Języki Modelowania i Symulacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Języki Modelowania i Symulacji"

Transkrypt

1 e Języki Modelowania i Symulacji e Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 14 grudnia 2011

2 O czym będziemy mówili? e 1 e

3 e help sparse rzadka zawiera stosunkowo mała liczbę niezerowych elmentów w swoich komórkach. Oszczędność na: czasie obliczeniowym, pamięci do przechowywania. Na przykład macierz jednostkowa n n

4 e help sparse Czy potrzba tyle samo pamięci, aby przechować element zerowy i niezerowy? MATLAB używa trzech, żeby przechować macierz rzadka: wektor z niezerowymi elementami w formacie zmiennoprzecinkowym (nnz - długość wektora), wektor z indeksami wierszy odpowiadajacymi niezerowym elementom(nnz - długość wektora), wektor z ze wskaźnikami do poczatku każdej kolumny (n - długość wektora). Liczba bajtów potrzebna do zapisania j: 8 nnz + 4 (nnz + n)

5 help sparse e A = % konwersja A na macierz rzadką >> S = sparse(a) S = (3,1) 1 (2,2) 2 (3,2) 3 (4,3) 4 (1,4) 5 % powrót do postaci pełnej >> A == full(s);

6 help sparse e A = %bezpośrednie tworzenie rzadkich S = sparse([ ],[ ], [ ],4,4) S = (3,1) 1 (2,2) 2 (3,2) 3 (4,3) 4 (1,4) 5

7 help sparse e n = 5; E = eye(n) E = S = sparse(1:n,1:n,1); S = (1,1) 1 (2,2) 1 (3,3) 1 (4,4) 1 (5,5) 1

8 help sparse e whos Name Size Bytes Class Attributes E 5x5 200 double S 5x5 128 double sparse n 1x1 8 double Name Size Bytes Class Attributes E 100x double S 100x double sparse n 1x1 8 double

9 help sparse e Oczędność czasu obliczeniowego E-czas/S-czas Numer iteracji %Postać klasyczna tic E^2; toc Elapsed time is seconds. %Postać rzadka tic S^2; toc Elapsed time is seconds.

10 help sparse e spy(s) nz = 100

11 e help spy modeluje ósme stadium destylacji chemicznej nz = 1887 load west0479 spy(west0479) whos Name Size Bytes Class Attribute west x double sparse

12 e help sparse nnz(s) - zwraca liczbę niezerowych j nonzeros(s) - zwraca kolumnę niezerowych j nzmax(s) - zwraca liczbę miejsc zarezerwowanych na niezerowe elementy [i,j,s] = find(s) - zwraca indeksy wierszy i kolumn niezerwoych n = 5; S = sparse(1:n,1:n,1); nnz(s)-> ans = 5 nzmax(s)-> ans = 5 nonzeros(s)-> ans = [i,j,s] = find(s) i = [ ]' j = [ ]' s = [ ];

13 help sparse e B=speye(4); % macierz jednostkowa diagonalna [i,j,s]=find(b); [i,j,s] = B(3,1) = 42; ans =

14 e C = help sparse C=4*speye(4); C(1:3,4)=-1; C(4,1:3)=-1; C=4*speye(4); for k=1:3 C(k,4)=-1; C(4,k)=-1; end % to jest dopiero dobre podejście i = [ ]'; j = [ ]'; s = [ ]'; CSP = sparse(i,j,s);

15 e help spdiags Tworzenie j z jej diagonalnych S = spdiags(b, d, m, n) B = d = >> S = spdiags(b,d,7,4); >> full(s) S=

16 e macierz Zapisywanie siatki powiazań przedstawionej za pomoca grafu 1. Kasia Basia Zosia Gosia

17 e Graf połączeń gplot A = %kordynaty węzłów >> xy = [1 3; 2 1; 3 3 ; 2 5] >> gplot(a,xy)

18 e bucky Model czastki C 60, postać czystego węgla z 60 atomami w prawie sferycznej konfiguiracji Graf połączeń - piłka Bucky'ego [B,v]=bucky; gplot(b,v) axis equal

19 bucky e Graf połączeń - piłka Bucky'ego k = 1:30; [B,v] = bucky; gplot(b(k,k),v(k,:)) axis square for j=1:30, text(v(j,1),v(j,2),int2str(j),... 'FontName','Times New Roman','FontSize',16); end

20 bucky e Położenie niezerowych na płaszyźnie XY nz = 180 k = 1:30; [B,v] = bucky; spy(b)

21 bucky e

22 permutacja e p = [ ]; I = eye(5,5); %permutacja wierszowa P = I(p,:) P = %permutacja kolumnowa R = I(:,p) R =

23 permutacja e n=5; I=speye(n); p = [ ]; P = I(p,:) R = I(:,p) p = (1:n)*R I = P = R = (1,1) 1 (1,1) 1 (1,1) 1 (1,1) 1 (4,2) 1 (3,2) 1 (1,1) 1 (2,3) 1 (4,3) 1 (1,1) 1 (3,4) 1 (2,4) 1 (1,1) 1 (5,5) 1 (5,5) 1 p =

24 permutacja e Jak uzyskać wektor permutacji? n=5; S = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]; A = full(s) j = colperm(s) j = p = sort(full(sum(spones(s)) p =

25 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? L = lu(s); nnz(l) ans = 23 fill(l) ans =

26 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? S = j = S1 = S(j,j); S1 =

27 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? S = j = S1 = S(j,:); S1 =

28 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? S1 = j = S2 = S1(:,j); S2 =

29 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? L = lu(s(j,j)); nnz(l) ans = 13 fill(l) ans =

30 symrcm e Zmiana uporzadkowania (metoda Cuthill-McKee) umieszcza niezerowe elementy w pobliżu głównej diagonali, zachowujac symetrię ich ułożenia nie daje gwarancji znalezienia minimalnej szerokości pasma, nadaje się zarówno dla symetrycznych i niesymetrycznych, użyteczna dla problemów long and thin.

31 symrcm e B nz = 180 B(p,p) nz = 180 B = bucky; p = symrcm(b); R = B(p,p);

32 symamd i colamd e Zmiana uporzadkowania (metoda Minimum Degree Ordering) bazuje na obserwacji zmiany liczby połaczeń węzłów podczas algorytmu eliminacji Gaussa macierz wynikowa jest rzadsza niż w przypadku zastosowania innych uporzadkowań, dla symetrycznych - symamd, dla niesymetrycznych - colamd.

33 symamd i colamd e B nz = 180 B(p,p) nz = 180 B = bucky; p = symamd(b); R = B(p,p);

34 lu e 4 n=length(b); B=B-3*speye(n); r = symrcm(b); p = symamd(b); nnz(lu(b)) ans = 1022 nnz(lu(b(r,r))) ans = 968 nnz(lu(b(p,p))) ans = 636

35 chol e 0 20 chol(b) 0 20 chol(b(r,r)) 0 20 chol(b(p,p)) nz = nz = nz = 348 n=length(b); B=B+4*speye(n); r = symrcm(b); p = symamd(b); nnz(chol(b)) ans = 541 nnz(chol(b(r,r))) ans = 514 nnz(chol(b(p,p))) ans = 348

36 eigs e eigs(a, B, k, sigma, opts) Funkcja ta pozwala na iteracyjne znajdowanie (domyślnie jest 6 największych) dla bardzo dużych i rzadkich. musi być kwadratowa. opts: lm - największe własne opts: sm - najmniejsze własne

37 eigs e 4 %Symetryczna dodatnio określona macierz o rozmiarze %632x632, 18 powtarza się dla 4 A = delsq(numgrid('c',30)); d = eig(full(a)); [dum,ind] = sort(abs(d)); dlm = eigs(a); dsm = eigs(a,6,'sm');

38 e 4 4 eigs(a,18,sigma) eigs eigs(a,18,4.0)??? %1/(lambda - 4.0) gdzie lambda jest estymatą % własnej sigma = 4-1e-6; [V,D] = eigs(a,18,sigma);

39 svds e A - mxn s = svds(a); (nie musi być rzadka!) s wektor sześciu największych A s = svds(a, k); s = svds(a,k, L ); s wektor k największych s = svds(a, k, sigma); s wektor k najbliższych skalarnemu sigma

40 e svds s = svds(a, k, sigma, options); opcja znaczenie domyślnie tol kryterium zbieżności: 1e-10 norm(av-us,1)<=tol*norm(a,1) (A=USV ) maxit ograniczenie liczby iteracji 300 disp liczba 0 wyświetlana w każdej iteracji Zwracane sa tylko te szczególne, dla których osiagnięto wymagana dokładność

41 svds e [U, S, V] = svds(a,...); U macierz mxk o ortonormalnych kolumnach S diagonalna kxk V nxk o ortonormalnych kolumnach U*S*V przybliżenie A (w 1-normie) o rzędzie najbliższym A [U, S, V, flag] = svds(a,...); flag = 0 zbieżność: norm(a*v-u*s,1) <= tol*norm(a,1)) 1 brak zbieżności)

42 svds e load west0479 s = svd(full(west0479)); display(s(1:4)) ans = 1.0e+005 * [ ] Elapsed time is seconds. sl = svds(west0479,4) sl = 1.0e+005 * [ ] Elapsed time is seconds.

