STABILNOŚĆ ROZWIĄ ZAŃ SPRĘŻYSTO-PLASTYCZNYCH ZAGADNIEŃ DYNAMIKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "STABILNOŚĆ ROZWIĄ ZAŃ SPRĘŻYSTO-PLASTYCZNYCH ZAGADNIEŃ DYNAMIKI"

Transkrypt

1 ZSZYY NAOW AADMII MARYNARI WOJNNJ RO LIV NR (9) 3 Sansła Dobrocńsk, Lszk Fs Akadma Marynark Wojnnj Wydzał Mchanczno-kryczny, Insyu udoy kspoaacj Okręó 8-3 Gdyna, u. J. Śmdocza 69 -ma: S.Dobrocnsk@am.gdyna.p; L.Fs@am.gdyna.p Jrzy Małachosk Wojskoa Akadma chnczna Wydzał Mchanczny, adra Mchank Informayk Sosoanj -98 Warszaa, u. S. askgo -ma: jrzy.maachosk@a.du.p SAILNOŚĆ ROZWIĄ ZAŃ SPRĘŻYSO-PLASYCZNYCH ZAGADNIŃ DYNAMII SRSZCZNI W aryku przdsaono ynk obczń numrycznych zagadnna rozchodzna sę fa naprężna na przykładz prosgo pręa zoropogo. Wynk numryczn zakrs sprężysym odnsono do rozązana anayczngo, skazując na popran dzałan agorymu. W zakrs pasycznym n ma rozązań anaycznych, zaproponoano ęc numryczn rozązan zagadnna. Zasosoano agorym obczana naprężna, kóry uzgędna maksyman arośc go paramru rozparyanym obszarz modyfkuj krok czasoy rakc obczń da urzymana sabnośc rozązana. Modyfkacj rakc obczń uga rónż macrz szynośc, ponaż czas rozparyango zjaska marał uga umocnnu. Cm pracy js zrócn uag na znaczn doboru kroku czasogo zapnającgo sabność rozązana podczas obczń, szczgón gdy marał przchodz z sanu sprężysgo pasyczny. Zaproponoany agorym przyspsza rozązan przy zachoanu sabnośc obczń porónanu z kasyczną modą racyjną. Słoa kuczo: MS, dynamka, faa sprężyso-pasyczna. 39

2 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk WSĘP Zagadnna dynamk charakryzują sę ym, ż poszczgónych punkach rozażango obszaru ysępuj docążn ub odcążn konsrukcj [5]. W pracy rozparuj sę dformacj sprężys oraz pasyczn całach zoropoych jdnorodnych. Zagadnna go ypu kompkuj znaczn fak, ż po przjścu fa upasycznającj marał uga zmocnnu. Dago przy poórnym przjścu fa propagują sę on c, napoykając różn granc sprężysośc poszczgónych punkach rozażango obszaru. Isona uaga ynkająca z rozażań nnjszj pracy doyczy faku, ż przypadku gdy mara ysąpą naprężna poyżj grancy sprężysośc, o część nrg racona js na odkszałcna pasyczn przy odcążnu nrga knyczna mus być pomnjszona o nrgę raconą [6]. Rozparzono prę (rys..) o sałym przkroju przyjęo, ż odkszałcna są na y mał, ż możmy sosoać zasadę płaskch przkrojó, pomjając pły przmszczń poprzcznych na przmszczna zdłużn. Rys.. Rozparyany schma udrzna masy m prę o długośc. Prę o śrdncy d, m, długośc m gęsośc ρ 785 kg/m 3 js na praym końcu urdzony, a na ym końcu znajduj sę masa skupona m 398,45 kg Prę ykonany js z sa GHMA (ęg, magnz, chrom, mobdn, bar). Charakrysykę sa okrśono na podsa próby jdnoosogo rozcągana (rys..). Aproksymując ę charakrysykę funkcją skjaną, dług ponższych zażnośc, orzymano bardzo dobrą zgodność funkcj aproksymującj funkcj aproksymoanj, okrśonj z ksprymnu. 4 Zszyy Nauko AMW

3 Sabność rozązań sprężyso-pasycznych zagadnń dynamk da da da da da Rys.. Przyjęa charakrysyka marałoa sa GHMA, gdz:,8 5 MPa moduł Younga,,5 5 MPa zmocnn, 6,96 MPa, 73,9 MPa,, 7,866-3 OPIS DYSRNY PRĘA Aby ocnć pły nnoj częśc charakrysyk, opsanj funkcją, rozparzymy rójęzłoy mn pręa o długośc. Przmszczna doongo punku mnu pręa zapszmy jako kombnację przmszczń jgo ), ( ), ( ) oraz funkcj kszału Φ ϕ ( x), ϕ ( x), ϕ ( )] ęzłó [ ] ( 3 u( x, ) Φ( x) ( ). [ 3 x (9) 3 4

4 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk Prędkość przyspszn yrażamy rónż za pomocą arośc ęzłoych u ( x, ) Φ ( x) ( ), u ( x, ) Φ ( x) ( ). nrgę knyczną mnu pręa arośc ęzłoych, orzymując k ρ A u dx zapsujmy za pomocą k Φ Φ A dx M ρ, gdz: M ρ A Φ Φ dx macrz bzładnośc mnu pręa; A po przkroju porzczngo pręa. Odkszałcna mnc yrażą sę zorm ( x, ) Φ, x. Jż do całkoana będzmy ykorzysyać modę Gaussa, o -ym punkc odkszałcn yraz sę jako ( x, ) Φ,x ( x ). Da pęcopunkoj procdury Gaussa orzymamy: [ 3 4 5] [ ϕ, x( x ) ϕ, x( x ) ϕ3, x( x )] Oznaczając Β [ ϕ x ) ϕ ( x ) ϕ ( x )]., x (, x 3, x odkszałcna punkach całkoana, zapszmy macrzoo. Odkszałcń poszukujmy da j-go przyrosu obcążna. Jż kojnym kroku obcążna przmszczn zrasa o arość, o całko przmszczna zapszmy jako daj j j-, j j- j-, przy czym. 4 Zszyy Nauko AMW

5 Sabność rozązań sprężyso-pasycznych zagadnń dynamk ORCJA MACIRZY SZYWNOŚCI W ZALŻNOŚCI OD OCIĄŻNIA Rozparzono nasępując przdzały uzgędnan przy okrśanu nrg łaścj:. Prę znajduj sę san sprężysym (rys. 3a), czy ( ). nrga łaśca akm przypadku ynos Φ ( ) Φ [ ( ) ]. Obczamy pochodną nrg łaścj zgędm przyrosu przmszczń ( ) Φ a nasępn całkujmy po objęośc pręa, orzymując gdz: Q A A ( ) dx Aσ dx A, Φ dx Q, js korm (macrz jdnokoumnoa); ( )dx js macrzą.. Prę znajduj sę san sprężysym <, naomas sku- > są odkszałcna pasyczn (rys. 3b). km przyrosu obcążna ( ) Odkszałcna pasyczn zapszmy jako ( ) p. Da go przypadku okrśamy nrgę łaścą Φ σ r σ r p p σ r σ r ( ) ( ) ; (9) 3 43

6 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk Φ σ r σ r σ r ( ) [( ) ]. Po kojnych przkszałcnach orzymujmy Φ Φ σ r [( ) ]. Rys. 3. Rozparyan przdzały uzgędnan przy okrśanu nrg łaścj 44 Zszyy Nauko AMW

7 Sabność rozązań sprężyso-pasycznych zagadnń dynamk (9) 3 45 Człon Φ n zaży od przyrosu przmszczń, sąd ( ) r σ Φ ub σ Φ r r. Wproadzamy oznaczna dx dx r r Q σ σ ; ( ) dx dx. 3. Prę znajduj sę san pasycznym ( ) > (rys. 3c). Na podsa rysunku 3c okrśamy nrgę łaścą ) ( σ Φ Φ obczamy pochodną ) ( σ Φ. Anaogczn jak poprzdnch punkach przyjmujmy ( ) ( )dx dx, Q σ. Wykorzysując rónana Lagrang a, orzymujmy nasępując rónan ruchu pręa: Q M.

8 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk 46 Zszyy Nauko AMW Całkoana róna ruchu dokonamy modą Nmarka z krokm czasoym. Znając da czasu arośc przmszczna, prędkośc oraz przyspszna, poszukujmy ych arośc da czasu dług zoró: ( ) ( ), ) ( 4 4. Jż przyjmmy, o rónan ruchu zapsz sę zorm Q M M ) ( F 4 4. W przypadku gdy prę znajduj sę san pasycznym, o arość zaży od rozązana, czy zagadnn js nno. Dago arośc przyrosu przmszczna danym kroku czasoym poszukać będzmy racyjn, ykorzysując modę Nona. Jż przyjmmy Q M M F 4 4, o d d d d F M 4, ponaż, o u d d. Zgodn z modą Nona, kojnym kroku racyjnym obczamy poprakę da przmszczna dług zoru F F δ, a nasępn obczamy δ. Opsując marał charakrysyką bnoą (rys. 3d), zorach na obczan macrzy szynośc kość /. Jż źmmy pod uagę

9 Sabność rozązań sprężyso-pasycznych zagadnń dynamk da sąsadując punky pręa, przy czym jdn z nch znajduj sę san sprężysym, a drug san pasycznym, o ysąp skokoa zmana yrazó macrzy szynośc odpoadających ym punkom []. zgędnając nnoą część charakrysyk, uzyskamy marę monoonczną zmanę yrazó macrzy szynośc. Oczyśc zmana zaży od przyrosu obcążna, gęsośc podzału rozażango obszaru na mny oraz kośc kroku czasogo. WYORZYSANI ALGORYM NA PRZYŁADZI PROPAGACJI FALI NAPRĘŻNIA W PRĘCI Rozparzono przypadk, gdy masa udrzająca js róna mas pręa. N możmy przyjąć, ż naprężna całym pręc są ak sam. Musmy ząć pod uagę propagację fronu fa naprężna zdłuż os pręa. W ym przypadku, jż masa udrzająca porusza sę z prędkoścą v, o da czasu przkroju pręa x posaną naprężna σ ρ a v o, gdz a js prędkoścą propagacj czoła ρ fa naprężna. Przyjmując prędkość masy udrzającj aką (v 6,67 m/s), aby da czasu naprężn σ σ, 4 σ, mamy pność, ż po odbcu od urdzna x naprężn σ σ (zrasają dukron) n przkroczy grancy sprężysośc. n x L Prę będz sę znajdoał san sprężysym rozązan anayczn [3] (rys. 4.) js nma dnyczn z rozązanm numrycznym (rys. 5.). W momnc, gdy σ przyjmuj arość zro, o czas k nasępuj odran masy udrzającj od pręa. Przyjmując prędkość v aką, aby da czasu naprężn σ σ, 8σ x, orzymamy rozązan przdsaon na rysunku 6. W końcoj częśc pręa ysąpą odkszałcna pasyczn (rys. 7.). (9) 3 47

10 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk a/ a/ Rys. 4. oryczny przbg przmszczna punkc środkoym udrzanj porzchn pręa masą m (x ) (a) naprężnaa punkach (x x ) (b) Źródło: ask S. nn, Drgana fa całach sałych, PAN, Warszaa 966. σ n /σ σ /σ / u/ /u max Rys. 5. Rozązan numryczn udrzna prę zakrs sprężysym masą przy założnach: σ, 4σ, / 4a 48 Zszyy Nauko AMW

11 Sabność rozązań sprężyso-pasycznych zagadnń dynamk σ /σ σ σ n /σ σ / u/umax sprężys z rys. 7. Rys. 6. Rozązan numryczn udrzna prę zakrs sprężysym masą przy założnach: σ, 8σ, / 4a / / x m Rys. 7. Odkszałcna pasyczn końcoj częśc pręa (9) 3 49

12 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk Na długośc,5 m szyność pręa zmna sę dług sosunku /, czy grancach, 6. Da bnoj charakrysyk marału ysąpłaby skokoa zmana szynośc poodująca zł uarunkoan macrzy szynośc pręa. zgędnając nnoą część charakrysyk przdza odkszałcń (, ) oraz odpodno gęsy podzał na mny, uzyskujmy monoonczną zmanę spółczynnkó macrzy szynośc. Jż przyjmmy prędkość v aką, aby da czasu naprężn σ, σ, orzymamy rozązan przdsaon na rysunku 8. σ x σ n /σ σ /σ / v/v max u/u max Rys. 8. Rozązan numryczn udrzna prę zakrs pasycznym masą przy założnach: σ, σ, / a W obu końcach pręa ysępują odkszałcna pasyczn (rys. 9.). nrga knyczna masy udrzającj ynos k, 5 mu vu, 5 Zszyy Nauko AMW

