W-25 (Jaroszewicz) 37 slajdów Na podstawie prezentacji prof. J. Rutkowskiego. Budowa atomu wodoru
|
|
- Alicja Białek
- 6 lat temu
- Przeglądów:
Transkrypt
1 San Dig, USA, August 003
2 W-5 (Jaszwicz) 37 slajdów Na pdstawi pzntacji pf. J. Rutkwskig Budwa atmu wdu Mdl Bha widm atmu wdu Mdl kwantwy bitalny mmnt pędu Liczby kwantw Obital Mmnty pędu a mmnty magntyczn
3 3/37-W5 Budwa atmu wdu dan dświadczaln atm wdu składa się z pjdynczg lktnu (-) związang z jądm ptnm (+) pzyciągającą siła lktstatyczną zmiay jąda 0-4 m zmiay atmu zędu 0-0 m L.R. Jaszwicz kspymnt Ruthfda k 9 masa ptnu = 836 masy lktnu swbdng klasyczni ngia lktnu pzyjmuj dwln watści w zczywistści jst skwantwana pzy uchu p bici lktn pwinin tacić ngię pzz pminiwani i puszając się p spiali spaść na jąd w zczywistści ngia się ni zminia
4 4/37-W5 L.R. Jaszwicz Mdl Bha lat pzd sfmułwanim ównania Schdinga lktny puszają się w atmach ni pminiując ngii, p takich bitach kłwych, ż mmnt pędu lktnu jst ówny całkwitj wilktnści stałj mv n n =,, 3.. pzjścia lktnu z bity ngii E n na bitę, gdzi ngia wynsi E m, twazyszy misja lub abspcja ftnu częstści kślnj wzm E n E m h
5 mv K 8 l d F mv F 4 n mv n n m n m m , U K E V n n m n E n E n E pmiń Bha z ównwagi sił i pstulatu Bha: kwantyzacja ngii 5/37-W5 L.R. Jaszwicz
6 6/37-W5 L.R. Jaszwicz Widm atmu wdu wzbudzni atmu pzjści lktnu na wyższy pzim ngtyczny p czasi 0-8 s samzutny pwót d stanu niższj ngii i misja ftnu długści R stała Rydbga E hc R m jnizacja atmu pzjści lktnu na najwyższy pzim ngtyczny zwj ngii (lktn swbdny) (ngia jnizacji = E 0 ) R m c c E n m n
7 7/37-W5 L.R. Jaszwicz Si widmw sia Lymana sia Balma sia Paschna sia Backtta sia Pfunda
8 8/37-W5 L.R. Jaszwicz Spzcznści z pawami fizyki klasycznj nizzumiały pstulat dysktnych watściach mmntu pędu lktnu bak misji ngii pminiwania pzy uchu lktnu p bici ni padani lktnów na jąd atmu tudnści pzy pisi atmów willtnwych
9 9/37-W5 L.R. Jaszwicz Równani Schdinga dla atmu wdu atm wdu jst swg dzaju studnią ptncjału (natualną pułapką) dla lktnu ngia ptncjalna ddziaływania lktn-jąd jst pstaci U[V] U 4 ptncjał ma symtię sfyczną więc musimy wpwadzić sfyczny układ współzędnych [Å] [Å] -0 stan pdstawwy x sin cs -30 y sin sin z cs
10 U E m z y x E m 4 sin sin sin 0 4 E m d d d d,, R,, pdstawiając tą funkcję d ównania Schdinga tzymujmy tzy ównania z któych każd pisuj zachwani się funkcji falwj w zalżnści d,, - ównani adialn, bigunw i azymutaln Rzpatzmy najpstszy pzypadk, gdy jst tylk funkcją tzn. żadn kiunk w pzstzni ni jst wyóżniny stan s / Funkcja spłniająca t ównani t: Równani Schdinga dla pzypadku tójwymiawg i w współzędnych sfycznych 0/37-W5 L.R. Jaszwicz
11 0 m E m / d d d d d d / / m m 4 0 m 0 me 3.59V 3 m m E 4 0 E m m ównani t musi być pawdziw dla dwlng Funkcja jst związanim gdy i E są ówn: Kidy funkcja spłnia ównani Schdinga / d d / /37-W5 L.R. Jaszwicz
12 /37-W5 L.R. Jaszwicz Fizyczna intptacja Pawdpdbiństw znalzinia lktnu w lmnci bjętści P dv dv 4 d / 4 d 4 wyażnia na i E są idntyczn jak w mdlu Bha kwantyzacja wynikim związania ównania Schdinga, a ni pstulatm jak u Bha t ni pmiń bity, lcz dlgłść d jąda pzy któj pdp znalzinia się lktnu jst największ pzyjęci klasycznj bity taci sns dla zpatywang stanu s mmnt pędu jst ówny zu w gólnści mmnt pędu ni jst ówny n lcz d siąga maksimum dla = L l l
