Języki Modelowania i Symulacji
|
|
- Marian Antczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 e Języki Modelowania i Symulacji e Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 14 grudnia 2011
2 O czym będziemy mówili? e 1 e
3 e help sparse rzadka zawiera stosunkowo mała liczbę niezerowych elmentów w swoich komórkach. Oszczędność na: czasie obliczeniowym, pamięci do przechowywania. Na przykład macierz jednostkowa n n
4 e help sparse Czy potrzba tyle samo pamięci, aby przechować element zerowy i niezerowy? MATLAB używa trzech, żeby przechować macierz rzadka: wektor z niezerowymi elementami w formacie zmiennoprzecinkowym (nnz - długość wektora), wektor z indeksami wierszy odpowiadajacymi niezerowym elementom(nnz - długość wektora), wektor z ze wskaźnikami do poczatku każdej kolumny (n - długość wektora). Liczba bajtów potrzebna do zapisania j: 8 nnz + 4 (nnz + n)
5 help sparse e A = % konwersja A na macierz rzadką >> S = sparse(a) S = (3,1) 1 (2,2) 2 (3,2) 3 (4,3) 4 (1,4) 5 % powrót do postaci pełnej >> A == full(s);
6 help sparse e A = %bezpośrednie tworzenie rzadkich S = sparse([ ],[ ], [ ],4,4) S = (3,1) 1 (2,2) 2 (3,2) 3 (4,3) 4 (1,4) 5
7 help sparse e n = 5; E = eye(n) E = S = sparse(1:n,1:n,1); S = (1,1) 1 (2,2) 1 (3,3) 1 (4,4) 1 (5,5) 1
8 help sparse e whos Name Size Bytes Class Attributes E 5x5 200 double S 5x5 128 double sparse n 1x1 8 double Name Size Bytes Class Attributes E 100x double S 100x double sparse n 1x1 8 double
9 help sparse e Oczędność czasu obliczeniowego E-czas/S-czas Numer iteracji %Postać klasyczna tic E^2; toc Elapsed time is seconds. %Postać rzadka tic S^2; toc Elapsed time is seconds.
10 help sparse e spy(s) nz = 100
11 e help spy modeluje ósme stadium destylacji chemicznej nz = 1887 load west0479 spy(west0479) whos Name Size Bytes Class Attribute west x double sparse
12 e help sparse nnz(s) - zwraca liczbę niezerowych j nonzeros(s) - zwraca kolumnę niezerowych j nzmax(s) - zwraca liczbę miejsc zarezerwowanych na niezerowe elementy [i,j,s] = find(s) - zwraca indeksy wierszy i kolumn niezerwoych n = 5; S = sparse(1:n,1:n,1); nnz(s)-> ans = 5 nzmax(s)-> ans = 5 nonzeros(s)-> ans = [i,j,s] = find(s) i = [ ]' j = [ ]' s = [ ];
13 help sparse e B=speye(4); % macierz jednostkowa diagonalna [i,j,s]=find(b); [i,j,s] = B(3,1) = 42; ans =
14 e C = help sparse C=4*speye(4); C(1:3,4)=-1; C(4,1:3)=-1; C=4*speye(4); for k=1:3 C(k,4)=-1; C(4,k)=-1; end % to jest dopiero dobre podejście i = [ ]'; j = [ ]'; s = [ ]'; CSP = sparse(i,j,s);
15 e help spdiags Tworzenie j z jej diagonalnych S = spdiags(b, d, m, n) B = d = >> S = spdiags(b,d,7,4); >> full(s) S=
16 e macierz Zapisywanie siatki powiazań przedstawionej za pomoca grafu 1. Kasia Basia Zosia Gosia
17 e Graf połączeń gplot A = %kordynaty węzłów >> xy = [1 3; 2 1; 3 3 ; 2 5] >> gplot(a,xy)
18 e bucky Model czastki C 60, postać czystego węgla z 60 atomami w prawie sferycznej konfiguiracji Graf połączeń - piłka Bucky'ego [B,v]=bucky; gplot(b,v) axis equal
19 bucky e Graf połączeń - piłka Bucky'ego k = 1:30; [B,v] = bucky; gplot(b(k,k),v(k,:)) axis square for j=1:30, text(v(j,1),v(j,2),int2str(j),... 'FontName','Times New Roman','FontSize',16); end
20 bucky e Położenie niezerowych na płaszyźnie XY nz = 180 k = 1:30; [B,v] = bucky; spy(b)
21 bucky e
22 permutacja e p = [ ]; I = eye(5,5); %permutacja wierszowa P = I(p,:) P = %permutacja kolumnowa R = I(:,p) R =
23 permutacja e n=5; I=speye(n); p = [ ]; P = I(p,:) R = I(:,p) p = (1:n)*R I = P = R = (1,1) 1 (1,1) 1 (1,1) 1 (1,1) 1 (4,2) 1 (3,2) 1 (1,1) 1 (2,3) 1 (4,3) 1 (1,1) 1 (3,4) 1 (2,4) 1 (1,1) 1 (5,5) 1 (5,5) 1 p =
24 permutacja e Jak uzyskać wektor permutacji? n=5; S = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]; A = full(s) j = colperm(s) j = p = sort(full(sum(spones(s)) p =
25 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? L = lu(s); nnz(l) ans = 23 fill(l) ans =
26 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? S = j = S1 = S(j,j); S1 =
27 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? S = j = S1 = S(j,:); S1 =
28 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? S1 = j = S2 = S1(:,j); S2 =
29 e permutacja Jaki wpływ może mieć wstępna permutacja j na wynik algorytmów Cholesky ego i LU? L = lu(s(j,j)); nnz(l) ans = 13 fill(l) ans =
30 symrcm e Zmiana uporzadkowania (metoda Cuthill-McKee) umieszcza niezerowe elementy w pobliżu głównej diagonali, zachowujac symetrię ich ułożenia nie daje gwarancji znalezienia minimalnej szerokości pasma, nadaje się zarówno dla symetrycznych i niesymetrycznych, użyteczna dla problemów long and thin.