13 Sabność rozązań sprężyso-pasycznych zagadnń dynamk naomas nrgę knyczną pręa da czasu obczymy zorm k ρ A u ( x ) dx. Obczając nrgę jako pracę sł nęrznych na przmszcznach jd- noskoych, orzymamy A s σ dx. Zmanę nrg czas przdsaono na rysunku., gdz yraźn - dać spadk nrg całkoj koszm rałych odkszałcń pasycznych. p / x m Rys. 9. Odkszałcna pasyczn obu końcach pręa (9) 3 5

14 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk V/V ( k s )/ k s / k k / k / Rys.. Zmana nrg czas z doczną sraą nrg całkoj na odkszałcn pasyczn WNIOSI Obczna numryczn zakrs sprężysym są zgodn z obcznam anaycznym. W zakrs sprężyso-pasycznym pasycznym ykorzysano n sam agorym, a ynk obczń numrycznych ydają sę nucyjn popran. Do osacznj ryfkacj agorymu, zaróno ym, jak szyskch zagadnnach pasycznych, konczna js ryfkacja ksprymnana. Obczna ykonano na kompurach Cnrum Informayczngo rójmjskj Akadmckj Sc ompuroj. 5 Zszyy Nauko AMW

15 Sabność rozązań sprężyso-pasycznych zagadnń dynamk ILIOGRAFIA [] ah. J., Fn mn Procdurs, Prnc Ha, N Jrsy 996. [] Dobrocńsk S., Sabność rozązań zagadnń odpornośc udaroj konsrukcj, Akadma Marynark Wojnnj, Gdyna. [3] ask S. nn, Drgana fa całach sałych, PAN, Warszaa 966. [4] łososk P., Woźnca., Wchr D., Comparson of numrca modng and xprmns for h dynamc rspons of crcuar aso-vscopasc pas, uropan Journa of Mchancs,, 9, A/Sods. [5] Myrs M. A., Dynamc bhavour of maras, A Wy-Inrscnc Pubcaon, 994. [6] Por D., Mody obczno fzyk, PWN, Warszaa 977. SAILIY OF SOLIONS LASIC-PLASIC DYNAMIC ISSS ASRAC hs papr prsns h rsus of numrca av propagaon probms h h xamp of a smp soropc bar nson. Numrca rsus r compard o h asc anayca souon, ndcang h corrc agorhm opraon. hr ar no anayca souons n rms of pasc condons, so h numrca souon of hs probm s proposd. h arc gvs an agorhm for cacuang h srss ha ncuds accoun h maxmum vau of h paramr n hs quson and n h sam m modfs h m sp n h cacuaons for h saby of h souon. Modfcaons n h cacuaon of h sffnss marx ar causd by h phnomnon of mara srnghnng. h proposd agorhm dramacay accras h souon hn h saby of h compuaon aks pac comparng o cassca rav mhod. h am of hs sudy s o hghgh h mporanc of h scon of h m sp n cacuang h saby of souons, spcay hn h sa of asc mara gos no pasc. (9) 3 53

16 Sansła Dobrocńsk, Lszk Fs, Jrzy Małachosk h proposd agorhm accras h souon hn h saby of h compuaon aks pac and compard o cassca rav mhod. yords: fn mn mhod, dynamc, asc-pasc av. 54 Zszyy Nauko AMW

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Algorytmy numeryczne w Delphi. Ksiêga eksperta

Algorytmy numeryczne w Delphi. Ksiêga eksperta IDZ DO PRZYK ADOWY ROZDZIA SPIS TREŒCI KALOG KSI EK KALOG ONLINE ZAMÓW DRUKOWANY KALOG Algorymy numryczn w Dlph Ksêga kspra Auorzy: Brnard Baron, Arur Pasrbk, Marcn Mac¹ k ISBN: 83-736-95-8 Forma: B5,

Bardziej szczegółowo

Symulacja czasu wychładzania powietrza w przewodzie wentylacyjnym

Symulacja czasu wychładzania powietrza w przewodzie wentylacyjnym Por Prybycn Symulacja casu ychłaana pora pro nylacyjnym Symulacja casu ychłaana pora pro nylacyjnym ) Do cgo służy program: Program służy o okrślna sybkośc ychłaana, lub ograna pora nąr prou nylacyjngo

Bardziej szczegółowo

E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO

E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO E. BADANE OBWODÓW PĄDU PZEMENNEGO ks opracowały: Jadwga Szydłowska Bożna Janowska-Dmoch Badać będzmy charakrysyk obwodów zawrających różn układy lmnów akch jak: opornk, cwka kondnsaor, połączonych z sobą

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

9. WYBRANE ZAGADNIENIA DYNAMIKI KONSTRUKCJI

9. WYBRANE ZAGADNIENIA DYNAMIKI KONSTRUKCJI 9. WYBRANE ZAGADNIENIA DYNAMIKI KONSRUKCJI 9. WYBRANE ZAGADNIENIA DYNAMIKI KONSRUKCJI W rozdzal 5 wyprowadzlśmy równan równowag saycznj dla cała analzowango modą lmnów skończonych. Równan o można równż

Bardziej szczegółowo

Układ realizujący funkcję AND

Układ realizujący funkcję AND Zadane 5. Zaprojekoać spradzć dzałane synchroncznych asynchroncznych rejesró akumulaora umożlających realzację operacj: odejmoana arymeycznego, AN, NOT, EX-OR. C x b C odoane: a a : odejmoane A-B, A AN

Bardziej szczegółowo

MES dla stacjonarnego przepływu ciepła

MES dla stacjonarnego przepływu ciepła ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p

Bardziej szczegółowo

Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy:

Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy: aszyy prąy sałgo yaka Dla aszyy prą sałgo, ykorzysyaj jako l aoayk, yzaczy ybra rasacj. Sygał jścoy oż być p. apęc orka (la aszyy obcozbj) a sygał yjścoy prękość obrooa. óa Krchhoffa la obo orka oży apsać

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

I zasada termodynamiki dla układu zamkniętego (ujęcie masy kontrolnej)

I zasada termodynamiki dla układu zamkniętego (ujęcie masy kontrolnej) Wykład 8 I zasada rmodynamk dla układów zamknęyh (uję masy konrolnj) Prwsza zasada rmodynamk jako równan knyzn dla układu zamknęgo (uję masy konrolnj; zmana sanu masy konrolnj) Układy owar; uję masy konrolnj

Bardziej szczegółowo

Zadanie 1 Czterobitowy rejestr szeregowy. Zadaniem dotyczącym tego rejestru było sprawdzenie jego pracy oraz sporządzenie wykresów czasowych.

Zadanie 1 Czterobitowy rejestr szeregowy. Zadaniem dotyczącym tego rejestru było sprawdzenie jego pracy oraz sporządzenie wykresów czasowych. Zadane Czeroboy rejesr szeregoy. Zadanem doyczącym ego rejesru było spradzene jego pracy oraz sporządzene ykresó czasoych. Rejesr zrealzoano ykorzysując przerzunk, połączone jak na schemace c x W celu

Bardziej szczegółowo

J. Szantyr Wykład 12 Wyznaczanie przepływów lepkich metoda objętości skończonych

J. Szantyr Wykład 12 Wyznaczanie przepływów lepkich metoda objętości skończonych J. Szanyr Wyład 1 Wyznaczani przpłyó lpich moda objęości sończonych Moda objęości sończonych polga na przszałcniu rónań różniczoych rónania algbraiczn poprzz całoani ych rónań granicach ażdj objęości sończonj

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Wykład 2 Wahadło rezonans parametryczny. l+δ

Wykład 2 Wahadło rezonans parametryczny. l+δ Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos

Bardziej szczegółowo

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści LOKALNA ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW. Deinicja. Okna 3. ransormacja Gabora Spis reści Analiza czasoo-częsoliościoa sygnału moy Ampliuda.. andrzej 35_m.av -. 3 4 5 6 7 8 9 D 4. 3.5 D 3. DW D3 D4.5..5

Bardziej szczegółowo

ś ó ś ń ś ś ś ó ś ś ś ś ś ś ś ś ó ń ś ś Ł ń ć ś ś ó ó ś ń ó ń ś ó Ń ś ó ś ć ó ó Ą ń ó Ń ś ó ś ś ś ś ś ś ś ś Ą ń ó ó ś śó ś ń ó ś ś Ł Ą Ć ó ś ś ś Ą śó ś ś ś ó Ń śó ś śó Ś ń ó ś ń ó ś ś ć ś ś ó ó śó ś ś

Bardziej szczegółowo

Obwody elektryczne. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy.

Obwody elektryczne. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. San salony san prjścoy Obody lkrycn San salony W obod prąd sałgo Warośc prądó napęć n lgają an W obod prąd nngo Warośc śrdn skcn prądó napęć n lgają an Prądy napęca są fnkcja okrsoy o akj saj cęsolośc,

Bardziej szczegółowo

ϕ i = q 2 ϕ k = q 4 Macierzowa wersja metody przemieszczeń - belki 1. Wstęp. Koncepcja metody

ϕ i = q 2 ϕ k = q 4 Macierzowa wersja metody przemieszczeń - belki 1. Wstęp. Koncepcja metody Macrzowa wrsja mtody przmszczń - b. Wstęp. Koncpcja mtody Macrzow ujęc mtody przmszczń stanow jj wrsję ułatwającą omputryzację agorytmu obczń. W odnsnu do zastosowana w obczanu b, wszyst założna asycznj

Bardziej szczegółowo

Skręcanie prętów projektowanie 5

Skręcanie prętów projektowanie 5 Skręcane pręó projekoane 5 Spoó rozązyana pręó kręcanych zoał omóony rozdzae. Zadana projekoe proadzają ę do okreśena ymaró przekroju poprzecznego pręa na podae arunku nośnośc /u arunku użykoana. przypadku

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

(EN 10270:1-SH oraz DIN 17223, C; nr mat ) (EN 10270:3-NS oraz DIN 17224, nr mat )

(EN 10270:1-SH oraz DIN 17223, C; nr mat ) (EN 10270:3-NS oraz DIN 17224, nr mat ) (EN 10270:1-SH orz DIN 17223, C; nr mt. 1.1200) (EN 10270:3-NS orz DIN 17224, nr mt. 1.4310) d Fn K Dm k Dz L1 Ln L0 Legend d - Dm - Dz - L0 - n - czynn zwoi Ln - Fn - c - K - k - Fn stl nierdzewn = 1kg

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Ś ć Ś Ę Ś Ś Ś Ś Ę Ę

Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ł Ś Ę ź Ż Ż ź ź Ż Ś Ż Ś Ł Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ś Ę Ń Ę ć ć Ę Ś Ę Ś Ę Ś Ś Ś ŚĘ ć Ś Ś Ś Ś ŚĘ Ł Ś Ł ź Ę ź ź ź ź Ń Ś Ś Ń ź ć ź ź ź ź ź ź Ś ź Ż ź Ń ź Ś ź ź ć Ę ź Ę Ę Ś Ę Ę Ł ź ź Ę ć Ś Ś Ł Ś Ę Ś Ł Ł Ś ć Ł ź Ł

Bardziej szczegółowo

SPIS TREŚCI Całkowanie numeryczne 89

SPIS TREŚCI Całkowanie numeryczne 89 GRZEGORZ KRZESIŃSKI. MES_. CZĘŚĆ. MATERIAŁY DO WYKŁADU. SPIS TREŚCI. Mtody przybżon w mchanc onstruc. Mtoda Różnc Sończonych 9. Mtoda Emntów Brzgowych 7. MEB da równana Possona 7. Zagadnna tor sprężystośc

Bardziej szczegółowo

Proces stochastyczny jako funkcja dwóch zmiennych. i niepusty podzbiór zbioru liczb rzeczywistych T. Proces stochastyczny jest to funkcja

Proces stochastyczny jako funkcja dwóch zmiennych. i niepusty podzbiór zbioru liczb rzeczywistych T. Proces stochastyczny jest to funkcja POJĘCI PROCSU STOCHSTYCZNGO Przykład mpluda napęca gnrowango przz prądncę prądu zmnngo zalży od czynnków losowych moż być zapsana jako funkcja X sn c c - sała okrślająca częsolwość - zmnna losowa o rozkładz

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomrczn mod nnow Wkłd Włsnośc smorów s . dodk do wkłdu Słb zbżność convrgnc n dsrbuon Cąg zmnnch osowch FX x - dsrbun Isnj dsrbun F X x, k ż m FX x FX x w kżdm punkc x, F X w kórm X js cągł. X X zbg

Bardziej szczegółowo

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe

Bardziej szczegółowo

Ruch falowy, ośrodek sprężysty

Ruch falowy, ośrodek sprężysty W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i pęd przenoszone przez falę

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

K S I Ą Ż Ę TŻP P R U S C Y A H O H E N Z O L L E R N O W I E PWP X VŁ X I XPW.P 2 4 1

K S I Ą Ż Ę TŻP P R U S C Y A H O H E N Z O L L E R N O W I E PWP X VŁ X I XPW.P 2 4 1 K S I Ą Ż Ę TŻ R U S C Y A 2 4 1 Ż L B R E C H T M A 2 4 2 O j c i e c- F R Y D E R Y K S TŻ R S Z Y s. W B I O G R.ŻL B R E C H TŻ M a t k a-z O F IŻJŻ G I E L L O N KŻ s. R o d z e ń s t w o-b I O G

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Semesr I 1. Wykonujemy pomiary Tema zajęć Wielkości fizyczne, kóre

Bardziej szczegółowo

ń ę ńń ń

ń ę ńń ń ń ż ę Ą Ś Ó Ę ń ę ńń ń ę ż ż Ę ę Ń Ę ę ę Ń ń ż Ę ę Ą ę ń ż ę ć ę ć ń ń ę Ś ę ę ź ż ż ę ę ż ę ż ń ę Ę ę ż Ę ń ż ę ń ń ę ż ę ż ę ż ń ę ę ę ę ę ę ę ż Ę ę ę ć ę ź ę ę ź Ę ę ń ę ż Ę ę Ę ń ż ę ę Ę ń ę ż Ę ę

Bardziej szczegółowo

Ż Ę ć Ć ć ć Ą

Ż Ę ć Ć ć ć Ą Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż

Bardziej szczegółowo

Sprężyny naciskowe z drutu o przekroju okrągłym

Sprężyny naciskowe z drutu o przekroju okrągłym Sprężyny owe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Metoda Różnic Skończonych

Metoda Różnic Skończonych Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.

Bardziej szczegółowo

ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń

ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź Ź Ó Ń Ó ź ć Ź ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź ć Ź Ę Ę ć ć ź Ę Ę Ź ć Ó Ó Ś Ó Ń ŚĆ Ę Ś Ó ćć Ó Ś Ę Ś Ę Ę Ś Ś ć Ę Ó Ę Ó Ę Ń Ć Ś Ś Ś Ś Ó ŚĆ Ó ć Ń Ń Ó Ę Ó Ó Ó Ś Ę Ć Ó ć ć Ó ź Ę ć ć Ź ć ć ć ć ć ź ć Ź ć Ć ć ć Ś

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

Niemili nie będą mili

Niemili nie będą mili Ł Ł ś % X - Ś f ś ś ą ą ś ą - ą - ś f ć f ą - ś - f ą - ść ą ś ć ć ś ś ś - : ą f ą ą ą ć ą ą ą f - f - ą - - ą ą ź - ą - ś ą ą ą ś ą ą ś ć ś - ć ść ś ą - ą ą - ą ą ć - f ą f - ą ź ą ć - ą f ą ś - ś ą :

Bardziej szczegółowo

W-9 (Jaroszewicz) 15 slajdów. Równanie fali płaskiej parametry fali Równanie falowe prędkość propagacji, Składanie fal fale stojące

W-9 (Jaroszewicz) 15 slajdów. Równanie fali płaskiej parametry fali Równanie falowe prędkość propagacji, Składanie fal fale stojące Jucaan, Meico, Februar 005 W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i

Bardziej szczegółowo

Symulacja czasu ładowania zasobnika C.W.U

Symulacja czasu ładowania zasobnika C.W.U Por Prybyc Syulacja casu łaoaa asobka C.W. Syulacja casu łaoaa asobka C.W. Do cgo służy Progra: Progra służy o sybkgo okrśla casu łaoaa asobka C.W. ry ałożoych arukach brgoych aruk brgo fuj rogra użykok

Bardziej szczegółowo

Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó

Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó Ą Ł ć Ę Ę Ł Ź Ł ż ż ż ż Ó Ł Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó ż Ż Ó Ż Ś ć ć ż Ś Ż Ó Ż Ó ż ż Ż ż ż Ż Ż Ą ć Ż Ó ż Ż Ż ż ż Ż Ó ż Ż Ś Ć ż Ł Ę Ę Ź ć Ó ć Ś Ż ż ż Ę ż ż Ę Ż Ś ż Ś Ż ż Ś Ż Ż ż ż Ż Ż Ż Ż ż Ś Ż Ż ż Ż ż ż Ź Ż

Bardziej szczegółowo

ż ć ć ż ż ż ż ź ć ż ć ż ż ź ż ć ż ź ż ć ź ż ż ź ć ż ż ć ż

ż ć ć ż ż ż ż ź ć ż ć ż ż ź ż ć ż ź ż ć ź ż ż ź ć ż ż ć ż Ś Ś Ż Ó ż ż ż ż ć ż ż ć ż ż ż ż ź ż ż ż Ó Ś ż ć ć ż ż ż ż ź ć ż ć ż ż ź ż ć ż ź ż ć ź ż ż ź ć ż ż ć ż ż Ś ż ż ć ż Ś Ó ż ż ż ć ć ż ć ź ż ż ż ć ć ć ć ż ż ź Ó ć ż ż ż ć ź ż ć ż ć ż ż ż ż ż ć ć ć ż ż ż ź ż

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM ROK SZKOLNY: 2016/2017 Wymagania na ocenę dopuszczająca: wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i

Bardziej szczegółowo

9. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

9. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 9. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 9. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Wsęp. Rónana zaeraące pochodną neznane fnkc dóch b ęce zmennch naza sę cząskom rónanem różnczkom. Na przkład: 5 9. Ze zgęd na szeroke zasosoane

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Wykład 9. Stateczność prętów. Wyboczenie sprężyste

Wykład 9. Stateczność prętów. Wyboczenie sprężyste Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

ę Ś Ę Ż ć ę ę Ę Ą Ś Ó Ó Ó Ś ć ę Ć ę Ą ć Ś Ć Ś Ć Ś Ą Ę Ą Ó Ś Ę ę Ć ę Ś ę Ę Ń Ę Ó Ś Ó Ą Ż Ę ź ć Ó Ó Ś ź ź ź ŃŃ Ę ź Ó Ę Ę ć ć ę Ę ć ę Ó ę ć Ę Ć ę ę Ą ź Ś ę ę ę Ś Ń Ó ć Ć ć ź ć Ż ę Ó ę ę ę ę Ó ęć Ń ę ę Ś ę

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

Sprężyny naciągowe z drutu o przekroju okrągłym

Sprężyny naciągowe z drutu o przekroju okrągłym Sprężyny naciągowe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS

Bardziej szczegółowo

Ą ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 4

Dobór materiałów konstrukcyjnych cz. 4 Dobór materiałów konstrukcyjnych cz. 4 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Wskaźniki materiałowe Przykład Potrzebny

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II Zdający może roziązać każdą popraną metodą. Otrzymuje tedy maksymalną liczbę punktó. Numer Wykonanie rysunku T R Q Zadanie. Samochód....4.6 Narysoanie sił

Bardziej szczegółowo

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą Ą ł Ą Ł ÓŁ Ą ę ę ł ł ń ęść ł ł ę ęść źć ć ł ń ś ń ć ń ń ń Ż ł ć ść ń ń Ę ę ĘŚĆ Ó Ł Ł ę ł ś ł Ę ę ń ń ś ś ź ę ś Ę ś ć ś ę Ę ę ć ń ś ś ę ę ć ś Ę ń ź ć ś ś Ł ś Ł ź ł ę Ż ń Ę ń Ę ń ś ę ń ś ś ń ł ś ć ź ń ś

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 JÓZEF HOZER Uniwersye Szczeci ski ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA 1. PYTANIE PROFESORA RAUTSKAUKASA

Bardziej szczegółowo

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ę Ł ć ż ć ż ć ę ę ę ż ć ż ć ę ż ż ć ę ę ę ę ę ę ę ę ę ż ę ę ę Ź ę ż ę ć ż ę ę ę Ź ć Ź ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ć ę ę ż ę ż ć ć Ść ć ę ć ć ż

Bardziej szczegółowo