13 3/37-W5 L.R. Jaszwicz Mdl atmu mdl Bha mdl kwantwy
14 4/37-W5 L.R. Jaszwicz Dkładn związani ównania Schdinga związani ównania adialng istnij jśli ngia lktnu pzyjmuj ściśl kśln wilkści E n 4 m 3 n R n, l n całkwita liczba ddatnia związanim ównania azymutalng są tzw. wilmiany Lgnd a 0 0 P ml cs np. P 0 ; P cs l związanim ównania bigunwg jst funkcja pstaci l całkwita liczba ddatnia iml m l =0,±,±..,±l
15 5/37-W5 L.R. Jaszwicz Liczby kwantw główna liczba kwantwa n =,, 3,... kśla mżliw watści ngii bitalna (pbczna) liczba kwantwa l=0,,,..n- kśla mmntu pędu (kształt pwłki) magntyczna liczba kwantwa m l = -l, -l+,..,-, 0,,...,l-,l kśla składw mmntu pędu dla danj watści n liczba mżliwych l i m l, czyli liczba nizalżnych związań ównania Schdinga dpwiadająca jdnj watści ngii wynsi n l 0 l n stan jst n -ktni zwydniały
16 6/37-W5 Obitalny L.R. Jaszwicz mmnt pędu lktnu z związania ównania kątwg wynika, ż watść L bitalng mmntu pędu lktnu w atmi jst skwantwana liczba całkwita l t bitalna liczba kwantwa zut mmntu pędu na wyóżniny kiunk (z) jst ówniż skwantwany liczba m l t magntyczna liczba kwantwa wkta L ni mżna w żadn spsób zmizyć, mżmy jdyni zmizyć składwą tg wkta wzdłuż danj si np. kślnj pzz pl magntyczn L l l l = 0,, Lz m l m l l m l =0,±,±..,±l
17 7/37-W5 L.R. Jaszwicz Falwa intptacja kwantyzacji mmntu pędu lktnu lktn pusza się p bici kłwj L z p k dga pzbyta pzz lktn s więc jg funkcja falwa jst pstaci iks ik z jdnznacznści funkcji falwj ik z L z L p l l ik ik ( ) k tzymujmy waunk kwantyzacji L z m l Lz m l m l l m l =0,±,±..,±l długść bity ówna całkwitj wilktnści, fal ni wygaszają się bita dzwlna m l
18 8/37-W5 L.R. Jaszwicz Obital atmwy bital atmwy t funkcja falwa pisująca stan lktnu w atmi zalżna d tzch liczb kwantwych: n, l, m dv kśla pawdpdbiństw znalzinia się lktnu w lmnci bjętści dv bsza w któym występuj duż pawdpdbiństw znalzinia się lktnu nazywa się chmuą lktnwą każdy bital atmwy jst związany z pwną symtią bszau, w któym znajduj się lktn
19 Płna funkcja falwa stan n l m l funkcj falw s 0 0 s 0 0 p 0 p ± / / / / cs / / i sin / / 3 8 l l l m lm nl nlm R bital: s, p, d, f, g,... l = 0,,, 3, 4,... 9/37-W5 L.R. Jaszwicz
20 0/37-W5 L.R. Jaszwicz dla stanu s: Nmwani funkcji falwj Stał współczynniki wyznaczamy z waunku unmwania / 00 A 00 dv A dv lmnt bjętści w współzędnych sfycznych dv sin d d d A 0 A / 3 d 4 0 sin d A 0 d 3 / 0 / d / / P dv R p d 4 d p 4R nl nl p 4 3 dla stanu s: gęstść pawdpdbiństwa
21 /37-W5 Rzkład gęstści L.R. Jaszwicz pawdpdbiństwa R nl adialny R nl R nl bigunwy z lml y lml l=0 m=0 l w każdym pzypadku gęstść pawdpdbiństwa wykazuj symtię btwą względm si z
22 /37-W5 L.R. Jaszwicz stan s stan s stan p
23 3/37-W5 L.R. Jaszwicz stan 45s stan 3s stan 3p piściń kpk suguj istnini klasycznj bity lktnwj zasada dpwidniści
24 4/37-W5 L.R. Jaszwicz Obital s i p bital s (,0,0) bital p,,-) (,,) (,,0)
25 5/37-W5 L.R. Jaszwicz Obital d (3,,-) (3,,-) (3,,) (3,,0) (3,,)
26 6/37-W5 L.R. Jaszwicz Pułapki lktnw studnia ptncjału scylat hamniczny atm wdu E 3 E 6 E E 0 L E 5 E 4 E 3 E E E stan pdstawwy E n n ml E n n kl E n 4 m 3 n
27 7/37-W5 Obitalny mmnt L.R. Jaszwicz magntyczny płaska amka z pądm psiada mmnt magntyczny I S lktn kążący p bici kłwj tż psiada tzw. bitalny mmnt pędu l p L m m lktn w atmi ma takż mmnt pędu, zwany bitalnym (chć ni kąży), az twazyszący mu bitalny mmnt magntyczny l L m 4 B Am m ll B ll m magntn Bha jdnstka atmwg mmntu magntyczng
28 8/37-W5 Atm w zwnętznym plu magntycznym L.R. Jaszwicz na mmnt magntyczny działa mmnt siły dążący d ustawinia g wzdłuż pla T B L i L z są skwantwan, a kąt między nimi jst zawsz óżny d za, więc bitalny i magntyczny mmnt pędu ni mgą się ustawić ównlgl d pla składw bitalng mmntu magntyczng na kiunk pla wynszą lz l cs ll cs ml m m Dlaczg m l t magntyczna liczba kwantwa? b kśla zut mmntu magntyczng na kiunk zwnętzng pla magntyczng. l
29 9/37-W5 L.R. Jaszwicz Pcsja Lamna T dl dt dl L m T L sin dt L B T LB sin m mmnt siły wywłuj pcsję L z częstścią L B d dl dt L L sin T LB sin m L B m - częstść Lamna L Mmnt pędu (i mmnt magntyczny) wyknuj pcsję wkół wkta B z częstścią Lamna L
30
31 3/37-W5 L.R. Jaszwicz Dświadczni Einstina-d Haasa Wykazuj istnini atmwych mmntów pędu L i ich spzężni z mmntami magntycznym atmów l włączni pla magntyczng ustawia antyównlgl d pla atmw mmnty pędu aby zachwać zwy mmnt pędu walc zaczyna bacać się dkła swjj si
32 3/37-W5 Zjawisk Zmana p s bz pla L.R. Jaszwicz z plm 0 - m l Elktn w plu magntycznym uzyskuj ddatkwą ngię ptncjalną, któa jst skwantwana U lb cs Bml Bml B m piwtny pzim ngtyczny zstaj zszczpiny na l+ pdpzimów np. atm wdu w stani p (l=) na 3 pzimy Zjawisk Zmana zszczpini linii widmwych w zwnętznym plu magntycznym ptwidza skwantwani bitalng mmntu pędu U 9, , J 4 J m m m l l l 0
33 33/37-W5 L.R. Jaszwicz Dświadczni Stna- Glacha W 9 ku Stn i Glach badając wpływ nijdndng pla na wiązkę atmów zabswwali jj zszczpini i pazystą liczbę śladów na kani. wiązka natężni wiązki lktmagns włączny wyłączny klimat płżni dtkta lktmagns dtkt
34 34/37-W5 L.R. Jaszwicz Spin lktnu dwlny lktn chaaktyzuj się własnym magntycznym mmntm diplwym, któy związany jst z jg spinwym mmntm pędu (spinm) chć słw spin znacza wiwani lktn w zczywistści ni wiuj spin jst wwnętzną własnścią lktnu, tak jak jg masa, czy ładunk lktyczny watść spinu jst skwantwana i zalży d spinwj liczby kwantwj s = / 3 L s ss L s s Ls s m m s ss B
35 35/37-W5 Magntyczna spinwa liczba kwantwa Rzut spinwg mmntu pędu na wyóżniny kiunk jst skwantwany Lsz m s m s = ½ lub m s = -½ spin jst skiwany w góę lub w dół Składw spinwg mmntu magntyczng są takż skwantwan / L.R. Jaszwicz sz msb B L s s( s ) Stan lktnu w atmi nalży pisywać za pmcą 4 liczb kwantwych n, l, m / l, m s
36 36/37-W5 J J Całkwity mmnt pędu lktnu Całkwity mmnt pędu jst tż wilkścią skwantwaną L j j L s gdzi j liczba kwantwa całkwitg mmntu pędu ówna l ½ lub l + ½ pdbni całkwity mmnt magntyczny atmu jst sumą wktwą mmntów magntycznych j l s f ddziaływani mmntu bitalng z spinwym nazywa się spzężnim spin-bita s J L.R. Jaszwicz L s L l l L m j s L s m f fktywny mmnt magntyczny jst zutm sumy mmntów na kiunk J
37 San Dig, USA, August 003
ATOM WODORU. dośw. Ernsta Rutherforda (~1910) Nobel 1908 (Chemia) detektor cząstek α. źródło cząstek α (jądra He) θ
ATOM WODORU dśw. Ensta Ruthfda (~9) 87-937 Nbl 98 (Chmia) źódł cząstk α (jąda H) θ Flia mtal. dtkt cząstk α zpszni: cząstka naładwana dpychając ddziaływani kulmbwski siln wstczn zpsz. siln ddz. siln pla
Wykład 2: Atom wodoru
Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali
LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA
LABORATORIUM OPTYKA GOMTRYCZNA I FALOWA Instukcja d ćwicznia n 7 Tmat: Badani widma misyjng gazów. Wyznaczani niznanych długści fal I. Wymagania d ćwicznia. Mdl Bha atmu wdu i atmów wdpdbnych, pzimy ngtyczn.
Wykrzykniki 2016 pomoc do egzaminu pisemnego, 8.II, 2016, godz
Wykzykniki 6 pomoc do gzaminu pismngo, 8II, 6, godz Ruch dwóch ładunków punktowych q i q o masach m i m można opisać wybiając wktoy położnia każdgo z nich i względm dango punktu odnisinia O m CM R m m
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.
modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:
Polecane podręczniki. Elektryczność i magnetyzm. Ładunek elektryczny. Pole elektryczne. Pojęcie pola elektrycznego. Właściwości ładunków elektrycznych
Plcan pdęcznk lktycznść lktycznść magntyzm. D. Hallday, R. Rsnck J. Walk Pdstawy zyk lktycznść magntyzm (tm ). Hwtt zyka wkół nas d Mnka Makcka-Rydzyk pkazy dśwadczń: Rafał Wjtynak. R. Kudzl Pdstawy lkttchnk
Ekscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA
POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony
Pan z stny www.sqdia. KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszzny Listad 0 W ni nij szy sc a ci c nia nia za dań twa tyc są zn t wa n zy kła d w aw n d wi dzi. W t -
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)
POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo
Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0.
aganna nt sły załający na akę z pą ) Wkt nukcj agntycznj. Ln pla agntyczng. ) Pą lktyczny jak źół pla agntyczng. ) ła Lntza. Ruch cząstk w plu agntyczny. 4) asaa załana spkttu aswg. 5) Efkt Halla. Wyznaczn
v r B F 1 Moment siły działający na ramkę z prądem r r r r r r r Zasada działania silnika Wytwarzanie pola magnetycznego
Oddzaływan pla magntyczng na pzwdnk z pądm ła lktdynamczna l Watść sły, jaką pl magntyczn dzała na puszający sę lktn 0 d dsn 90 d Pl magntyczn dzała na wszystk puszając sę cząstk twząc pąd lktyczny d l
Atom wodoru w mechanice kwantowej
Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego
II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Pole elektryczne w próżni
Kuala Lumul, Malesia, ebuay 04 W- (Jaszewicz według Rutwskieg) 9 slajdów Ple elektyczne w óżni LKTROSTTYK zagadnienia związane z ddziaływaniem ładunków elektycznych w sczynku 3/9 L.R. Jaszewicz Pdstawwe
Atom. Doświadczenie Geigera-Marsdena
Wykład III Atom Badania zmizając do poznania i zozui stuktuy atomu pzyczyniły się w ogomnj miz do ukształtowania mtod fizyki kwantowj tak doświadczalnj jak i totycznj Opisana tż została i wyjaśniona budowa
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
. Ilorazy amplitud wyznacza się zazwyczaj z kątów ψ r. t ΙΙ. = 2 2 r
ELIPSOMETRIA Celem elipsmetii jest wyznaczenie stałych ptycznych i stuktualnych cienkich wastw i płaskich pwiezchni pzez pmia elipsy playzacji światła dbiteg lub pzepuszczneg. Pzy baku dwójłmnści i aktywnści
INSTRUKCJA DO ĆWICZENIA NR 1
KATEDA EHANK STOSOWANEJ Wydział echaniczny POLTEHNKA LUBELSKA NSTUKJA DO ĆWZENA N PZEDOT TEAT OPAOWAŁ EHANKA UKŁADÓW EHANZNYH Badania analityczne układu mechaniczneg jednym stpniu swbdy D inż. afał usinek.
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna
W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
CECHY AKUSTYCZNE P Ę CHERZYKÓW GAZU WYTWARZANYCH PRZEZ APARAT ODDECHOWY NURKA
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVI NR 1 (160 005 Wisł aw Kiciń ski Tadusz Opaa CECHY AKUSTYCZNE P Ę CHERZYKÓW GAZU WYTWARZANYCH PRZEZ APARAT ODDECHOWY NURKA STRESZCZENIE W atykul mówin
DYNAMIKA WÓD PODZIEMNYCH
DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszezny Listad 0 W ni niej szy sce a cie ce nia nia za dań twa tyc są e zen t wa ne zy kła d we aw ne d wie dzi. W te - g ty u za
Wszystkie elementy Twojego licznika MySpeedy są do siebie w pełni
PL Dsign l d Tak różnrdn jak Ty. Krzystając z najbardzij dsignrskig licznika rwrwg, pkazujsz, kim naprawdę jstś. Wybirz swój ulubiny mdl i bądź nipwtarzalny na rwrz. Wszystki lmnty Twjg licznika yspdy
CZERWIEC MATEMATYKA - poziom podstawowy. Czas pracy: 170 minut. Instrukcja dla zdającego
MATEMATYKA - pzim pdstawwy CZERWIEC 014 Instrukcja dla zdająceg 1. Sprawdź, czy arkusz zawiera 14 strn.. Rzwiązania zadań i dpwiedzi zamieść w miejscu na t przeznacznym.. W zadaniach d 1 d są pdane 4 dpwiedzi:
POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.
POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę
Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Wykład 4: Termy atomowe
Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
I. STADHOUDERZY NIDERLANDÓW
68 I. STADHOUDERZY NIDERLANDÓW I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W R o z d z i a ł I I. KRÓLOWIE HOLANDII LUDWIK I 70 LUDWIK II 79 6 9 I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W LUDWIK I Król
Model klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
Badanie zależności natężenia wiązki promieniowania od odległości
Ćwiczni 29a. Badani zalżności natężnia wiązki pominiowania od odlgłości 29a.. asada ćwicznia W ćwiczniu badana jst zalżność liczby impulsów pominiowania α, β i γ w funkcji odlgłości od źódła pominiotwóczgo
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc
Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
PODSTAWY FIZYKI DLA ELEKTRONIKÓW
WOJSKOWA AKADEMIA TECHNICZNA Antni Rgalski PODSTAWY FIZYKI DLA ELEKTRONIKÓW WARSZAWA 00 SPIS TREŚCI PRZEDMOWA 9 Rzdział. WPROWADZENIE 3.. Czym jest fizyka? 3.. Wstęp matematyczny 4... Pchdna funkcji 4...
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Zajęcia wyrównawcze z fizyki -Zestaw 3 dr M.Gzik-Szumiata
Prjekt Inżynier mehanik zawód z przyszłśią współfinanswany ze śrdków Unii Eurpejskiej w ramah Eurpejskieg Funduszu Spłezneg Zajęia wyrównawze z fizyki -Zestaw 3 dr M.Gzik-Szumiata Kinematyka,z.. Ruhy dwuwymiarwe:
ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2
LKTROSTATYKA Oddziaływania elektmagnetyczne: zjawiska elektyczne, pmieniwanie elektmagnetyczne i ptyka, pwiązane z mechaniką kwantwą. Ładunek elektyczny Siła ddziaływania między elektnem a ptnem znajdującymi
ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE
ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE Wpwadzenie Ple magnetyczne występuje wkół magnesów twałych, pzewdników z pądem, uchmych ładunków elektycznych a także wkół
ą ą ż ąż Ę ć ć ż ż ż ć ą ą
ą ą ź ą ą ż ż ź ź ą ą ż ąż Ę ć ć ż ż ż ć ą ą ą ą ż ż ż ż ż ż ć ą ą ą ą ź ż ą ą ż ź Ź ć ż ż ż ź ą ż ż ż ą ż ą ą ż ż ż Ó ż ć ą ż ż ą ż ą ż ą ż ż ż ż ż ż ć ź ć Ł ć ż ć ż ż ż ć ż ż ą ć ą ż ć ź ż ż ć ć ć ź
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego
Pmpy ciepła W naszym klimacie bardz isttną gałęzią energetyki jest energetyka cieplna czyli grzewanie. W miesiącach letnich kwestia ta jest mniej isttna, jednak z nadejściem jesieni jej znaczenie rśnie.
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
Zasady zachowania, zderzenia ciał
Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia
Równanie Schrödingera dla elektronu w atomie wodoru
Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Spędź czas w Dortmundzie korzystając z autobusu i kolei
ęź z Dz zyją z Tä z D 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 00 0 0 0 z y D! D J z ł Dz yzyj j jją ł zy ć ó D j Pń zę yjy ż, y y zć! Dz żj ją zz zł D z żj jy zzó zy y jyz zó j ż zć Pń zł, jż Pń ży, z Pń zz
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Ź Ź ź Ś Ą Ź ć Ś
ć ź ć ć ć ć Ć ć Ę ć ć ć Ś ć Ć ć ć ć Ź Ź ź Ś Ą Ź ć Ś ć Ź Ę Ź ć ć Ą Ą Ą ć Ć Ą ć Ź Ś ź ć Ź ć Ź Ś Ź Ź Ą ć Ą Ź ć Ć Ź Ę Ą Ą Ś ć Ć ć ć Ś Ń Ą Ń Ś Ś Ę Ź Ą Ą Ą Ś ć Ź Ź Ś Ś ź ŚŚ Ć Ś Ś Ą Ą ć ć Ź ź Ź ć Ź Ź ź Ź ć Ć
REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO
I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania
cz. 1. dr inż. Zbigniew Szklarski
Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska
Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
ZASTOSOWANIA POCHODNEJ
ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Podstawy fizyki subatomowej
Podstawy fizyki subatomowj Wykład marca 09 r. Modl Standardowy Modl Standardowy opisuj siln, słab i lktromagntyczn oddziaływania i własności cząstk subatomowych. cząstki lmntarn MS: lptony, kwarki, bozony
Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą
ą Ł Ó ą Ą ą ą Ó Ś Ó ą Ż ą Ś Ą Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą ć Ś ą ą ą ć ą ą ć ą ą Ź ą ćś ą ą ą Ż ą ą ć ą ć ą ć ą ą ć ć ą ą Ż ą ą ć Ł ĘŚĆ Ź Ść ą ą ą ą ŚŚ ć ą ą Ż Ź ą ć ć ć ą ą ąą ą ć ą
Ć Ź ć Ę ć Ę Ć Ź Ź Ć
Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą
Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia
Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś
Wykład 2 Wahadło rezonans parametryczny. l+δ
Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
ć ć Ń Ę
ż ź ć ć Ń Ę ć Ś Ę Ś ć ć ż ć ż ż ż ć ć ć ż ź ć ż ż ż ż ć ż ż Ś ź ż ć Ą ż ż ż ż ż ż ź ć ż ć ż Ś ż ć ż ż Ą ż ż Ę ć Ż ż ć Ż ż ż ż ż ć ż ż ż ż ż ź ć ż ż ć ż ź Ś ż ż ć ż ż ż ż ć ćż ż ć ż ż ż ź ż ć ż ż ż Ś
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych
Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i
LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA
LABORATORIUM OPTYKA GOMTRYCZNA I FALOWA Instucja d ćwczna n 5 Tmat: Wyznaczan stałj Rydbga, ng jnzacj wdu masy zduwanj ltnu z wdma atmu wdu I. Wymagana d ćwczna. Mdl Bha atmu wdu atmów wddbnych, zmy ngtyczn.