31 symrcm e B nz = 180 B(p,p) nz = 180 B = bucky; p = symrcm(b); R = B(p,p);
32 symamd i colamd e Zmiana uporzadkowania (metoda Minimum Degree Ordering) bazuje na obserwacji zmiany liczby połaczeń węzłów podczas algorytmu eliminacji Gaussa macierz wynikowa jest rzadsza niż w przypadku zastosowania innych uporzadkowań, dla symetrycznych - symamd, dla niesymetrycznych - colamd.
33 symamd i colamd e B nz = 180 B(p,p) nz = 180 B = bucky; p = symamd(b); R = B(p,p);
34 lu e 4 n=length(b); B=B-3*speye(n); r = symrcm(b); p = symamd(b); nnz(lu(b)) ans = 1022 nnz(lu(b(r,r))) ans = 968 nnz(lu(b(p,p))) ans = 636
35 chol e 0 20 chol(b) 0 20 chol(b(r,r)) 0 20 chol(b(p,p)) nz = nz = nz = 348 n=length(b); B=B+4*speye(n); r = symrcm(b); p = symamd(b); nnz(chol(b)) ans = 541 nnz(chol(b(r,r))) ans = 514 nnz(chol(b(p,p))) ans = 348
36 eigs e eigs(a, B, k, sigma, opts) Funkcja ta pozwala na iteracyjne znajdowanie (domyślnie jest 6 największych) dla bardzo dużych i rzadkich. musi być kwadratowa. opts: lm - największe własne opts: sm - najmniejsze własne
37 eigs e 4 %Symetryczna dodatnio określona macierz o rozmiarze %632x632, 18 powtarza się dla 4 A = delsq(numgrid('c',30)); d = eig(full(a)); [dum,ind] = sort(abs(d)); dlm = eigs(a); dsm = eigs(a,6,'sm');
38 e 4 4 eigs(a,18,sigma) eigs eigs(a,18,4.0)??? %1/(lambda - 4.0) gdzie lambda jest estymatą % własnej sigma = 4-1e-6; [V,D] = eigs(a,18,sigma);
39 svds e A - mxn s = svds(a); (nie musi być rzadka!) s wektor sześciu największych A s = svds(a, k); s = svds(a,k, L ); s wektor k największych s = svds(a, k, sigma); s wektor k najbliższych skalarnemu sigma
40 e svds s = svds(a, k, sigma, options); opcja znaczenie domyślnie tol kryterium zbieżności: 1e-10 norm(av-us,1)<=tol*norm(a,1) (A=USV ) maxit ograniczenie liczby iteracji 300 disp liczba 0 wyświetlana w każdej iteracji Zwracane sa tylko te szczególne, dla których osiagnięto wymagana dokładność
41 svds e [U, S, V] = svds(a,...); U macierz mxk o ortonormalnych kolumnach S diagonalna kxk V nxk o ortonormalnych kolumnach U*S*V przybliżenie A (w 1-normie) o rzędzie najbliższym A [U, S, V, flag] = svds(a,...); flag = 0 zbieżność: norm(a*v-u*s,1) <= tol*norm(a,1)) 1 brak zbieżności)
42 svds e load west0479 s = svd(full(west0479)); display(s(1:4)) ans = 1.0e+005 * [ ] Elapsed time is seconds. sl = svds(west0479,4) sl = 1.0e+005 * [ ] Elapsed time is seconds.
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 18 stycznia 2012 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne,
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Rozdział 1. Pierwsze kroki w MATLAB-ie Rozdział 2. Grafika w MATLAB-ie Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36
Spis treści Wstęp... 5 Rozdział 1. Pierwsze kroki w MATLAB-ie... 7 Rozdział 2. Grafika w MATLAB-ie... 25 Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36 Rozdział 3. Matematyka i wyrażenia
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 listopada 2011 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne,
Podstawowe struktury danych Tablice, macierze. LABORKA Piotr Ciskowski
Podstawowe struktury danych Tablice, macierze LABORKA Piotr Ciskowski przykład 1. zabawy z macierzami wygeneruj macierze Pascala różnych rozmiarów, wydedukuj z nich zasadę tworzenia» pascal ( 5 ) przykład
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6
Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu
MATLAB. Leksykon kieszonkowy
PRZYK ADOWY ROZDZIA Wydawnictwo Helion ul. Chopina 6 44-100 Gliwice tel. (32)230-98-63 e-mail: helion@helion.pl IDZ DO KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE
NUMERYCZNE ALGORYTMY PRZECHOWYWANIA MACIERZY RZADKICH
Scientific Bulletin of Che lm Section of Mathematics and Computer Science No 1/2008 NUMERYCZNE ALGORYTMY PRZECHOWYWANIA MACIERZY RZADKICH RADOSŁAW MATUSIK Katedra Analizy Matematycznej i Teorii Sterowania,
Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.
Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Faktoryzacja Cholesky ego Niech A R N N będzie symetryczna, A T = A, i dodatnio określona:
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak
SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego
1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra
Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów
Metody uporządkowania
Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której ilość zapełnień będzie
Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie,
Plan wykładu Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Układy równań liniowych i metody ich rozwiazywania Metoda sprzężonych gradientów Macierze
Numeryczna algebra liniowa
Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
Metody Obliczeniowe w Nauce i Technice
12. Iteracyjne rozwiązywanie Ax=B Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec Radosław
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Podstawowe Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 8 listopada 2011 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA MATLAB jest zintegrowanym
Ćwiczenie 3: Wprowadzenie do programu Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1
Metody numeryczne. Wersja robocza, 19 czerwca 2009
Metody numeryczne Piotr Krzyżanowski Leszek Plaskota Wersja robocza, 19 czerwca 2009 Spis treści 1 Wielkie układy równań liniowych 6 1.1 Reprezentacja macierzy rzadkich.................. 8 1.1.1 Format
Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja macierzy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów równań z ta sama lewa strona,
Metody uporządkowania
Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Metody dekompozycji macierzy stosowane w automatyce
Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Matlab, zajęcia 2. Dwukropek. Tomasz Mostowski 28.luty 2008
Matlab, zajęcia 2. Dwukropek W Matlabie bardzo przydatnym operatorem jest dwukropek ma on kilka znaczeń to - (do) w sensie np. od do, Oznaczenie przedziału Oznaczenie całego zakresu Popatrzmy jak to działa
Wykład III Układy równań liniowych i dekompozycje macierzy
Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne
Pisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane.
MATLAB Co to jest? program komputerowy będący interaktywnym środowiskiem do wykonywania obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych. Nazwa Nazwa programu pochodzi od angielskich
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
10. Metody obliczeniowe najmniejszych kwadratów
10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest
Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych
Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych Ten fakt, że matematyka obliczeniowa nie daje żadnych przepisów dla tworzenia operatora uwarunkowania wstępnego B, doprowadzi
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 12: Zagadnienia zaawansowane Cel: Poznanie metod rozwiązywania konkretnych problemów Czas: Wprowadzenia 10 minut, ćwiczeń
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów. Metody dokładne rozwiązywania układów równań liniowych.. Układy równań o macierzach trójkątnych.. Metoda eliminacji Gaussa.3. Metoda Gaussa-Jordana.4.
det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
1 Wartości własne oraz wektory własne macierzy
Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione
Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Metody iteracyjne Rozwiazanie układu równań liniowych, uzyskane
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Wyznaczanie wartości i wektorów własnych macierzy (problem własny)
Wyznaczanie wartości i wektorów własnych macierzy (problem własny) Plan wykładu:. Pojęcia podstawowe, definicje. Metoda Kryłowa poszukiwania pierwiastków równania charakterystycznego. Lokalizacja (szacowanie)
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB instrukcje warunkowe, logiczne, pętle Materiały pomocnicze do ćwiczeń laboratoryjnych
Stosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin
ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej
Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Większość zagadnień inżynierskich sprowadza się do przewidywania odpowiedzi projektowanego urządzenia na działanie zewnętrznych czynników.
MN 09 Układy równań liniowych Część I Trochę teorii Wprowadzenie: wszystko jest Ax = b Uwagi wstępne Rozwiązywanie układów równań liniowych piłka nożna metod numerycznych Większość zagadnień inżynierskich
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksacji 3. Zbieżność
2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych
2. Tablice Tablica to struktura danych przechowująca elementy jednego typu (jednorodna). Dostęp do poszczególnych elementów składowych jest możliwy za pomocą indeksów. Rozróżniamy następujące typy tablic:
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra
Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy
Zanim zaczniemy GNU Octave
MatLab część I 1 Zanim zaczniemy GNU Octave 2 Zanim zaczniemy GNU Octave 3 Zanim zaczniemy GNU Octave 4 Środowisko MatLab-a MatLab ang. MATrix LABoratory Obliczenia numeryczne i symboliczne operacje na
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady:
5 Tablice Tablica jest zestawem obiektów (zmiennych) tego samego typu, do których można się odwołać za pomocą wspólnej nazwy. Obiekty składowe tablicy noszą nazwę elementów tablicy. Dostęp do nich jest
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania