Języki Modelowania i Symulacji
|
|
- Judyta Wróbel
- 6 lat temu
- Przeglądów:
Transkrypt
1 Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 listopada 2011
2 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne, P. Davis, W.: Differential Equations - Modelling with MATLAB, Prentice Hall, Dokumentacja MATLABA i SIMULINKA. 4. B.Mrozek, Z. Mrozek: MATLAB Uniwersalne środowisko do obliczeń naukowo-technicznych, Kraków T.P. Zieliński: Cyfrowe przetwarzanie sygnałów - Od teori do zastosowań, Warszawa 2009.
3 O czym będziemy dziś mówili?
4 chol (1) R = chol(a); A dodatnio określona: R górna trójkatna, [R, p] = chol(a); A dodatnio określona: R *R=A R górna trójkatna, R *R=A, p=0 A nie jest dodatnio określona: R górna trójkatna, R *R=A(1:q,1:q), q=p-1
5 dodatnio określona W przypadku, gdy A jest macierza rzeczywista: A jest macierza symetryczna i dla każdego niezerowego wektora x R n zachodzi: x T Ax > 0. Równoważna definicja mówi, że wszystkie wartości własne A sa dodatnie.
6 chol A = >> R = chol(a) = >> R'*R =
7 chol n =3; >> X = pascal(n) X = >> X(n,n) = X(n,n)-1 X = >> chol(x)??? Error using ==> chol Matrix must be positive definite. >> [R,p]=chol(X) R = p = 3
8 chol X = >> chol(x)??? Error using ==> chol Matrix must be positive definite. >> [R,p]=chol(X) R = p = 3 >> R'*R =
9 chol (2) L = chol(a, lower ); A dodatnio określona: L dolna trójkatna, [L, p] = chol(a, lower ) ; A dodatnio określona: L*L =A L dolna trójkatna, L*L =A, p=0 A nie jest dodatnio określona: L dolna trójkatna, L*L =A(1:q,1:q), q=p-1
10 chol A = >> L=chol(A,'lower')= >> L*L'=
11 chol X = >> L=chol(X,'lower')??? Error using ==> chol Matrix must be positive definite. >> [L,p]=chol(X,'lower') L = p = 3 >> L*L'=
12 chol A = >> L = chol(a,'lower')= >> R = chol(a)= >> L'=
13 chol Ax = b x = A\b >> inv(a)= >> inv(r)*inv(l)= >> inv(l')*inv(l)=
14 inv odwrotna Y = inv(x); Rozwiazanie równania A*x=b: x = A\b czy x=inv(a)*b?
15 inv Ax = b x = inv(a)b n = 500; Q = orth(randn(n,n)); d = logspace(0,-10,n); A = Q*diag(d)*Q'; x = randn(n,1); b = A*x; tic, y = inv(a)*b; toc err = norm(y-x) res = norm(a*y-b) elapsed_time = err = e-006 res = e-007
16 inv Ax = b x = A\b elapsed_time = err = e-006 res = e-007 tic, z = A\b, toc err = norm(z-x) res = norm(a*z-b) elapsed_time = err = e-006 res = e-015
17 qr qr (1) A - mxn [Q, R] = qr(a); R - mxn górna trójkatna, [Q, R] = qr(a,0); A = Q*R dla m > n oblicza się: n poczatkowych kolumn Q n poczatkowych wierszy R dla m<=n mamy: [Q, R] = qr(a) Q - mxm unitarna
18 qr qr (2) [Q, R, E] = qr(a); R górna trójkatna, Q unitarna E macierz permutacji kolumnowej A*E = Q*R oraz abs(diag(r)) uporzadkowane malejaco [Q, R, E] = qr(a,0); X = qr(a); E wektor permutujacy: A(:,E) = Q*R X = qr(a,0); X triu(x) jest górnym trójkatnym czynnikiem R
19 qr A = [ ] [Q,R] = qr(a) Q = R = rank(a) = 2 tol = E-014
20 qr Ax = b b = [1;3;5;7]; x = A\b; x = y = Q'*b; x = R\y x =
21 pinv Moore a-penrose a (1) B = pinv(a); B macierz : A*B*A = A, B*A*B = B, A*B = (A*B), B*A = (B*A) B = pinv(a,tol); tol próg zerowości wartości szczególnych A domyślny poziom: max(size(a))*norm(a)*eps Algorytm wykorzystuje rozkład svd
22 pinv Moore a-penrose a (2) A - mxn : m > n oraz rank(a) < n x minimalizujacy norm(a*x-b) nie jest jednoznaczny x = pinv(a)*b rozwiazanie o najmniejszej wartości norm(x) y=a\b rozwiazanie o najmniejszej liczbie niezerowych elementów
23 pinv A = magic(8); A = A(:,1:6); b = 260*ones(8,1); A = b = x1 = pinv(a)*b; x2 = A\b; x3 = inv(a)*b;???????
