v r B F 1 Moment siły działający na ramkę z prądem r r r r r r r Zasada działania silnika Wytwarzanie pola magnetycznego
|
|
- Karol Kurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Oddzaływan pla magntyczng na pzwdnk z pądm ła lktdynamczna l Watść sły, jaką pl magntyczn dzała na puszający sę lktn 0 d dsn 90 d Pl magntyczn dzała na wszystk puszając sę cząstk twząc pąd lktyczny d l q t d l l Mmnt sły dzałający na amkę z pądm τ + τ τ sn α τ N τ b τ sn α ba { sn α b a asada dzałana slnka Wytwazan pla magntyczng Pętla z pądm umszczna w plu magntycznym dśwadcza ddzaływana dwóch pzcwn skwanych sł Paa sł dzałająca na pętlę wytwaza mmnt sł pwduj bót amk pąd w lktmagns pl magntyczn jst wytwazan pzz pąd płynący pzz uzwjna cwk lnk psadają wl uzwjń, c zapwna badzj jdnlt waunk btu. Pl magntyczn jst zwykl wytwazan pzz lktmagns Pl magntyczn jst zwykl wytwazan pzz lktmagns magnsy twał (btaln spnw mmnty magntyczn lktnów) Elktn puszający sę p zamknętj bc wytwaza pl magntyczn, analgczn d zwju z pądm. zmnn pl lktyczn TRUMEŃ NDUKCJ POA MAGNETYCNEGO jst ówny lczynw skalanmu ndukcj pla magntyczng wkta pwzchn Θ Dla pla jdndng ( cnst, ln pla są ównlgł) Φ Φ csθ Dla pla njdndng Φ d n ndukcj magntycznj magnsu wychdzą z bguna półncng, a wchdzą d płudnwg. ą zawsz lnam zamknętym, a pl magntyczn jst POEM EŹRÓDŁOWYM. Jst t knskwncja faktu ż n stnją w pzydz dzlwan mnpl magntyczn - dzląc magns twały na częśc n mżna ddzlć jg bgunów. g. a Paw Gaussa dla pól magntycznych g. b Watść stumna ndukcj pla magntyczng pzchdzącg pzz dwlną zamknętą pwzchnę jst ówna z d 0 0 0
2 Atm jak dpl magntyczny Najbadzj pdstawwą stuktuę magntyczną stanw dpl magntyczny. Elktn puszający sę p bc kłwj mżna taktwać jak pąd płynący w pętl. Pętla z pądm jak mdl dpla magntyczng magntyczny mmnt dplwy Mmnt sł ma watść maksymalną,, gdy mmnt magntyczny jst pstpadły y d kunku pla magntyczng, natmast dla Θ0 lub Θ 80 jst ówny z. Mmnt sł dzałaj ający na amkę umszczną w plu magntycznym τ τ τ sn Θ Obtalny uch lktnu źódłm pla magntyczng Elktn puszający sę p bc kłwj wj mżna taktwać jak pąd d płynp ynący w pętl. p Oblczyć btalny mmnt magntyczny lktnu pzy tym załżnu. Wyazć btalny mmnt magntyczny za pmcą btalng mmntu pędu. p b π π / υ υ b mmnt pędup b mυ m b m p mυ { sn90 p - m Ekspymnt Enstna-d Haasa Puszający sę lktn ma mmnt pędu az spzężny z nm mmnt magntyczny (skwany pzcwn d ). - m cnka nć żlzny walc slnd a) W nbcnśc zwnętzng pla magntyczng ustawna mmntów pędu, a węc ównż mmntów magntycznych są pzypadkw. Wypadkwy mmnt pędu walca jst ówny z. b) Włączn pla magntyczng skwang wzdłuż s walca pwduj, ż mmnty magntyczn ustawają sę wzdłuż kunku pla, c znacza, ż stwazyszn z nm mmnty pędu ustawają sę ównż wzdłuż kunku pla. Pnważ na walc n dzałały żadn sły zwnętzn - mmnt pędu walca n mż sę zmnć (mus nadal być ówny z), dlatg walc zaczyna sę bacać. Dplwy mmnt magntyczny atmu Całkwty mmnt pędu bjętng atmu lczb atmwj ( K ) + ( K ) J suma btalnych mmntów pędu suma spnwych mmntów pędu wszystkch lktnów w atm wszystkch lktnów w atm Całkwty (fktywny) mmnt magntyczny tg atmu ff K m ( K ) ( K ) suma btalnych mmntów magntycznych suma spnwych mmntów magntycznych wszystkch lktnów w atm wszystkch lktnów w atm m Pdstaww typy matałów magntycznych 0 0 damagntyk (n psadają twałych dpl magntycznych) ndukwan pl magntyczn jst słabsz d zwnętzng pla magntyczng skwan pzcwn d ng Paamagntyk (psadają twał dpl magntyczn) 0 nd ndukwan pl magntyczn jst słabsz d zwnętzng pla magntyczng skwan zgdn z nm fmagntyk Gupy dpl magntycznych, ukunkwanych ównlgl, twzą bszay spntanczng namagnswana, zwan dmnam magntycznym. ndukwan pl mż stk, nawt tysąc azy pzwyższać pzyłżn pl zwnętzn ma kunk zgdny z kunkm tg pla 0 nd nd 0 0 Damagntyzm Damagntyk n wykazują samzutn właścww cwśc magntycznych. Pl magntyczn damagntyka jst skwan pzcwn d pla zwnętzng tzng. Damagntyk jst wypychany z bszau pla magntyczng (dpychan pzz magns, zjawsk lwtacj). D damagntyków w zalcza sę: : gazy szlachtn, paw wszystk mtal mtaldy n wykazując własnw asnśc paa- lub fmagntycznych (np: bzmut, kzm, cynk, magnz, złt, z mdź) ) a takż fsf, gaft, wda az wl zwązk zków w chmcznych. Damagtyczn sąs tż DNA wl bałk lwtująca żaba ( 6 T) Njmgn Hgh ld Magnt abaty
3 Obtalny mmnt magntyczny lktnu jst stwazyszny z jg btalnym mmntm pędup b π π / υ υ υ b p mυ b mυ m b m ω Damagntyzm E E 0 0 ω Damagntyk mają pazystą lczbę lktnów. Atmy n mają wypadkwg mmntu magntyczng (tyl sam lktnów kąży w każdym z kunków). ak namagnswana tych matałów dla 0 0. ω- ω - E E - b 0 Damagntyzm ω+ ω E E + b -- Nzalżn d kunku btalng uchu lktnu wytwaza sę ddatkw ndukwany magntyczny mmnt dplwy, skwany pzcwn d kunku pla magntyczng 4m 9 (.6 0 C) ( 5. 0 m) 4 0 k E ma m ω 9 b mυ m W plu ndukcj T A m kg T Paamagntyzm Właścwśc paamagntyczn psadają substancj, któych atmy psadają nspawan lktny (np. cyna, platyna). Atmy paamagntyka bdazn sąs nzwym mmntm magntycznym. Twał dpl magntyczn paamagntyka pd wpływm zwnętzng pla magntyczng zmnają swją ntację pzstznną z chatycznj na częś ęścw upządkwan dkwaną (dpl dążąd d ustawna zgdng z kunkm zwnętzng pla magntyczng). atm wwnętzn pl magntyczn skwan jst zgdn z zwnętznym plm magntycznym. Pcs pządkwana jst zakłócany pzz dgana tmczn. Paamagntyk jst pzycągany pzz magns, jdnak znaczn słabj s nż fmagntyk Paamagntyzm Magntyzacja t mmnt magntyczny jdnstk bjętśc póbk Maksymalna watść wypadkwg mmntu magntyczng póbk: M max N N - lczba wszystkch mmntów magntycznych póbk V M Pcs pządkwana dpl jst zakłócany pzz dgana tmczn maksymalna nga mnmalna nga M/Mmax C T M 0 0,5 0 stała Paw Cu Wzst ndukcj pla magntyczng pwadz d wzstu upządkwana dpl magntycznych Wzastająca tmpatua T pzcwdzała pządkwanu 0 4 /T [T/K] zaks tmpatu 4 K Kzywa namagnswana dla saczanu chmw-ptaswg. aks lnwy, w któym spłnn jst paw Cu: /T < 0.5 [T/K]
4 magntyk stnj wl kystalcznych pzdstawcl fmagntyków: żlaz, kbalt, nkl az w nższych tmpatuach ównż gadln, tb, dyspz, hlm b wśódpwastków az wl stpów zwązków chmcznych. Atmy fmagntyka bdazn sąs nzwym mmntm magntycznym. magntyk astswan zwnętzng pla magntyczng pwduj upządkwan dmn. 0 0 Oddzaływana mędzy atmam pwdują ustawan sąsdnch dpl magntycznych w tym samym kunku w bszaach makskpwych zwanych dmnam nawt bz zwnętzng pla magntyczng. Źódłm fmagntyzmu jst ddzaływan wymnn, zachdząc pmędzy spnam lktnwym sąsdnch atmów, w wynku któg pwstaj upządkwan mmntów magntycznych atmów Wwnątz cała fmagntyczng pwstaj pl kunku zgdnym z kunkm pla zwnętzng, któ mż stk, nawt tysąc azy pzwyższać pzyłżn pl zwnętzn 0 nd Magntyczn własnśc mat Pdatnść magntyczna χ M Wypadkwa ndukcja magntyczna jst sumą 0 nd pznkalnść magntyczna śdka nd + χ 0 0 M + χ M pdatnść magntyczna Dla matałów damagntycznych paamagntycznych ndukwan pl magntyczn ( ndukcj magntycznj nd ) jst ppcjnaln d pzyłżng zwnętzng pla ndukcj 0 (az χ M mają stałą watść, nzalżną d 0 ) χ M damagntyk < < 0 paamagntyk > > 0 fmagntyk >> >> Damagntyk łów wda mdź złt bzmut Paamagntyk cyna 0-6 alumnum 0-6 magnz chm mangan Nasycn Matał nnamagnswany Hstza magntyczna Waz z wzstm ndukcj zwnętzng pla magntyczng wzasta namagnswan fmagntyka, aż d mmntu sągnęca stanu nasycna, gdy matał jst jdndn namagnswany (wszystk dpl są ustawn ównlgl d kunku pla zwnętzng) Dla fmagntyków zalżnść pla ndukwang ( M ) d pla zwnętzng ( 0 ) jst nlnwa, zatm watść χ M (a takż ) zalży d 0. Namagnswan (wzst M ) śn waz z wzstm natężna pla magntyczng. W punkc b sągany jst stan nasycna. Pmm zmnjszna pla d za stan namagnswana utzymuj sę. Dp p pzyłżnu pzcwn skwang pla k (tzw. pl kcj) namagnswan znka całkwc. k pl ndukwan pl zwnętzn Duża watść pzstałśc magntycznj Duż pl kcj Matały magntyczn twad (magnsy twał) Nasycn Matały magntyczn półtwad - zaps nfmacj kmputwych (twad dysk, dysktk, taśmy magntyczn, katy kdytw) Mała pwzchna pętl hstzy(mała pzstałść magnt. pl kcj) znacza nwlką watść ng zpsznj Matały magntyczn mękk pżądana mnmalzacja ng zpsznj w tansfmatach, slnkach W zalżnśc d matału kunk namagnswana az ganc dmn mgą zmnać sę łatw (fmagntyk mękk) lub tudn (fmagntyk twad).
5 Właścwśc typwych fmagntyków Paw Cu -Wssa Matały magntyczn mękk χ max k [0-4 T] Żlaz Żlaz kzmw , Pmally ,05 uppmally ,004 Matały magntyczn twad χ max k [0-4 T] tal węglwa tal wlfamwa tal kbaltwa Magnk W dpwdn wyskj tmpatuz ntnsywn dgana sc kystalcznj fmagntyka pwdują zpad dmn na pjdyncz mmnty magntyczn fmagntyk staj sę paamagntykm. Tmpatua, w któj zachdz t zjawsk, nazywa sę tmpatuą Cu np. dla żlaza wyns T C 04 K, a namagnswan pwyżj T C jst psan pzz paw Cu-Wssa: M C T T C
Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0.
aganna nt sły załający na akę z pą ) Wkt nukcj agntycznj. Ln pla agntyczng. ) Pą lktyczny jak źół pla agntyczng. ) ła Lntza. Ruch cząstk w plu agntyczny. 4) asaa załana spkttu aswg. 5) Efkt Halla. Wyznaczn
Polecane podręczniki. Elektryczność i magnetyzm. Ładunek elektryczny. Pole elektryczne. Pojęcie pola elektrycznego. Właściwości ładunków elektrycznych
Plcan pdęcznk lktycznść lktycznść magntyzm. D. Hallday, R. Rsnck J. Walk Pdstawy zyk lktycznść magntyzm (tm ). Hwtt zyka wkół nas d Mnka Makcka-Rydzyk pkazy dśwadczń: Rafał Wjtynak. R. Kudzl Pdstawy lkttchnk
W-25 (Jaroszewicz) 37 slajdów Na podstawie prezentacji prof. J. Rutkowskiego. Budowa atomu wodoru
San Dig, USA, August 003 W-5 (Jaszwicz) 37 slajdów Na pdstawi pzntacji pf. J. Rutkwskig Budwa atmu wdu Mdl Bha widm atmu wdu Mdl kwantwy bitalny mmnt pędu Liczby kwantw Obital Mmnty pędu a mmnty magntyczn
r r r r r = qv B [ B] Pole magnetyczne Zagadnienia Siła Lorentza Źródło pola magnetycznego Wektor indukcji magnetycznej Wektor indukcji magnetycznej
Zaganna ) Wkt nukcj agntycznj. ) Pą lktyczny jak źół la agntyczng. 3) n la agntyczng. 4) ła ntza. 5) Ruch cząstk w lu agntyczny. 6) Zasaa załana skttu aswg. 7) Efkt Halla. Wyznaczn kncntacj nśnków. 8)
Modulacja wiązki laserowej za pomocą komórki Pockelsa
Ćwczn 5 Mdulacja wązk laswj za pmcą kmók Pcklsa 1 Wstęp Mdulacją śwatła nazywamy zmany w czas paamtów fal śwtlnj. Mdulatm jst uządzn, któ t zmany wymusza. Płaską falę mnchmatyczną zchdzącą sę w śdku współczynnku
Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc
Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA
POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)
Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja
Źródła pola magnetycznego
Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
ATOM WODORU. dośw. Ernsta Rutherforda (~1910) Nobel 1908 (Chemia) detektor cząstek α. źródło cząstek α (jądra He) θ
ATOM WODORU dśw. Ensta Ruthfda (~9) 87-937 Nbl 98 (Chmia) źódł cząstk α (jąda H) θ Flia mtal. dtkt cząstk α zpszni: cząstka naładwana dpychając ddziaływani kulmbwski siln wstczn zpsz. siln ddz. siln pla
Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.
modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blk 6: Pęd. Zasada zachwana pędu. Praca. Mc. ZESTAW ZADAŃ NA ZAJĘCIA Uwaga: w pnższych zadanach przyjmj, że wartść przyspeszena zemskeg jest równa g 10 m / s. PĘD I ZASADA ZACHOWANIA PĘDU 1. Płka mase
Atom (cząsteczka niepolarna) w polu elektrycznym
Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do
ZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź
Ź Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź Ź Ż ź ź ź Ż Ż Ż Ą Ź Ź Ź ź Ź Ż Ź ź ź Ź Ź Ź Ż Ź Ź Ż Ź Ą Ź Ż ź Ź Ż Ł Ź Ł Ź Ł Ł Ą Ą Ł Ą ź Ż Ą Ń Ń Ń Ą Ń Ń Ą Ń Ą Ł Ł Ł Ż Ź ź Ź Ą Ż Ą Ą Ą Ź Ź Ź Ź Ź ź ź Ż Ą Ź Ł Ł ź Ż ź Ł Ż Ż Ł Ł
ż ż ż ż ż ż Ś Ł Ę ż ż ż ż ż ż Ź ż Ę ż ż ć ż Ś Ś ć Ź Ę ż ż Ł Ś Ś ć Ś Ś ć ć Ś Ść ż Ś Ś ć Ś Ść Ś Ść ć Ł Ź Ś Ś ć Ś ż Ść Ś Ś Ś Ś ć Ś Ś Ź ć Ę Ś ć Ę Ć Ś Ę Ń ć ż ź ź Ę ż ż Ść ć Ę ć ż ź ż ż ż Ść ż Ś ć ć ć Ł ć ż
Ę ć Ń Ń ŁĄ ć ć ć Ę ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ź Ł Ś ć ć ć ć Ę ć ć ć ź ć Ę Ńć ć ć ź Ę Ę ć Ę ć Ę ć Ę ć ć ć ć ć Ę ć ć Ę ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ź ć
ż ć ż ń Ń Ż ń ń ć ż ż ć Ż
Ś Ą Ą Ł Ś Ł ż ć ż ń Ń Ż ń ń ć ż ż ć Ż ń Ż Ł ż ń ń ń Ę Ł Ż Ł Ł ż ż ć ń Ę ń ż Ć ń ŁĄ Ą ń ń Ć ć Ż ż Ń Ż Ż Ł ć Ę ń Ł ż Ś ć Ż ńę ń ż ń Ł Ż Ą ń ż Ź ż ć ż ń ć Ś Ż ń Ą ż Ą ć ć ńż Ś ń Ś Ż Ś ń ń Ł Ż Ł ż ń Ż Ś Ś
POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
ą ą ż ąż Ę ć ć ż ż ż ć ą ą
ą ą ź ą ą ż ż ź ź ą ą ż ąż Ę ć ć ż ż ż ć ą ą ą ą ż ż ż ż ż ż ć ą ą ą ą ź ż ą ą ż ź Ź ć ż ż ż ź ą ż ż ż ą ż ą ą ż ż ż Ó ż ć ą ż ż ą ż ą ż ą ż ż ż ż ż ż ć ź ć Ł ć ż ć ż ż ż ć ż ż ą ć ą ż ć ź ż ż ć ć ć ź
Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.
Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca
ŁĄ
Ś ĄŻ ŁĄ Ź Ą ÓŹ Ś Ś Ą Ą Ś Ó ŚÓ Ó Ą Ó Ż Ź Ś Ż Ó Ó Ó Ż Ó Ą Ż Ó Ż Ż Ż Ż Ś Ą Ż Ć Ą Ć Ą Ż Ł Ś Ś Ź Ó Ś Ó Ó Ó Ś Ż Ź Ż Ż Ę Ą Ó Ś ź Ó Ę Ą Ź Ą Ż Ó Ś Ć Ę Ś Ą Ś Ś Ś Ą Ó Ę Ó Ę Ą Ż Ż Ó Ż ź Ą Ó Ś Ź Ż Ó Ż Ż Ź Ó Ó Ś Ś Ó
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
ZJAWISKO TERMOEMISJI ELEKTRONÓW
ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z-980-1 d zasilania katdy lampy wlframwej 2. Zasilacz Z-980-4 d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF-04-222-2
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź
ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń ż ż ń ń ń ń Ę ż ż ż ż ż Ę ń Ę ż ż ż ńą ź ż ż ż Ę ń ż Ę ń ż ż ż ń ń ż ż ń Ę ź ż ż ż ż ń Ą ń Ę Ż ż ż ń Ł Ę ń ńń ż Ę ż ż ż ń Ę ż ż ńż ń ż ż Ś ż ń ż ż
Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż
Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś
Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
Podsumowanie W3: χ A singlet. χ S tryplet. 1s,nl. Hel (bez spinu): H 0 = H 1 +H 2 H. diagonalizacja H daje: E = J±K U ( u + u ) E= E n +J±K
Poduowan W: H (bz pnu): H Z Z K K + H 0 H +H H w H o, dg.wynna ta aa n. wł. do tanów wł. u ϕ () ϕ (), u ϕ () ϕ () dagonazaa H da: E J±K U ( u + u ) E E n +J±K,n oa zaady Paugo (t podt. H: tyko U ) ab U
3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa
3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne
ż ć
Ł Ł Ż ć Ż Ś ć ć Ż ż ć ć Ś Ż ż ć ó ż ż ć Ą Ż ć ć Ż ć ć Ż ć ć ć ć Ż Ż ż Ż Ż ć Ś Ż Ż Ś Ś ż Ś Ż ż ŁĄ ć Ż Ą Ż Ł Ść ć Ść Ż ŁĄ Ś Ż Ą Ś ż Ż Ż ŁĄ Ą Ą Ż Ł ć ć ć ć Ż ć Ż Ż ż ż ż Ż Ż ż Ż ż Ź Ś Ż Ź Ź Ż ć Ż Ż ć ć ć
ź ć
Ę Ą Ą Ł Ł Ą ź ć ć Ę Ź Ź Ź Ą Ę Ń Ł Ą Ć ŁĄ ŁĄ Ł Ę Ę Ć ć Ź Ź Ć Ć ć ć ć Ź ć ć ć Ź Ź Ć Ć Ź Ć Ą ć ć Ź ć Ć Ź Ć Ź Ź ć Ć Ć Ź Ł Ć Ź ć Ć Ć ć Ź ć Ę ć Ć Ć Ć Ć Ź Ć Ć Ź ć Ć Ć ć Ć Ł ć Ć Ć ć Ć Ć Ź ć ć Ć ć ć Ć Ą Ń ź Ć Ć
W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna
W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz
Atomy wieloelektronowe - degeneracja i siły wymienne
Atoy woktonow - dgnaja sły wynn Ato (na az bz spn oddz. L-): K Z K Z 0 = + * ahnk zzń: zow pzybżn: =0 ( + ) = 0 =0 ktony n oddzałją spaowana: () () a b 0 = n + n watość wł. do fnkj: a=(n) b=(n ) dgnaja
gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera
San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola
ź ź ŁĄ ź Ę Ę Ę Ę ź ź Ę Ę Ł ź
Ł Ę Ę Ć ź ź ŁĄ ź Ę Ę Ę Ę ź ź Ę Ę Ł ź ź ź ź ź Ę Ę Ł Ń Ł ź Ź ź ź ź Ą ź ź Ę Ę Ł Ę ź Ę Ę Ł Ę ź Ę Ą ź ź ź Ć ź ź Ę ź Ę ź Ę Ą Ę Ę Ę Ą ź Ą Ę Ę Ł ź Ć ź ź Ć ź Ę Ę Ł ź Ć ź Ą Ł Ć Ć Ę Ę Ę Ć Ł Ń ź ź Ę Ę Ł Ż ź Ć Ć Ż
Wrocław, dnia 27 marca 2015 r. Poz UCHWAŁA NR VIII/113/15 RADY MIEJSKIEJ WROCŁAWIA. z dnia 19 marca 2015 r.
ZE URZĘY JEÓZTA LŚLĄE, 27 2015 P 1376 UCHAŁA R V/113/15 RAY EJEJ RCŁAA 19 2015 b ó ó ą 4,5% ( ą ), 18 2 15 8 1990 ą g ( U 2013 594, óź 1) ) ą 12 1 26 ź 1982 źś ( U 2012 1356, óź 2) ) R, ę: 1 1 U ś bę ó
Ą ć ć ć ć ć ź
Ą ź ź ź ć ć ć ć ć ć Ą ć ć Ą ć ć ć ć ć ź Ż Ą ć ź Ź Ż ź Ą Ą ć ź ź ź ź Ż Ń Ź Ś ź ź Ź Ź Ź Ą ć Ź Ż ć Ś ź Ą Ń Ś ć Ć Ś ć Ż ź Ż Ą Ż Ą ć ź Ź ź ź ź Ą Ś Ś Ś Ś Ą Ś Ź Ś ź ć ć Ż Ź ć Ż Ś Ś ć ć ć Ś Ż ć ć Ś Ą ć ć Ą Ś
POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.
POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę
Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja
zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H
Indukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych
ndukcja eektomagnetyczna ndukcyjność Dgana w obwodach eektycznych Pawo ndukcj eektomagnetycznej Faadaya > d zewnętzne poe magnetyczne skeowane za płaszczyznę ysunku o watośc osnącej w funkcj czasu. ds
NIEZNANE RYSUNKI STANISŁAWA WYSPIAŃSKIEGO
jj b lą fgą g ( jg l Pl l ż Pl ę ł ńg N lł ś K Wlg ć ą l j bś 9 Nłlj ęś łś ż ę bć ąż j j j ę l ę j Oją ją f ąją jś bń 30 Wj Bł Fg g ł ąż Wj Bł S l K XIX Cęść g: j Wń ż ę l b ł W Uv T S R Sł Wńg K 93 4
Ć Ę Ę ż ŁĄ
Ó Ń Ń Ń Ą Ę Ź ŚĘ Ś Ć Ę Ę ż ŁĄ ż Ą Ś Ą Ś ź ż ź Ś Ę Ę ź Ą Ę ż Ą ż ż ż Ą Ś ż ż ż ć ż ż ć ż ż ć ć ż ż Ą ż ż ż Ę Ę Ę ż Ś ż Ą Ę Ź Ą ż Ą Ę ż ż Ś ż ż ż ż Ł Ę ć ż Ś ż ż ż ż ż Ś Ę ż ż Ę Ę ż Ę ć ż ż ż Ś ż ż ć ż Ę
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
Optyka Fourierowska. Wykład 4 Soczewka
Optka Frrwska Wkła 4 Scwka Scwka Scwka awra ptcn gęsts matrał w którm prękść awa jst mnjsa nż prękść w pwtr Grbść scwk jst mlwana (mnna) tak ab skać amrną mlację a Scwka cnka Scwka cnka jst scharaktrwana
ź ń ń
ń ź ń ń Ś Ł ń ń ż ź Ść ż Ść ż ż Ł ż ń ń Ę Ś Ś Ś Ę ń ż Ł Ś Ł ń Ś Ś ń ć Ść ż Ę ż Ć Ę ż ź ń Ł Ę Ę ź ż Ę Ś Ę ż ż ż Ę Ś ż ż ż Ść Ą ż ż ż Ę Ś Ę ż ż Ś ż ż ż Ś Ł ż ż ż Ę ż ż ż Ą Ę Ę ć ż ż ć ń Ą Ą ź Ę ńź ż Ę Ę
Ą ź Ą ń ź Ł Ł ń Ł ń ń ź ń Ł Ś Ą Ń ń ŁĄ Ś ń ń ń ń ń ń Ł Ą ń ń ń ń Ą Ą Ś ń Ó Ł ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń Ł ń Ą ŁĄ Ś Ł Ś Ł ń ń ń ń Ń Ą ć ń ń Ł Ń ń Ł Ł ń Ł ń ń ń ń ń ń Ź Ł ń ń Ź Ł ń ń Ł
ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż
ń Ś Ę Ś Ś ń Ż ą ż Ż ą ą żą ąż ż Ż Ż Ż ą ą Ż ż ą Żą ą ą ą ż Ś ą ą Ż ż ą ą ą ą Ż Ż ć ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż ą ą ą Ż ń ą ą ń ż ń Ż Ś ą ą ż ą ą Ś Ś ż Ś
ż ć ć ć ż ń ć ż ć ż Ę ć ż
Ł Ł ŁĄ Ł ż ż ź ż Ą ż ć ć ć ż ń ć ż ć ż Ę ć ż ń ń ż ć ć ż ć ć Ź ż ń ń ć Ę ż Ą Ę ż ń ć Ą Ą ż Ź ż ć ć ż ć ć ż ż ż ć ń ż ć ż ż ż Ę ć Ę Ł Ł ź ń Ź Ę ż ć Ą ń ć ż ź ż Ą Ź ń ż Ź Ą Ą ż ć ż ć ć Ą ż ć ć ż Ł ż ć ż
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę
ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą
Inercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
Ę ż ć ŁĄ
Ł Ł Ę ć ż Ś ć ć Ę Ę ż ć ŁĄ Ą Ł ć ć ć Ę ż ć Ą ć ć ż ć ć ż Ę ż ć ć ć ć ż Ę Ą ż ć Ś ż ć ż ż Ę ć ż Ł ć Ą Ę Ł ć ć ć Ś ć Ł ć ć Ą Ł ć ć ć ć ó Ę Ł ć ć Ą Ł ć ć ć Ł Ść ć ó ć ć ć ć ż Ł ć ć ć Ł Ą Ś Ł Ą ż Ę Ą ć ć ć
ŁĄ Ł
Ł Ę Ś ŁĄ Ł Ś Ś Ś Ą Ś Ó Ę Ś Ą Ś Ę Ą Ą Ś Ą Ó Ó Ś Ś Ą Ą Ę ć ć ć ć Ó Ó ż ć ć ć ż ć ż ć Ł Ś Ś Ś Ą Ś Ę Ś Ś Ś Ś Ś ż Ś ć ż ć ż ć Ś Ś ż Ó ć ż ć Ó Ó ć ż Ó ć Ś ć Ź ć ż ż ć ć Ó ć ż ć ć Ó ć Ó ż ż ć Ó ż ć Ó ć ć ż Ó
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Wykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
Ł ć Ą ć ć ć ć ć Ł
Ł Ś Ą Ś Ą Ł Ś Ś Ł Ł Ó Ą Ł ŚĆ Ń Ó Ł ć Ą ć ć ć ć ć Ł Ó Ł Ń Ś Ó ć Ś Ó Ń ŁĄ Ł Ó Ó Ł Ń Ś Ś Ó Ó Ó Ł Ń Ó Ł ć ć Ó Ó Ó Ł ć ż ż ć ć ż ż Ź ż ć ć ć Ó Ó Ó Ł Ń Ł Ó Ó Ó Ł ć ż ż ż ć ż ć ż Ł Ó Ó Ó Ł ż ż ć ć ć ć ć ć Ó Ż
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
Schematy zastępcze tranzystorów
haty zastępz tanzystoów kst tn pztawa kótko zasady spoządzana odl zastępzyh dla tanzystoów bpolanyh oaz unpolanyh Nalży paętać, ż są to odl ałosynałow, a wę słuszn tylko wyłązn pzy założnu, ż dany lnt
Pole magnetyczne prąd elektryczny
Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że
Ł Ś ś
ż ź Ą ą ą ą ą Ł ś ż ś ś ą ż Ż ś ż ż ż ą ż Ł ą ą ą ń ą ś ś ą ą ą ż ś ą ą ż ą ą ą ą ż ń ą ść Ł Ś ś ś ś ą ś ś ą ń ż ą ś ź Ż ą ą ż ś ż ś ść Ź ż ż ś ą ń ą ś ż Ź Ź ż ż ż ą Ó Ż Ź ą Ś ż ść ż ą ź ż ą ą Ź ą Ś Ż