XI. USTALONE I NIEUSTALONE ZAGADNIENIA POLA
|
|
- Krystyna Żurawska
- 6 lat temu
- Przeglądów:
Transkrypt
1 onerla P. Meoa Elemenów Sońconch eora asosowana 9 XI. USALOE I IEUSALOE ZAGADIEIA POLA Duża lcba aaneń pola opsana es równanam Laplace a Possona oólne równanam uas-harmoncnm. ależą o nch nasępuące aanena: prewoncwo cepła lraca cec pre ośro porowae roła poencału elercneo lub manecneo ora wele nnch aaneń cnch. W aanenach pola alorm MES można ormułować sosuąc poeśce waracne w sceólnośc meoę Ra sosuąc meoę ważonch resuów w sceólnosc meoę Galerna.. Zaanena prewoncwa cepła Jao prła lnoweo aanena pola poaano usalone aanene prewoncwa cepła. Dan es obsar orancon breem. Obsar paramerowan es areańsm ułaem współręnch { }. Maerał es oropow o nasępuącch charaersach: ęsość mas ρ emperaura współcnn prewoncwa ceplneo cepło właścwe c. W obsare wsępuą źróła cepła o ęsośc. Blans cepła la obsaru na enosę casu presawa sę nasępuąco: wae źróeł cepła: cepło aumulowane w obsare: c ρ cepło wpłwaące pre powerchnę: n e n normalna ewnęrna o. Porównuąc moc cepła welaną w obsare mocam cepła aumulowanm w obsare sraam pre powerchnę mam cρ n.. Po asosowanu werena Gaussa-Osroraeo o osaneo słana ałożena cąłośc unc pocałowch ormuem loalne równane różncowe cρ v.. Jeżel ałożć że cons wówcas równane prewoncwa cepła apse sę w posac
2 urs na Suach Doorancch Polechn Wrocławse wersa: lu 7 9 c ρ e..3 Dla procesów usalonch emperaura es nemenna wlęem casu wówcas równane prmue posać równane Possona.4 a la obsaru be źróeł cepła równane Laplace a..5 Warun breowe la aanena breoweo usaloneo: a warune breow I-seo roau Drchlea na.6 onaca że na breu aana es emperaura. b warune breow II-o roau eumanna na α n.7 cne onaca że cepło prechoące pre powerchnę cała es równe aanemu srumenow cepła ora onwec cepła proporconalnemu o aualne emperaur pr ałożenu że współc. onwec αcons.. Sormułowane waracne aanena prewoncwa cepła W celu asosowana meo Ra w MES onecne es apsane unconału óreo warunam saconarnośc błb: równane różncowe aanena 4 ora warune breow eumanna 7 na. W m celu worsano nane werene Eulera óreo wna że warunem mnmalac cał posac Ψ.8 es równane różncowe posac / / /..9 a posawe powżseo werena można uowonć pre bepośren rachune że równane 4 mnmalue unconał posac Ψ. pr ałożenu że unca emperaur spełna warun breowe. Warun breowe 7 es runo spełnć w wąu m o unconału należ oaowo wprować warun breowe na w słabm sormułowanu oaąc całę
3 onerla P. Meoa Elemenów Sońconch eora asosowana 93 α. osaecne unconał. prme posać α Ψ.. W m prpau mnmalaca prowa o równana 4 ale równeż o warunu breoweo Alorm MES meoa Ra Obsar elm na elemen sońcone. Parameram węłowm są warośc emperaur w punach węłowch... la..3 Inerpolaca emperaur w obsare.4 e są uncam baowm sału las co namne. Z uwa na posać unconału można sosować sanarowe elemen sońcone a la presrenneo aanena eor sprężsośc poencm paramerem węłowm w ażm węźle. Posawaąc 4 o mnmaluąc a orman unconał mam α Ψ.5 są ormuem sanarowe równane posac H h.6 e α.7 h..8 Pre rowąanem ułau równań należ wprować warun breowe 6 w sanarow sposób.
4 urs na Suach Doorancch Polechn Wrocławse wersa: lu Alorm MES meoa ważonch resuów Jes o omenne sormułowane MES w sosunu o meo Ra. Dane są unce resualne: R V na.9 R n α na. S Doberam moel sren nerpoluem emperaurę w obsare. e są macerowm uncam baowm sału. Oberam macerowe unce waowe W la.... Bęem żąal ab ważona suma resuów bła równa eru co apsuem W Rv W Rs la..... Funce waowe można obrać owolne. alepse reula usue sę eżel unce waowe są równe uncom sału W wówcas meoa ważonch resuów es meoą Galerna. Po posawenu. o. mam n α n α.3 są h H.4 e n α.5 h..6. Poneważ w unconale wsępuą rue pochone unc emperaur w wąu m unce sału musą bć las co namne na. Są o wle unce Herme a są parameram węłowm są weor..7 Pre rowąanem ułau równań 4 należ posawć warun breowe 6.
5 onerla P. Meoa Elemenów Sońconch eora asosowana Zaanene namcne neusalone aanena prewoncwa cepła Analuem aanene namcne posac wprowaone wceśne blansu moc ceplne cρ..8 W sosunu o aanena analowaneo wceśne różn sę prawą sroną ponao posuwana unca emperaur ora unca ęsośc źróeł cepła moą bć uncą casu. W alsch roważanach bęem ałaal że poosałe paramer procesu cρ są neależn o casu. Moelowane MES w presren eomercne es encne a w poprench punach la procesów usalonch są mam.9 h H.3 e h c & α cρ cρ &.3.3 Osaecne równane w posac macerowe apse sę w posac & F.33 Problem rowąana równana różncoweo. Preał casow elon es na ocn casu. Załaa sę że nane es rowąane w chwl n w sceólnośc nane es n n F n F n. Posuwane es rowąane w chwl n n. Sosue sę la meo rowąana eo problemu.. Meoa ważonch resuów a ocnu casu n n weor paramerów es nerpolowan τ τ τ n n n.34 e τ n. Powżsa nerpolaca es ona e sanarową lnową nerpolacą MES co można apsać
6 urs na Suach Doorancch Polechn Wrocławse wersa: lu 7 96 τ τ τ nn n n n n..35 Posawaąc 35 o 33 żąaąc erowana sę ważoneo resuum ważoneo błęu mam W[ & F ]τ.36 Jeżel wprować onacene waoweo parameru : θ Wττ W τ.37 wówcas równane.36 można apsać w posac n n [ n θ n n F ].38 e F es śreną waową weloścą w preale casu: WF τ F lub F F n θ F n W τ F Drua ależność ważna la lnowe mennośc F na ocnu casu. n..39 Z 38 mam bepośreno reurencn schema wnacana olench rowąań: n n F θ [ θ ]..4 Schema en ależ o oboru unc waowe a o poaano na rs.... Meoa oloac worsuąc sere alora Rowaąc paramer węłowe w sere alora woół n orancaąc sę o rueo wrau n n & n β & n & n.4 e β. Żąam spełnena posawoweo równana w chwl n & F.4 n n n Po posawenu.4 o.4 nebęnch presałcenach mam: β [ β & F ]..43 n n n n Uwa: a Proceura wmaa ab bło spełnone równane w punce.