24 pinv x1 = pinv(a)*b; x2 = A\b; x3 = inv(a)*b; x1 = x2 = ??? Error using ==> inv Matrix must be square norm(x1) = norm(x2) =
25 linsolve (1) A*X = B, (A - mxn, B - mxk) X - nxk X = linsolve(a,b); A kwadratowa: faktoryzacja LU A niekwadratowa: faktoryzacja [X, R] = linsolve(a,b); A kwadratowa: faktoryzacja LU, R = 1/cond(A) A niekwadratowa: faktoryzacja, R=rank(A)
26 linsolve (2) X = linsolve(a,b,opts); pole opcji właściwość LT dolna trójkatna UT górna trójkatna UHESS górna Hessenberga SYM symetryczna lub Hermitowska POSDEF dodatnio określona RECT prostokatna TRANSA A*X = B albo A *X = B Ustawianie pola opcji: np. opts.ut = true
27 linsolve A = triu(rand(5,3)); A = x = [ ]'; b = A'*x; b = y1 = (A')\b opts.ut = true; opts.transa = true; y2 = linsolve(a,b,opts) y1 = [ ]' y2 = [ ]'
28 (1) A - mxn, x = lscov(a,b); b - mx1 (mxk) : Ax = b lscov x wektor minimalizujacy (b A x) (b A x) (dla b - mxk: rozwiazania dla każdej kolumny b) gdy rank(a) < n: wybierany jest x o maksymalnej liczbie zerowych współrzędnych x= lscov(a,b,w); w wektor mx1 nieujemnych rzeczywistych wag x minimalizuje (b A x) diag(w) (b A x)
29 lscov x1 = [ ]'; x2 = [ ]'; X = [ones(size(x1)) x1 x2]; y = [ ]'; a = X\y a = [b,se_b,mse] = lscov(x,y) b = se_b = mse =
30 lscov w = [ ]'; [bw,sew_b,msew] = lscov(x,y,w) bw = sew_b = msew = e-004
31 (1) A nxn λ i - wartości własne v i - w A (λ) = det(a λi) (A λ i I) v i = 0 d = eig(a); d wektor wartości własnych A [V, D] = eig(a); D diagonalna macierz wartości własnych V macierz prawych wektorów własnych AV = VD (V macierz modalna) eig V 1 AV = D
32 eig w A (λ) = det(a λi) = λ 4 34λ 3 64λ λ λ 4 34λ 3 64λ = 0 λ i {34, 8, 0, 8} A = [ ] >> poly(a) ans = >>d = eig(a) d= >> chol(a)??? Error using ==> chol Matrix must be positive definite.
33 eig >> eig(a) = (A λ i I) v i = 0 >> [V,D]=eig(A) V = D =
34 eig V 1 AV = D >> [V,D]=eig(A) V = D = >> D = inv(v)*a*v D =
35 eig (2) [V, D] = eig(a, nobalance ); Bez wstępnego równoważenia (skalowania) A - zalecane dla A zawierajacej niedokładne (zaokraglone) elementy o b. małej wartości.
36 eig B = [ *eps eps -eps/4 eps/ ]; B = >> [VB,DB] = eig(b) VB = DB =
37 eig B VB VB DB = 0??? VB = DB = >> B*VB - VB*DB ans =
38 eig B VN VN DN = 0??? >> [VN,DN] = eig(b,'nobalance') VN = DN = >> B*VN - VN*DN ans = 1.0e-014 *
39 balance poprawiajace uwarunkowanie zadania własnego (równoważenie) (1) A - macierz kwadratowa [T, B] = balance(a); T macierz podobieństwa, dla którego B macierz podobna B=T\A*T posiada możliwie zrównoważone wiersze i kolumny (ze względu na ich normę) B = balance(a); B zrównoważona macierz podobna do A
40 balance (równoważenie) (2) [S, P, B] = balance(a); S wektor skalujacy (współrzędne to całkowite potęgi 2) P wektor permutujacy T(:,P) = diag(s) oraz B(P,P) = diag(1./s)*a*diag(s) B = balance(a, noperm ); B tylko skalowanie A (bez permutacji)
41 balance (równoważenie) (3) Zadanie własne dla niesymetrycznych często bywa źle uwarunkowane. Miara uwarunkowania modalnej jest cond(v) = norm(v)*norm(inv(v)), gdzie [V,T] = eig(a)
42 balance A = [ ; ; ] A = 1.0e+04 * [T,B] = balance(a) T = 1.0e+03 * B = [V,E] = eig(a); V =
43 balance [V,E] = eig(a); V = cond(v) = e+003 [V,E] = eig(b); V = cond(v) = cond(t) = 8192
44 expm Wykładnicza funkcja A nxn X = expm(a); e A = I + A + A2 2 + A X wykładnicza funkcja e A Jaki będzie wynik działań: [V,D] = eig(x); V*diag(exp(diag(D)))/V? Czy exp(a)=expm(a)?
45 expm A = >> exp(a) = >> expm(a)= E=zeros(size(A)); F=eye(size(A)); k=1; while norm(f,1)>0 E=E+F; F=A*F/k; k=k+1; end E =
46 expm >> [V,D]=eig(A) V = D = >> E = V*diag(exp(diag(D)))/V E =
47 logm Logarytm L = logm(a); L główny logarytm kwadratowej A [L, exitflag] = logm(a); existflag informacja o uzyskanym wyniku: 0 - obliczenia zakończone pomyślnie 1 - uwaga: wynik może być niedokładny Dla osobliwych oraz posiadajacych wartości własne o ujemnej części rzeczywistej funkcja logm jest niezdefiniowana Czy zawsze obowiazuj a równości logm(expm(a)) = A = expm(logm(a))?
48 logm >> A = Y = expm(a) Y = A = logm(y) A = log(a) ans = 0 0 -Inf -Inf -Inf Inf -Inf i
49 sqrtm Pierwiastek kwadratowy (1) X = sqrtm(a); X główny pierwiastek kwadratowej A X*X = A Osobliwa A może nie posiadać pierwiastków. Jako jednoznaczny X wybierany jest ten pierwiastek A, który ma wartości własne o nieujemnch częściach rzeczywistych Dla A z wartościami własnymi o ujemnych częściach rzeczywistych X ma elementy zespolone.
50 sqrtm A jest rzeczywista, sysmetryczna i dodatnio określona A = Y = sqrtm(a) Y =
51 sqrtm A jest zespolona, hermitowska i dodatnio określona A = i i A' = i i sqrtm(a) = i i i i
52 A może posiadać kilka pierwiastków sqrtm A = >> Y11 =sqrtm(a) Y11 = Y12 = Y21 = Y22 = [V,D] = eig(a); S = sqrt(d) S = >> V*S/V
53 svd według wartości szczególnych (1) s = svd(x); s wektor wartości szczególnych A [U, S, V] = svd(x); S uogólniona diag. macierz wartości szczegól. U unitarna macierz lewych wektorów szczegól. V unitarna macierz prawych wektorów szczegól. X = U*S*V (diag (S) nierosnaco)
54 svd X = >> [U,S,V] = svd(x) U = S = V =
55 svd według wartości szczególnych (2) [U, S, V] = svd(x,0); Oszczędny algorytm svd: dla X - mxn oraz m > n wyznacza się pierwsze n kolumn U, zaś S - nxn. [U, S, V] = svd(x, econ ); Oszczędny algorytm svd dla X - mxn: m >= n wykorzystuje się svd(x,0), m < n wyznacza się pierwsze m kolumn V, zaś S - mxm.
56 svd X = >> [U,S,V] = svd(x,0) U = S = V =
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Podstawowe Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 8 listopada 2011 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo
Metody dekompozycji macierzy stosowane w automatyce
Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
10. Metody obliczeniowe najmniejszych kwadratów
10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Języki Modelowania i Symulacji
e Języki Modelowania i Symulacji e Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 14 grudnia 2011 O czym będziemy mówili? e 1 e 2 3 4 5 e help sparse rzadka zawiera stosunkowo mała
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli
Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra
Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Metody numeryczne. Zagadnienia własne. Janusz Szwabiński.
Metody numeryczne Zagadnienia własne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-11.tex Metody numeryczne Janusz Szwabiński 17/12/2002 21:53 p.1/66 Zagadnienia własne 1. Pojęcia podstawowe 2. Zaburzenia
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Faktoryzacja Cholesky ego Niech A R N N będzie symetryczna, A T = A, i dodatnio określona:
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Wstęp do metod numerycznych Inne rodzaje faktoryzacji. P. F. Góra
Wstęp do metod numerycznych Inne rodzaje faktoryzacji P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 18 stycznia 2012 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne,
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Obliczenia naukowe Wykład nr 2
Obliczenia naukowe Wykład nr 2 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Ukªady równa«liniowych - rozkªady typu LU i LL'
Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy
f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno
Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ
NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
WIELOMIANY SUPER TRUDNE
IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja macierzy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów równań z ta sama lewa strona,
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi
Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi Plan wykładu:. Definicje macierzy, norm etc.. Metoda eliminacji Gaussa, Jordana. Rozkład LU metodą Gaussa. Układy równań z macierzą
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 12: Zagadnienia zaawansowane Cel: Poznanie metod rozwiązywania konkretnych problemów Czas: Wprowadzenia 10 minut, ćwiczeń
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Matlab, zajęcia 2. Dwukropek. Tomasz Mostowski 28.luty 2008
Matlab, zajęcia 2. Dwukropek W Matlabie bardzo przydatnym operatorem jest dwukropek ma on kilka znaczeń to - (do) w sensie np. od do, Oznaczenie przedziału Oznaczenie całego zakresu Popatrzmy jak to działa
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra numeryczna Nazwa w języku angielskim : Numerical algebra Kierunek studiów : Informatyka Specjalność
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra
Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p.
Metody numeryczne Układy równań liniowych, część I Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-7.tex Metody numeryczne Janusz Szwabiński //2002 2:45 p./83 Układy równań liniowych, część I. Pojęcia
Uzasadnienie tezy. AB + CD = BC + AD 2
LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające