J. Szantyr Wykład 12 Wyznaczanie przepływów lepkich metoda objętości skończonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "J. Szantyr Wykład 12 Wyznaczanie przepływów lepkich metoda objętości skończonych"

Transkrypt

1 J. Szanyr Wyład 1 Wyznaczani przpłyó lpich moda objęości sończonych Moda objęości sończonych polga na przszałcniu rónań różniczoych rónania algbraiczn poprzz całoani ych rónań granicach ażdj objęości sończonj oparciu o założoną aprosymację zminności paramró opisujących przpły granicach objęości (np. linioą, adraoą ip.) rosy przyład: ogóln sacjonarn rónani ransporu poprzz oncję i dyfuzję. ( u ) div( Γgrad ) S div

2 W przypadu jdnoymiaroym mamy: Rónani ransporu: Rónani zachoania masy: d d ( ) d u d d d d d ( u) Γ 0 Załadamy, ż prędość u js znana.

3 Scałoani rónań granicach objęości sończonj proadzi do: ( ) ( ) A A ua ua Γ Γ ( ) ( ) 0 ua ua Jżli proadzimy oznacznia: spółczynni oncji u F Γ Γ u F spółczynni dyfuzji D δ Γ o rónania można zapisać posaci: ( ) ( ) W E D D F F 0 F F E D δ Γ

4 Współczynnii rónania mogą być yznaczon np. oparciu o linioy schma różnic cnralnych: ( ) / E ( ) / W odsaini do różniczogo rónania ransporu proadzi do rónoażnj posaci algbraicznj, czyli zoru inrpolacyjngo yznaczającgo arość punci na podsai arości punach sąsidnich W i E: E W F D F D F D F D Schma inrpolacyjny różnic cnralnych działa dobrz, gdy innsyność oncji i dyfuzji procsi ransporu js podobngo rzędu. W przypadu gdy yraźni dominuj oncja, lpsz ynii daj schma pod prąd (ang. upind).

5 Najprosszy schma pod prąd js opary na założniu, ż ilość ransporoana js prznoszona przz oncję o pół długości objęości sończonj bz zmiany arości, czyli: W

6 Zasosoani schmau pod prąd proadzi do nasępującj posaci algbraiczngo rónania ransporu (czyli zoru inrpolacyjngo): [( D ) ( )] ( ) F D F F D F W D E Schma inrpolacyjny pod prąd daj sabiln roziązania Schma inrpolacyjny pod prąd daj sabiln roziązania rónania ransporu zdominoango przz oncję, al zasosoaniach du- i rójymiaroych proadzi do szucznj numrycznj dyfuzji, szczgólni przypadach gdy irun oncji przbiga po prząnych objęości sończonych. Wyliminoani dyfuzji numrycznj ymaga sosoania dużj liczby małych objęości sończonych, co poięsza rozmiary zadania obliczniogo.

7 Algbraiczn rónani ransporu zasosoan do szysich objęości sończonych przypadu jdnoymiaroym proadzi do uładu rónań linioych, órgo roziązani dosarcza arości ransporoanj ilości punach cnralnych szysich objęości. W przypadach du- i rójymiaroych oniczn js zasosoani procdury iracyjnj, órj zasady yjaśniają poniższ rysuni. Uzysani zbiżngo roziązania ymaga ilorongo poarzania procsu iracyjngo całym obszarz przpłyu. W przypadu duymiaroym zór inrpolacyjny yznacza arość poszuianą oparciu o 4 puny sąsidni (W, E, N, S), a przypadu rójymiaroym oparciu o 6 punó sąsidnich (W, E, N, S, B, ).

8 Iracyjna procdura roziązania uładu rónań algbraicznych dla przypadu duymiarogo.

9 Iracyjna procdura roziązania uładu rónań algbraicznych dla przypadu rójymiarogo. Schma iracyjny rzyład rzczyisj sici objęości sończonych

10 rzpłyy nisacjonarn na przyładzi jdnoymiaroj dyfuzji cipła opisanj polm mpraury pręci (uu0) Rónani yjścio: o scałoaniu granicach objęości: c CV c dvd CV dvd

11 Rónani można raz zapisać nasępującj posaci: A A dv d c Jżli mpraurę ęźl uznamy za rprznayną dla całj objęości o można napisać: dla całj objęości o można napisać: ( ) W W E E A A V c δ δ 0 gdzi górny inds 0 przy oznacza arość dla począu rou czasogo, a bz go indsu arość dla ońca (poszuianą)

12 Dla dysryzacji praj srony oniczn js przyjęci pngo założnia o chararz zminności mpraury czasi, np. posaci funcji agoj. ( ) [ ] d 0 1 ϑ ϑ ozala o napisać rónani dyfuzji posaci algbraiczngo zoru inrpolacyjngo: zoru inrpolacyjngo: ( ) [ ] ( ) [ ] ( ) ( ) W E W W W E E E W E c c δ ϑ δ ϑ ϑ ϑ δ ϑ ϑ δ δ δ ϑ

13 W zalżności od arości paramru agogo mamy różn schmay oblicznio, ymagając różnych rlacji pomiędzy roim czasoym a roim przsrznnym dla zapninia sabilności roziązania: 0 ϑ ϑ 0,5 Schma jany, arun sabilności: c ( ) Schma Crana-Nicholsona, arun sabilności: ϑ 1 Schma uryy, sabilny bzarunoo c ( )

14 Rónani zachoania pędu (rónani Navira-Sosa) posaci różniczoj opisuj zaróno przpłyy laminarn ja i urbulnn. Zachoani aij unirsalności przz rónoażnii algbraiczn rónania NS możli js na rzy sposoby: -poprzz bzpośrdnią numryczną symulację zjaisa urbulncji od dużych sruur iroych aż do najmnijszych sal, zn. do sali Kołmogorova (podjści DNS Dirc Numrical Simulaion), -poprzz podział sal urbulncji na część symuloaną numryczni (duż iry) i część modloaną spcjalnymi rónaniami (podjści LES Larg Eddy Simulaion lub DES Dachd Eddy Simulaion), -poprzz modloani całgo zarsu sal urbulncji przy pomocy spcjalnych rónań (podjści RANS czyli Rynolds Avragd Navir Sos).

15 Rónania Rynoldsa mają posać: ( U ) div τ τ τ z ( ) y z UU div( µ gradu ) S y ( V ) ( W ) div div y τ τ τ ( y yy yz VU ) div ( µ gradv ) S y z ( ) z zy zz WU div( µ gradw ) Sz τ y τ y z τ z

16 Zamnięci rónania Rynoldsa ymaga zasosoania modlu urbulncji. Najczęścij użyany js modl du-rónanioy -ε, gdzi js nrgią inyczna urbulncji a ε prędością rozpraszania j nrgii. Modl n js opary na nasępujących zalżnościach: 1 ( u v ) µ C U U i µ τ ij u iu j µ ε j ( ) µ div ( U ) div grad µ EijEij ε σ ( ε ) div ( εu ) µ div gradε C σ ε ε 1ε µ E ij E ij C ε ε i j E ij 1 U U C i j µ 0, 09 j i 1,0 σ σ ε 1,30 C ε C1 ε 1,44 1, 9

17 Zamnięci rónania Rynoldsa przy pomocy modlu urbulncji ymaga proadznia dodaoych arunó brzgoych. W przypadu modlu - są o nasępując aruni: - na loci zadan rozłady i - na yloci n 0 oraz ε n 0 - na sobodnj granicy 0 oraz 0 - na szynj ściani podjści zalży od liczby Rynoldsa dla ysoich liczb sosuj się z. prao ściany, uniając całoania rónań do samgo brzgu, - dla nisich liczb sosuj się inną posać rónań modloych oparą na założniu ż przpły js zdominoany przz naprężnia lpościo.

J. Szantyr Wykład 15 Praktyczne wyznaczanie przepływów przepływy lepkie II

J. Szantyr Wykład 15 Praktyczne wyznaczanie przepływów przepływy lepkie II J. Szr Włd 5 rcz zczi przpłó przpł lpi II Mod objęości ończoch polg przzłci róń różiczoch rói lgbricz poprzz cłoi ch róń gricch żdj objęości ończoj oprci o złożoą promcję zmiości prmró opijącch przpł gricch

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

Wykład 2 Wahadło rezonans parametryczny. l+δ

Wykład 2 Wahadło rezonans parametryczny. l+δ Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos

Bardziej szczegółowo

Układ napędowy z silnikiem szeregowym prądu stałego w różnych stanach pracy

Układ napędowy z silnikiem szeregowym prądu stałego w różnych stanach pracy Ćiczni 2 Układ napędoy z silnikim szrgoym prądu sałgo różnych sanach pracy 2.1. Program ćicznia dla przypadkó: a) U = U N, d = 0 (charakrysyka nauralna), b) U = par, d = 0, c) U = U N, d = par (par paramr),

Bardziej szczegółowo

Przejścia międzypasmowe

Przejścia międzypasmowe Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż

Bardziej szczegółowo

Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć

Bardziej szczegółowo

ć ż ź ć ć Ń ć ż ż ż ż ż ć ż ż ć ż Ź ż ż ż ż ź ź ż ż ń ż ćż ż ź ć ń ć Ń Ą ż ń ż ż ż ż ć ż ć ż ż Ń ż ż ń ż ć ż ń ż ń ż Ź ż ż ń ż ć ć ź ż ż ż ź ż ń ź ż ń ż Ń ć Ą Ę ż ż ć ń ć ż ż ń ż ż ż ć ć ć ń ż Ź ć ż ć

Bardziej szczegółowo

Ś ź ź Ś Ś Ź ć ź Ń ź Ś Ś ć ć Ź Ś ź Ź Ź Ń ź Ś ć Ł ź ź ć Ś ć ć ć ć Ś ź ź Ź Ń ź ź Ś ć Ś ź ć ź ź ć ź ź ć Ł Ź ź ź ź ź ź ć ź ź ć ź ć ć Ź ź ź Ń ź ź ć ź ź ć Ń Ś Ś Ź Ń Ś ź ć Ś ź ź ź ć Ś Ź Ń ź ź Ś ć Ź ź ć ć ź Ł ć

Bardziej szczegółowo

Rys. 2 Napięcie indukowane w generatorze prądu przemiennego [2].

Rys. 2 Napięcie indukowane w generatorze prądu przemiennego [2]. Maszyny prądu sałgo - zasada działania Ruch ramki polu magnycznym (Rys. 1) pooduj, ż ramc indukuj się napięci. Jśli końc ramki podłączymy do poruszających się razm z ramką pirścini sykających się z niruchomymi

Bardziej szczegółowo

Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania.

Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania. Modeloanie rozoju pożaru pomieszczeniach zamkniętych. Cz.. Model spalania. Dr hab. inż. Tadeusz Maciak prof. SGSP, mgr inż. Przemysła Czajkoski, Spis ażniejszych oznaczeń stosoanych modeloaniu pożaru:

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

Andrzej Leśnicki Uogólniony szereg Fouriera 1/1 SZEREGI FOURIERA. Uogólniony szereg Fouriera. x, gdy ich iloczyn x, y 0. całkowalnego z kwadratem

Andrzej Leśnicki Uogólniony szereg Fouriera 1/1 SZEREGI FOURIERA. Uogólniony szereg Fouriera. x, gdy ich iloczyn x, y 0. całkowalnego z kwadratem ndrzj Lśnici Uoólniony szr Fourira / SZEREGI FOURIER Iloczyn salarny, y b a Uoólniony szr Fourira, y dwóch synałów zspolonych y d, Dla iloczynu salarno zachodzi symria hrmiowsa Dwa synały, y są oroonaln

Bardziej szczegółowo

Kształtowanie charakterystyk silnika obcowzbudnego prądu stałego w różnych stanach pracy

Kształtowanie charakterystyk silnika obcowzbudnego prądu stałego w różnych stanach pracy Ćiczni 1 Kszałoani charakrysyk silnika obcozbudngo prądu sałgo różnych sanach pracy 1.1. Program ćicznia 1. Wyznaczni charakrysyk lkromchanicznych i mchanicznych silnika obcozbudngo sanach pracy silnikoj.

Bardziej szczegółowo

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym

Bardziej szczegółowo

Analiza wybranych własności rozkładu reszt

Analiza wybranych własności rozkładu reszt Analiza wybranych własności rozkładu rsz Poprawni skonsruowany i oszacowany modl, kóry nasępni ma być wykorzysany do clów analizy i prdykcji, poza wysokim sopnim odzwircidlania zmian warości mpirycznych

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Ł ś Ą ść ś ś ć Ń Ę Ś Ę ś ś ś ż ż Ż ś Ś ż ś Ą Ń ś Ę ś ś ż ś Ń Ź ś Ż ś ż ś ść Ź ż ś Ą ś ż Ś ś ś ś Ź ż ż Ę ż ść ś ż Ń ć ż ż ść ś ż Ź Ź ż Ź ś ź ś ś ż ź ż ś ć ż Ź ś ż Ę ś Ś ż ś ż ż ść Ą ć Ź ż ż ć ś ś ż ż ż

Bardziej szczegółowo

Ł Ź Ż ć Ą Ż ć Ż Ż Ż ć ć Ż Ż ć Ż ć Ź Ź ć Ż Ż Ż Ę Ę Ż ć ć ć Ż Ż ć ć ć ć Ż ć ć Ż ć Ż Ż Ż Ź Ź Ż Ż Ż ć Ż Ż Ó Ż Ż ć Ż Ż ć Ż ć Ż ć Ż ć ć Ź ć Ć Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ź Ż ć Ż Ż Ż Ż Ż ć ć ć Ż ć Ł Ź ć Ź Ź Ź ć Ż Ż Ż

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Ł Ą Ń

Ł Ą Ń Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Szeregi Fouriera (6 rozwiązanych zadań +dodatek)

Szeregi Fouriera (6 rozwiązanych zadań +dodatek) PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω

Bardziej szczegółowo

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy .7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d

Bardziej szczegółowo

Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż

Bardziej szczegółowo

3. Struktura pasmowa

3. Struktura pasmowa 3. Strutura pasmowa Funcja Blocha Quasi-pęd, sić odwrotna Przybliżni prawi swobodngo ltronu Dziura w paśmi walncyjnym Masa ftywna Strutura pasmowa (), przyłady Półprzwodnii miszan ltron w rysztal sformułowani

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

Równania ruchu konstrukcji głównej z dołączonymi tłumikami drgań opisanymi standardowym modelem reologicznym

Równania ruchu konstrukcji głównej z dołączonymi tłumikami drgań opisanymi standardowym modelem reologicznym Budownicwo i Archiura 9 (211) 23-38 Równania ruchu onsrucji głównj z dołączonymi łumiami drgań opisanymi sandardowym modlm rologicznym Pior Wilgos Kadra Mchanii Budowli, Polichnia Lublsa, Wydział Budownicwa

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Zarys modelu oceny niezawodności pracy działka lotniczego w aspekcie powstawania uszkodzeń katastroficznych w postaci zacięć

Zarys modelu oceny niezawodności pracy działka lotniczego w aspekcie powstawania uszkodzeń katastroficznych w postaci zacięć Zarys modlu ocny nizawodności pracy działa loniczgo 9 ZAGADNIENIA EKSPLOATAJI MASZYN Zszy 4 5 7 HENRYK TOMASZEK, MARIUSZ WAŻNY, MIHAŁ JASZTAL Zarys modlu ocny nizawodności pracy działa loniczgo w aspci

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k

PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k ZYKŁAD: Wyznaczyć siłę rytyczną dla pręta ociążonego diema siłami, ja na rysunu. (c) A K c B, a m,. ónania rónoagi A c c / () Y () X H ( c ) (3). ónanie ugięć przedziale BK ( ) (4) ( ) () (6) (7) E I -

Bardziej szczegółowo

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

(u) y(i) f 1. (u) H(z -1 )

(u) y(i) f 1. (u) H(z -1 ) IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne

Bardziej szczegółowo

Tensory mały niezbędnik

Tensory mały niezbędnik 28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin

Bardziej szczegółowo

ś Ę ś Ę ź ś Ó ś ś Ś ć ś ź Ź ść ć ś Ż ś ś Ż Ż Ż ś Ż ź ś ś ć Ż ś ś Ż ś ś ś ś Ó ś Ż ź ś ź ś ć ź ś ś ś ć ć Ń ś ś ś ź ś ś ś ś Ń ś Ż ś ś ś Ź Ó ć Ę ś ś ś Ń Ż Ś Ż ś ś ź ź ć Ó Ó ś ś ź Ś ć Ż Ń ś ź Ą ś ś Ż ć ć ść

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak

Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak Modl Ramsy a-cass a-koopmas a Dr hab. Joaa Siwińsa-Gorzla Pla wyładu Wprowadzi do modlu Mody mamayz Rozwiązai modlu Wiosi Uwaga a slajdah zajdują się wyłązi głów lmy; sporo wyjaśiń js omawiayh podzas wyładu,

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 5,6, str. 1

Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 5,6, str. 1 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 1 18. Klasyfikacja UR ze wzgl. na posać sygn. wejściowego a) regulacja sałowarościowa y () = cons b) regulacja programowa c)

Bardziej szczegółowo

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość

Bardziej szczegółowo

Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń

Bardziej szczegółowo

ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć

Bardziej szczegółowo

Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć

Bardziej szczegółowo

Ł Ś Ą Ł Ę ź Ł Ł Ę Ł ź Ł Ł Ś Ł Ł ż Ł Ś Ł Ł Ś Ł ź Ę ź Ł Ł Ł Ł Ł Ł ź ć ż Ę ż Ł ż ż ć ć ć ć ć ć ż Ę ć ć ć ć ć ć ż ż ć ż ż ż ż Ł Ś Ł ż ż ć ć ć ż ć ć ć ć ż ż ż Ł Ś Ł ż Ł Ł Ł ż Ł Ś Ł Ł Ś Ł ż Ł Ś Ł ź ż Ę ż ż ź

Bardziej szczegółowo

ź Ę ć Ż Ż ń ć Ż Ę Ż ć ć ć Ż ć ć ź Ż ć Ż Ż ć ć ń Ż ć Ś Ę Ż ń Ż ć Ż ć Ż ć Ż Ż Ę ć Ż Ż Ż Ą Ę Ą ć Ż ć ć Ż Ą Ż ć ń ń Ż ń Ż Ę Ż ć Ż Ż Ł Ą źź ź ć Ż Ż Ż Ż Ę ź ź ź ź Ż Ż ń Ż Ż Ó ń Ś ć ń Ą Ę Ą Ż Ą Ę Ś Ę Ż ć Ę Ś

Bardziej szczegółowo

Ł Ń Ł Ł ź Ż ź Ł Ż Ó ż ż Ą ź Ą Ó Ń Ą Ł Ł Ą Ż Ś Ą ź Ż Ż ź Ż Ż ż Ą Ł Ż Ź Ź ź Ó ź Ł Ą ź Ń ź Ó Ł ż ć Ś Ś Ą Ł Ś ż ź ź Ą Ż Ł Ś Ś Ł Ż Ń Ń Ł Ó Ś Ś ć Ś Ó Ć ć ć Ś ż Ó Ó ź Ó Ó Ś Ó Ą Ą ć Ą Ą Ł Ą Ł Ą Ł ż Ł ź ć Ł Ą

Bardziej szczegółowo

Ż ń ń Ł Ą ń Ą Ż Ą Ż ń Ą ń ń ń ń Ł Ą ń ń ń ń ń Ą ń ń ń ń ń ń ń ć ń Ż ń ń Ą Ś Ą Ś Ą ń Ą Ś Ę ń Ś ń ń Ą ń Ż ń ź ź ń Ś ń ń Ś Ę Ś Ź Ś ń ń ć Ż ń ń Ą ń Ś Ż ń Ż Ż Ć Ż Ś Ś ć Ż Ż ć Ą ń Ą ń Ż ń ń ń Ż ć Ż Ż ń ń Ś Ż

Bardziej szczegółowo

Ł Ż Ł Ł Ł Ł ż ż ć ź ć ż ż Ż ż Ż ż Ż ć Ż Ł Ż ć ŻŻ ź ż Ł ż ż ż Ż ć Ł Ł ż ż ż ż Ż ż ż ź ć Ż ż ż Ż ż Ż ć ż ć Ż ź ż ż ć ć Ż ż Ź ż ż ż ź ż ż ź ż ż ż ż ż ź Ż Ż ź ż ć ż ż Ł ż ć ż ż ż ć ż ż ć Ż Ż ż ż ż ź ć ż ż

Bardziej szczegółowo

Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą

Bardziej szczegółowo

ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż

Bardziej szczegółowo

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

ź Ł ć Ę ź ć Ą Ó Ą Ó Ą Ą ć ń ć Ą ć ź ń ń Ó ź ć ć ź ź ć ń ć ń ć ć ć ć ć ć ć ź Ą ć ć ć ć ć ć ź ć ź ć ć ć ć ć ń ć ć ć Ł ć ń ń ń ź ń ź ń Ę Ę Ę ń ź ź ć ć Ąć Ą ć ń ź ź Ą ź Ś ń ź ń ź ń Ł Ę Ł ń Ń ć ć ć ć ć ć Ś

Bardziej szczegółowo

J. Szantyr - Wykład 13 Podstawy teoretyczne i modelowanie turbulencji

J. Szantyr - Wykład 13 Podstawy teoretyczne i modelowanie turbulencji J. Szantyr - Wykład 13 Podstawy teoretyczne i modelowanie turbulencji Matematycznym opisem turbulentnego ruchu płynu są równania Reynoldsa. Reynolds założył, że w przepływie turbulentnym wszystkie charakteryzujące

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

Ą Ą Ź Ż Ń Ń Ń Ć Ź Ź Ż Ż Ć Ź Ć Ź Ć Ż Ć Ź Ń Ń Ź Ż Ń Ż Ź Ź Ł Ą ź Ń Ź Ź Ż Ą ź Ą Ź Ź Ź Ń ź Ż Ń Ź ź Ę Ż Ź Ż Ż Ż Ż Ć ź Ź Ź Ź Ć Ź Ź Ź ź Ą Ź Ę Ć Ę Ż Ż Ń Ę Ż Ź Ż ź Ę Ć Ń Ż Ź Ź Ź Ą Ż Ł Ż Ż Ć Ż Ź Ł Ź ź Ą Ź Ó Ź ź Ć

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA

TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 8/8 Komisja Inżynirii Budowlanj Oddział Polskij Akadmii Nauk w Kaowicach TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA Kamil PAWLIK Polichnika Opolska, Opol. Wprowadzni

Bardziej szczegółowo

Ę Ą Ó Ż Ą Ą ĄĄĘ ż ż Ź ż Ż Ą Ś Ż ż Ż Ą ż ż Ś ż Ó ż Ś ż ż ĄĄ Ż ż ż Ź Ó ż ż Ż Ś Ż ż Ż Ż ż Ó ć Ó Ś ż Ś Ś Ż Ź ż ć Ść Ó Ó Ż ż ż Ż Ż ć Ś Ś Ó Ś Ż ź Ż ż Ź Ę Ż Ż Ó Ę Ż Ś ż ż ż ż ż ć ż Ó Ó ż ż ż Ś Ź ż Ś Ą Ó Ść Ż

Bardziej szczegółowo

Ń Ż ż ć ś ą ą ż ą ą ś ś ą ą Ą Ą ą Ż ą ą ź ć ąż ą ś ą ą Ł ŁÓ ą Ą Ą Ł ą ą ą ąą ż ć ą Ń Ś Ą ą ż ą ż ć ąż ą ś Ż Ł ż ż ś ś ż ś ż ą ą ż ż ś Ó ś ż ą ą ą ż ś ś Ą Ą ą Ł ą ż ż ą ą ż ą ż ś ą ą ż ś ś ą ś ż ś ś ż

Bardziej szczegółowo

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź

Bardziej szczegółowo

Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś

Bardziej szczegółowo

Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć

Bardziej szczegółowo

Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę

Bardziej szczegółowo

Ż ź ź ź ź ź ć ć Ą Ą ć Ą ź ź ć Ż Ś ź ć ć Ę ć ź ź ć ź Ą ĄĄ Ń Ą Ń ć ć ć ć Ę ć Ń ć ć ć ć Ą ć ć ć ć ć Ń Ń ć ć ź ź ć Ę Ę ć Ą ć ć ć ć ć Ń Ę ć ć ć ć ć ć ć ć ć ź ć ź Ą ć ć ć Ń ć ć ć ć ź ć ć ć Ń Ń ć ź ź ć ź ź ć

Bardziej szczegółowo