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 18 stycznia 2012 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne,

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

Rozdział 1. Pierwsze kroki w MATLAB-ie Rozdział 2. Grafika w MATLAB-ie Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36

Rozdział 1. Pierwsze kroki w MATLAB-ie Rozdział 2. Grafika w MATLAB-ie Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36 Spis treści Wstęp... 5 Rozdział 1. Pierwsze kroki w MATLAB-ie... 7 Rozdział 2. Grafika w MATLAB-ie... 25 Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36 Rozdział 3. Matematyka i wyrażenia

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 listopada 2011 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne,

Bardziej szczegółowo

Podstawowe struktury danych Tablice, macierze. LABORKA Piotr Ciskowski

Podstawowe struktury danych Tablice, macierze. LABORKA Piotr Ciskowski Podstawowe struktury danych Tablice, macierze LABORKA Piotr Ciskowski przykład 1. zabawy z macierzami wygeneruj macierze Pascala różnych rozmiarów, wydedukuj z nich zasadę tworzenia» pascal ( 5 ) przykład

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu

Bardziej szczegółowo

MATLAB. Leksykon kieszonkowy

MATLAB. Leksykon kieszonkowy PRZYK ADOWY ROZDZIA Wydawnictwo Helion ul. Chopina 6 44-100 Gliwice tel. (32)230-98-63 e-mail: helion@helion.pl IDZ DO KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE

Bardziej szczegółowo

NUMERYCZNE ALGORYTMY PRZECHOWYWANIA MACIERZY RZADKICH

NUMERYCZNE ALGORYTMY PRZECHOWYWANIA MACIERZY RZADKICH Scientific Bulletin of Che lm Section of Mathematics and Computer Science No 1/2008 NUMERYCZNE ALGORYTMY PRZECHOWYWANIA MACIERZY RZADKICH RADOSŁAW MATUSIK Katedra Analizy Matematycznej i Teorii Sterowania,

Bardziej szczegółowo

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Faktoryzacja Cholesky ego Niech A R N N będzie symetryczna, A T = A, i dodatnio określona:

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO

Bardziej szczegółowo

Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra

Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której ilość zapełnień będzie

Bardziej szczegółowo

Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie,

Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie, Plan wykładu Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Układy równań liniowych i metody ich rozwiazywania Metoda sprzężonych gradientów Macierze

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

A A A A A A A A A n n

A A A A A A A A A n n DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 12. Iteracyjne rozwiązywanie Ax=B Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec Radosław

Bardziej szczegółowo

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Podstawowe Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 8 listopada 2011 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA MATLAB jest zintegrowanym

Bardziej szczegółowo

Ćwiczenie 3: Wprowadzenie do programu Matlab

Ćwiczenie 3: Wprowadzenie do programu Matlab Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1

Bardziej szczegółowo

Metody numeryczne. Wersja robocza, 19 czerwca 2009

Metody numeryczne. Wersja robocza, 19 czerwca 2009 Metody numeryczne Piotr Krzyżanowski Leszek Plaskota Wersja robocza, 19 czerwca 2009 Spis treści 1 Wielkie układy równań liniowych 6 1.1 Reprezentacja macierzy rzadkich.................. 8 1.1.1 Format

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra Wstęp do metod numerycznych Faktoryzacja macierzy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów równań z ta sama lewa strona,

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

Wprowadzenie do środowiska

Wprowadzenie do środowiska Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz

Bardziej szczegółowo

Metody dekompozycji macierzy stosowane w automatyce

Metody dekompozycji macierzy stosowane w automatyce Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky

Bardziej szczegółowo

Metody numeryczne II. Układy równań liniowych

Metody numeryczne II. Układy równań liniowych Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań

Bardziej szczegółowo

Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra

Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Matlab, zajęcia 2. Dwukropek. Tomasz Mostowski 28.luty 2008

Matlab, zajęcia 2. Dwukropek. Tomasz Mostowski 28.luty 2008 Matlab, zajęcia 2. Dwukropek W Matlabie bardzo przydatnym operatorem jest dwukropek ma on kilka znaczeń to - (do) w sensie np. od do, Oznaczenie przedziału Oznaczenie całego zakresu Popatrzmy jak to działa

Bardziej szczegółowo

Wykład III Układy równań liniowych i dekompozycje macierzy

Wykład III Układy równań liniowych i dekompozycje macierzy Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne

Bardziej szczegółowo

Pisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane.

Pisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane. MATLAB Co to jest? program komputerowy będący interaktywnym środowiskiem do wykonywania obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych. Nazwa Nazwa programu pochodzi od angielskich

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne

Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

10. Metody obliczeniowe najmniejszych kwadratów

10. Metody obliczeniowe najmniejszych kwadratów 10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest

Bardziej szczegółowo

Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych

Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych Ten fakt, że matematyka obliczeniowa nie daje żadnych przepisów dla tworzenia operatora uwarunkowania wstępnego B, doprowadzi

Bardziej szczegółowo

Obliczenia w programie MATLAB

Obliczenia w programie MATLAB Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się

Bardziej szczegółowo

MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący

MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 12: Zagadnienia zaawansowane Cel: Poznanie metod rozwiązywania konkretnych problemów Czas: Wprowadzenia 10 minut, ćwiczeń

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów. Metody dokładne rozwiązywania układów równań liniowych.. Układy równań o macierzach trójkątnych.. Metoda eliminacji Gaussa.3. Metoda Gaussa-Jordana.4.

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione

Bardziej szczegółowo

Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra

Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Metody iteracyjne Rozwiazanie układu równań liniowych, uzyskane

Bardziej szczegółowo

Zadania z Algebry liniowej 4 Semestr letni 2009

Zadania z Algebry liniowej 4 Semestr letni 2009 Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także

Bardziej szczegółowo

Wyznaczanie wartości i wektorów własnych macierzy (problem własny)

Wyznaczanie wartości i wektorów własnych macierzy (problem własny) Wyznaczanie wartości i wektorów własnych macierzy (problem własny) Plan wykładu:. Pojęcia podstawowe, definicje. Metoda Kryłowa poszukiwania pierwiastków równania charakterystycznego. Lokalizacja (szacowanie)

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB instrukcje warunkowe, logiczne, pętle Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin

ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Większość zagadnień inżynierskich sprowadza się do przewidywania odpowiedzi projektowanego urządzenia na działanie zewnętrznych czynników.

Większość zagadnień inżynierskich sprowadza się do przewidywania odpowiedzi projektowanego urządzenia na działanie zewnętrznych czynników. MN 09 Układy równań liniowych Część I Trochę teorii Wprowadzenie: wszystko jest Ax = b Uwagi wstępne Rozwiązywanie układów równań liniowych piłka nożna metod numerycznych Większość zagadnień inżynierskich

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksacji 3. Zbieżność

Bardziej szczegółowo

2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych

2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych 2. Tablice Tablica to struktura danych przechowująca elementy jednego typu (jednorodna). Dostęp do poszczególnych elementów składowych jest możliwy za pomocą indeksów. Rozróżniamy następujące typy tablic:

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

do MATLABa programowanie WYKŁAD Piotr Ciskowski

do MATLABa programowanie WYKŁAD Piotr Ciskowski Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,

Bardziej szczegółowo

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

MATLAB - laboratorium nr 1 wektory i macierze

MATLAB - laboratorium nr 1 wektory i macierze MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na

Bardziej szczegółowo

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy

Bardziej szczegółowo

Zanim zaczniemy GNU Octave

Zanim zaczniemy GNU Octave MatLab część I 1 Zanim zaczniemy GNU Octave 2 Zanim zaczniemy GNU Octave 3 Zanim zaczniemy GNU Octave 4 Środowisko MatLab-a MatLab ang. MATrix LABoratory Obliczenia numeryczne i symboliczne operacje na

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady:

Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady: 5 Tablice Tablica jest zestawem obiektów (zmiennych) tego samego typu, do których można się odwołać za pomocą wspólnej nazwy. Obiekty składowe tablicy noszą nazwę elementów tablicy. Dostęp do nich jest

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo