materia lu o wspó lczynniku za lamania n = D.Ogniskowa soczewki o wspó lczynniku za lamania n = 1.5 wynosi f = 1m. Ile wynosi wspó lczynnik za lamania n soczewki o tej samej geometrii i wykonanej z innego materia lu o ogniskowej f = 2m. 2.E.Jak dobrać promień krzywizny r symetrycznej soczewki dwuwypuk lej (r = r 1 = r 2 ) tak, aby otrzymać tak a sam a ogniskow a dla soczewki o promieniach krzywizn r 1 = 1m i r 2 = 25cm. 2.F.Jak zmienić promień krzywizny symetrycznej soczewki dwuwypuk lej r = r 1 = r 2 = 4m tak, aby ogniskowa f 0 zmala la dwukrotnie, f = f 0 /2. 2.G.Podaj maksymalny k at za lamania β promienia wychodz acego z ośrodka o wspó lczynniku za lamania n = 2 do powietrza (próżni). 2.H.K at za lamania promienia granicznego dla ca lkowitego wewnȩtrznego odbicia wynosi β = Ile wynosi wspó lczynnik za lamania n ośrodka z którego wychodzi promień do powietrza (próżni).

3 2.I.Sta la elektryczna wynosi pewnego ośrodka wynosi ɛ = Podaj prȩdkość świat la w tym ośrodku. 2.J.Prȩdkość świat la w pewnym ośrodku wynosi v = km/s. Ile wynosi sta la elektryczna ɛ oraz wspó lczynnik za lamania n tego ośrodka. 2.K.Na siatkȩ dyfrakcyjn a o sta lej d = 2.0µ pada świat lo o d lugości fali λ = 0.6µ. maksimów interferencyjnych zaobserwujemy? 2.L.Na siatkȩ dyfrakcyjn a o sta lej d = 2.0µ pada świat lo o pewnej d lugości fali λ. Drugie maksimum interferencyjne wystȩpuje dla k ata ugiȩcia φ = Ile wynosi λ? 3.A.Który spośród stanów (3s,2p) ma mniejsz a energiȩ. Proszȩ uzasadnić. 3.B.Który spośród stanów (3s,4s) ma mniejsz a energiȩ. Proszȩ uzasadnić. 3.C.Który spośród stanów (3s,3d) ma mniejsz a energiȩ. Proszȩ uzasadnić. 3.D.Który spośród stanów (3s,3p) ma mniejsz a energiȩ. Proszȩ uzasadnić. 3.E.Który spośród stanów (4s,3p) ma mniejsz a energiȩ. Proszȩ uzasadnić. 3.F.Który spośród stanów (4p,3d) ma mniejsz a energiȩ. Proszȩ uzasadnić. 3.G.Ile wynosi liczba stanów 3p. Odpowiedź należy uzasadnić. 3.H.Ile wynosi liczba stanów 3d. Odpowiedź należy uzasadnić. 3.I.Ile wynosi liczba stanów 2p. Odpowiedź należy uzasadnić. 3.J.Ile wynosi liczba stanów 2d. Odpowiedź należy uzasadnić. 3.K.Ile wynosi liczba stanów 2s. Odpowiedź należy uzasadnić. 3.L.Ile wynosi liczba stanów 3s. Odpowiedź należy uzasadnić. 3.M.Jaki jest stosunek prȩdkości elektronu na orbitach n = 1 i n = 3 w atomie wodoru. 3.N.Jaki jest stosunek prȩdkości elektronu na orbitach n = 1 dla atomu wodoru i dla jednokrotnie zjonizowanego (czyli wodoropodobnego) atomu helu. 3.O.Jaki jest stosunek prȩdkości elektronu na orbitach n = 2 i n = 1 w atomie wodoru. 3.P.Jaki jest stosunek prȩdkości elektronu na orbicie n = 2 dla atomu wodoru i dla elektronu na orbicie n = 1 jednokrotnie zjonizowanego (czyli wodoropodobnego) atomu helu. 3.Q.Jaki jest stosunek promieni orbit n = 1 i n = 3 dla elektronu w atomie wodoru. 3.R.Jaki jest stosunek promieni orbit n = 1 dla atomu wodoru i dla jednokrotnie zjonizowanego (czyli wodoropodobnego) atomu helu. 3.S.Jaki jest stosunek promieni orbit n = 2 i n = 1 w atomie wodoru. 3.T.Jaki jest stosunek promieni orbit n = 2 dla atomu wodoru i dla elektronu na orbicie n = 1 jednokrotnie zjonizowanego (czyli wodoropodobnego) atomu helu. 3.U.Podaj konfiguracjȩ elektronow a atomu o liczbie elektronów Z = V.Podaj konfiguracjȩ elektronow a atomu o liczbie elektronów Z = W.Podaj konfiguracjȩ elektronow a atomu o liczbie elektronów Z = X.Podaj konfiguracjȩ elektronow a atomu o liczbie elektronów Z = Y.Podaj konfiguracjȩ elektronow a atomu o liczbie elektronów Z = Z.Podaj konfiguracjȩ elektronow a atomu o liczbie elektronów Z = 23. Ile

4 3.a.Jaki jest stosunek energii elektronu na orbitach n = 1 i n = 3 w atomie wodoru. 3.b.Jaki jest stosunek energii elektronu na orbitach n = 1 dla atomu wodoru i dla jednokrotnie zjonizowanego (czyli wodoropodobnego) atomu helu. 3.c.Jaki jest stosunek energii elektronu na orbitach n = 2 i n = 1 w atomie wodoru. 3.d.Jaki jest stosunek energii elektronu na orbicie n = 2 dla atomu wodoru i dla elektronu na orbicie n = 1 jednokrotnie zjonizowanego (czyli wodoropodobnego) atomu helu. 4.A.Przypuśćmy, że funkcja falowa elektronu w prȩcie o d lugości L = 1 jest dana wzorem ψ(x) = N x dla x = (0, 1) wewn atrz prȩta i ψ(x) = 0 poza prȩtem. Znaleźć wspó lczynnik normalizacyjny N oraz prawdopodobieśtwo p znalezienia elektronu w czȩści prȩta x = (0, 1/2). 4.B.Przypuśćmy, że funkcja falowa elektronu w prȩcie o d lugości L = 1 jest dana wzorem ψ(x) = N (1 x) dla x = (0, 1) wewn atrz prȩta i ψ(x) = 0 poza prȩtem. Znaleźć wspó lczynnik normalizacyjny N oraz prawdopodobieśtwo p znalezienia elektronu w czȩści prȩta x = (0, 1/2). 4.C.Przypuśćmy, że unormowana funkcja falowa elektronu w prȩcie o d lugości L = 1 jest dana wzorem ψ(x) = 6x(1 x) dla x = (0, 1) wewn atrz prȩta i ψ(x) = 0 poza prȩtem. Znaleźć prawdopodobieśtwo p znalezienia elektronu w lewej ćwiartce prȩta x = (0, 1/4). 4.D.Przypuśćmy, że unormowana funkcja falowa elektronu w prȩcie o d lugości L = 1 jest dana wzorem ψ(x) = 6x(1 x) dla x = (0, 1) wewn atrz prȩta i ψ(x) = 0 poza prȩtem. Znaleźć prawdopodobieśtwo p znalezienia elektronu w przedziale x = (1/4, 3/4) i porównać z klasycznym wynikiem dla elektronu swobodnego w metalu, p 0. 5.A.Uzupe lnić konfiguracjȩ elektronow a 3d x 4s 0.6 kobaltu 27Co w ciele sta lym. Jaki jest stopień zape lnienia pasma 3d. 5.B.Uzupe lnić konfiguracjȩ elektronow a 3d 8.1 4s x kobaltu 27Co w ciele sta lym. Jaki jest stopień zape lnienia pasma 4s. 5.C.Uzupe lnić konfiguracjȩ elektronow a 3d x 4s 0.6 żelaza 26Fe w ciele sta lym. Jaki jest stopień zape lnienia pasma 3d. 5.D.Uzupe lnić konfiguracjȩ elektronow a 3d 7.5 4s x żelaza 26Fe w ciele sta lym. Jaki jest stopień zape lnienia pasma 4s. 5.E.Uzupe lnić konfiguracjȩ elektronow a 3d x 4s 0.3 niklu 28Ni w ciele sta lym. Jaki jest stopień zape lnienia pasma 3d. 5.F.Uzupe lnić konfiguracjȩ elektronow a 3d 9.3 4s x niklu 28Ni w ciele sta lym. Jaki jest stopień zape lnienia pasma 3s. 5.G.Uzupe lnić konfiguracjȩ elektronow a 3s 1.4 3p x magnezu 12Mg w ciele sta lym. Jaki jest stopień zape lnienia pasma 3p. 5.H.Podaj konfiguracjȩ elektronow a atomu potasu 19K. 7.A.Si la dzia laj aca na spoczywaj acy ladunek punktowy q = 3C wynosi F = 15N. Ile wynosi natȩżenie pola elektrycznego E w tym punkcie. 7.B.Si la dzia laj aca na umieszczony w polu magnetycznym ladunek punktowy q = 3C i poruszaj acy siȩ z prȩdkości a v = 3m/sec wynosi F = 18N. Ile wyniesie ta si la gdy prȩdkość ladunku wzrośnie do v = 4m/sec. 7.C.Si la dzia laj aca na spoczywaj acy ladunek próbny umieszczony w odleg lości r = 5cm od ladunku punktowego Q = 3C wynosi F = 40N. Jaka jest wartość si ly w odleg lości r = 10cm.

5 7.D.Si la dzia laj aca na spoczywaj acy ladunek próbny q umieszczony w odleg lości r = 5cm od ladunku punktowego Q = 3C wynosi F = 40N. Jaka jest wartość si ly dzia laj acej na ladunek próbny q/5. 7.E.Jak zmieni siȩ pole elektryczne E miȩdzy ok ladkami kondensatora p laskiego gdy dwukrotnie wzrośnie ladunek na ok ladkach tego kondensatora. 7.F.Jak zmieni siȩ pole elektryczne E miȩdzy ok ladkami kondensatora p laskiego gdy dwukrotnie zmaleje napiȩcie miȩdzy ok ladkami tego kondensatora. 7.G.Jak zmieni siȩ pole magnetyczne B od pr adu i w przewodniku prostoliniowym w punkcie dwukrotnie bardziej odleg lym od tego przewodnika. 7.H.Jak zmieni siȩ pole magnetyczne B w danym punkcie od pr adu i gdy jego wartość zmaleje czterokrotnie. 9.A.Si la grawitacji dzia laj aca na punkt materialny, znajduj acy siȩ w odleg lości r = 5km od ciȩżkiej masy, wynosi F = 4N. Ile wynosi praca potrzebna do przeniesienia tego punktu na odleg lość r = 10km? 9.B.Si la sprȩżysta dzia laj aca na punkt materialny znajduj acy siȩ w odleg lości x = 5cm od po lożenia równowagi wynosi F = 4N. Ile wynosi praca potrzebna do przemieszczenia tego punktu na odleg lość x = 10cm? 9.C.Si la grawitacji dzia laj aca na punkt materialny, znajduj acy siȩ w odleg lości r = 5km od ciȩżkiej masy, wynosi F = 6N. Ile wynosi si la dzia laj aca na ten punkt po przemieszczeniu go na odleg lość r = 10km? 9.D.Si la sprȩżysta dzia laj aca na punkt materialny znajduj acy siȩ w odleg lości x = 5cm od po lożenia równowagi wynosi F = 6N. Ile wynosi si la dzia laj aca na ten punkt po przemieszczeniu go na odleg lość x = 10cm? 9.E.Praca wykonana do naci agniȩcia sprȩżyny od po lożenia równowagi (x = 0cm) do po lożenia x = 5cm wynosi W = 100J. Ile wynosi praca potrzebna do dalszego rozci agniȩcia sprȩżyny do po lożenia x = 10cm. 9.F.Praca wykonana do naci agniȩcia sprȩżyny od po lożenia równowagi (x = 0cm) do po lożenia x = 5cm wynosi W = 100J. Ile wynosi si la dla tego naci agu. 9.G.Praca wykonana do naci agniȩcia sprȩżyny od po lożenia równowagi (x = 0cm) do po lożenia x = 5cm wynosi W = 100J. Ile wynosi si la dla naci agu x = 10cm. uu

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

5. Wykazać, że swobodny elektron nie może poch lon ać fotonu.

5. Wykazać, że swobodny elektron nie może poch lon ać fotonu. 1. Zbadać rozpraszanie cz astki na ladowanej na potencjale kulombowskim. Wyprowadzić wzór Rutherforda na przkrój czynny.. Jak a temperaturȩ ma czarna kula o średnicy 10 cm, która emituje promieniowanie

Bardziej szczegółowo

ZADANIA MATURALNE Z FIZYKI I ASTRONOMII

ZADANIA MATURALNE Z FIZYKI I ASTRONOMII ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Samochód porusza się po prostoliniowym odcinku autostrady. Drogę przebytą

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI

PRÓBNY EGZAMIN MATURALNY Z FIZYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO OKRĘGOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE PRÓBNY EGZAMIN MATURALNY Z FIZYKI Czas pracy 90 minut Informacje 1.

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min. Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do

Bardziej szczegółowo

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową

Bardziej szczegółowo

41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)

41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca) Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty

Bardziej szczegółowo

elektronów w polu magnetycznym

elektronów w polu magnetycznym Odchylenie wiazki elektronów w polu magnetycznym Wiazka elektronów używana do ciecia lub frezowania może być precyzyjnie sterowana za pomoca odpowiednio dobranego pola magnetycznego. Do tego celu można

Bardziej szczegółowo

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E

Bardziej szczegółowo

Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D

Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Scriptiones Geometrica Volumen I (2014), No. 6D, 1 9. Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie w perspektywie i perspektywie

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa

Bardziej szczegółowo

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 ) Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Zadanie 21. Stok narciarski

Zadanie 21. Stok narciarski Numer zadania Zadanie. Stok narciarski KLUCZ DO ZADA ARKUSZA II Je eli zdaj cy rozwi e zadanie inn, merytorycznie poprawn metod otrzymuje maksymaln liczb punktów Numer polecenia i poprawna odpowied. sporz

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 02

Geometria odwzorowań inżynierskich Zadania 02 Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

FUNKCJE LICZBOWE. x 1

FUNKCJE LICZBOWE. x 1 FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy

Bardziej szczegółowo

FIZYKA POZIOM PODSTAWOWY

FIZYKA POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) FIZYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFA-P1 MAJ 2016 Zadania zamknięte Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy. I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia Zastosowanie metod matematycznych w fizyce i technice - zagadnienia 1 Metoda ι Grama Schmidta zortogonalizować uk lad funkcji {x n } n= a) na odcinku 1; 1 z waga ι ρx) = 1, b) na prostej ; ) z waga ι ρx)

Bardziej szczegółowo

1. Na podstawie II-giej zasady dynamiki wartość siły wyrażają zależności F ma oraz

1. Na podstawie II-giej zasady dynamiki wartość siły wyrażają zależności F ma oraz 1. Na podstawie -giej zasady dynamiki wartość siły wyrażają zależności F ma oraz p F wyrażenia te: t a) są sobie równoważne i stosują się bez ograniczeń, b) stosują się tylko w mechanice klasycznej, c)

Bardziej szczegółowo

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut

DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut XLIII MIE DZYSZKOLNE ZAWODY MATEMATYCZNE Eliminacje rejonowe Czas trwania zawodów: 150 minut Każdy uczeń rozwia zuje dwadzieścia cztery zadania testowe, w których podano za lożenia oraz trzy (niekoniecznie

Bardziej szczegółowo

Trigonometria. Funkcje trygonometryczne

Trigonometria. Funkcje trygonometryczne 1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06A

Geometria odwzorowań inżynierskich rzut środkowy 06A Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy

Bardziej szczegółowo

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu.

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu. y = ax 2 + bx + c WIELOMIANY KWADRATOWE Zajmiemy sie teraz wielomianami stopnia drugiego, zwanymi kwadratowymi. Symbol w be dzie w tym rozdziale oznaczać wielomian kwadratowy, tj. w(x) = ax 2 + bx + c

Bardziej szczegółowo

KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 10 stycznia 2014

KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 10 stycznia 2014 KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI 10 stycznia 2014 Ważne informacje: 1. Masz 120 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji

Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji Aproksymacja kraw edzi Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej cechy (edge). Różne podejścia: szukanie w pobliżu wst epnej aproksymacji transformacja Hough a. Wiedza o obiektach:

Bardziej szczegółowo

LXIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA LXIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZEŚĆ TEORETYCZNA Za każde z trzech zadań można otrzymać maksymalnie 20 punktów. Zadanie 1. Zaobserwowano zbliżajac a się do Ziemi kulist a planetoidę o średnicy

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI dla uczniów gimnazjum woj. łódzkiego w roku szkolnym 2013/2014 zadania eliminacji wojewódzkich.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI dla uczniów gimnazjum woj. łódzkiego w roku szkolnym 2013/2014 zadania eliminacji wojewódzkich. ŁÓD ZK IE CEN TRUM DOSK ONALEN IA NAUC ZYC IEL I I KS ZTAŁ CEN IA P RAK TYC ZNE GO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 196324 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozwiazaniem

Bardziej szczegółowo

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3. Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

Optyka geometryczna i falowa

Optyka geometryczna i falowa Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MFA-P1_1P-092 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MAJ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2010 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 010 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Klucz punktowania odpowiedzi MAJ 010 Egzamin maturalny z fizyki i astronomii Zadanie 1. Przypisanie

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2013 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N. Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo

Bardziej szczegółowo

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY 30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Transformacja Lorentza - Wyprowadzenie

Transformacja Lorentza - Wyprowadzenie Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie

Bardziej szczegółowo

II. KWANTY A ELEKTRONY

II. KWANTY A ELEKTRONY II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA DO 2014 ( STARA MATURA ) FIZYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFA-P1 MAJ 2015 Zadania zamknięte Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII (Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.

Bardziej szczegółowo

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0 Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 01

Geometria odwzorowań inżynierskich Zadania 01 Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015 kod wewnątrz Zadanie 1. (0 1) KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 2015 Vademecum Fizyka fizyka ZAKRES ROZSZERZONY VADEMECUM MATURA 2016 Zacznij przygotowania

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

w jednowymiarowym pudle potencja lu

w jednowymiarowym pudle potencja lu Do wyk ladu II czastka w pudle potencja lu oscylator harmoniczny rotator sztywny Ścis le rozwiazania równania Schrödingera: atom wodoru i jon wodoropodobny) Czastka w jednowymiarowym pudle potencja lu

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

LV Olimpiada Fizyczna (2005/2006) Zadania zawodów I stopnia cz

LV Olimpiada Fizyczna (2005/2006) Zadania zawodów I stopnia cz LV Olimpiada Fizyczna (005/006) Zadania zawodów I stopnia cz eść I Zadanie 1 W którym wagoniku kolejki górskiej trzeba siedzieć (rozważmy tylko pierwszy i środkowy), aby odczuwana przez pasażera si la

Bardziej szczegółowo

Algorytm określania symetrii czasteczek

Algorytm określania symetrii czasteczek O czym to b Podzi 21 września 2007 O czym to b O czym to b Podzi 1 2 3 O czym to b Podzi W lasności symetrii hamiltonianu: zmniejszenie z lożoności obliczeń i wymagań pami eciowych, utrzymanie tożsamościowych

Bardziej szczegółowo

Tekst poprawiony 27 XII, godz. 17:56. Być może dojda

Tekst poprawiony 27 XII, godz. 17:56. Być może dojda Tekst poprawiony 27 XII, godz. 7:56. Być może dojda naste pne zadania Definicja 7. krzywej) Niech P oznacza dowolny przedzia l niezdegenerowany. Przekszta lcenie r: P IR k nazywamy krzywa. Jeśli r jest

Bardziej szczegółowo

Matura z fizyki i astronomii 2012

Matura z fizyki i astronomii 2012 Matura z fizyki i astronomii 2012 Zadania przygotowawcze do matury na poziomie podstawowym 7 maja 2012 Arkusz A1 Czas rozwiązywania: 120 minut Liczba punktów do uzyskania: 50 Zadanie 1 (1 pkt) Dodatni

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja

Bardziej szczegółowo

5. Obliczanie pochodnych funkcji jednej zmiennej

5. Obliczanie pochodnych funkcji jednej zmiennej Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane

Bardziej szczegółowo