7 onerla P. Meoa Elemenów Sońconch eora asosowana 97 b W prpau równośc βθ meoa es poobna o meo_ po wlęem lasac meo beżnośc meo. Rs... Różne możlwe unce waowe 3. Meoa namnesch waraów Jes o waran meo resualne. ech resuum ma posać R & F.44 V Funconał apsuem w posac n J R R.45 n V V po posawenu aprosmac τ τ τ n n n.46 żąam mnmalac unconału J J n n.47 są mam schema reurencn na wnacene n
8 urs na Suach Doorancch Polechn Wrocławse wersa: lu 7 98 F F τ τ τ τ n n Błą aprosmac Wsse poaane schema są schemaam perwseo ręu aą błą ręu. Jeżel prąć że równane F &.49 opsue aanena enowmaroweo la F wówcas równane prme posać &.5 warunem pocąowm. Wn anal la lu wbranch schemaów poaano na rs... Rs... Porównane różnch wers całowana aanena pocąoweo
Macierze hamiltonianu kp
Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
GAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
Optymalizacja funkcji
MARCIN BRAŚ Opymalzacja funcj ) Opymalzacja w obszarze neoranczonym WK: y. y WW: > > y y Znaleźć mnmum funcj: (, y) ( ) y ( ) y y ( ) y solve, P(, ) y y solve, y ( ) y ( ) y y y ( ) y W W W > (, y) > Op.
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
METODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
7.5.1. Ruch bryły swobodnej
751 Ruch brł swobone Swobona brła stwna ma w prestren seść stopn swobo o oreślena e ruchu potreba seścu równań ruchu Ruch brł możem robć na ruch śroa mas wwołan pre ałane wetora głównego sł ewnętrnch obrót
ALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
Belki złożone i zespolone
Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki
Równania różniczkowe zwyczajne
cał Padaows Isu Tecolog Iormacjc w Iżer Lądowej Wdał Iżer Lądowej Poleca Kraowsa Rówaa różcowe wcaje W ajprossm prpadu posuujem ucj jedej meej recwsej x w posac: ( x órej pocoda ( x ma spełać rówae dae
Rys. 1 Filtracja przez elementarny prostopadłościan gruntu
00 Preysław Baran www.ar.raow.pl\~pbaran Ruch wody w grunce rowąane ogólne Do yślowo wyodrębnonego prostopadłoścanu gruntu o wyarach nesońcene ałych podłącono peoetry Rys.. aładay że na erunu y grunt sę
Wyznaczanie przemieszczeń
ór Maxwea-Mora δ ynacane premesceń ór Maxwea-Mora: Bea recywsym obcążenem δ MM JE NN E ( ) M d g N o P q P TT κ G ór służy do wynacena premescena od obcążena recywsego. równanu wysępuą weośc, wywołane
Tomasz Grębski. Liczby zespolone
Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..
WYBRANE STANY NIEUSTALONE TRANSFORMATORA
WYBRANE STANY NIEUSTAONE TRANSFORMATORA Analę pracy ransformaora w sanach prejścowych można preprowadć w oparcu o równana dynamk. Rys. Schema deowy ransformaora jednofaowego. Onacmy kerunk prądów napęć
Kier. MTR Programowanie w MATLABie Laboratorium
Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
Małe drgania wokół położenia równowagi.
ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne
II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM
Kr a Sach Dooracch Poech Wrocławe wera: y 7 II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM W roae amecoe ą poawowe rówaa eowe mecha cała oałcaego be wyprowaeń ora omeary. Załaa ę że cye acył r
Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych
Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa
Algebra z geometrią 2012/2013
Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
Przykład 3.1. Projektowanie przekroju zginanego
Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena
III. KINEMATYKA OŚRODKA ODKSZTAŁCALNEGO
onerl P Mechn ośroów cąłych III INEMATYA OŚRODA ODSZTAŁALNEO Ops rch cł oszłclneo Obe fzyczny es cłem w rozmen MO eżel zme przesrzeń opoloczną w óre ży pn m swoe ooczene z oreśloną meryą orz obe en e sę
ANALIZA DYNAMICZNA ZŁOśONYCH, DYSKRETNO-CIĄGŁYCH UKŁADÓW MECHANICZNYCH
PRACE IPPT IFTR REPORTS /3 Tomas Solc ANALIZA DYNAMICZNA ZŁOśONYCH DYSKRETNO-CIĄGŁYCH UKŁADÓW MECHANICZNYCH INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI POLSKIEJ AKADEMII NAUK WARSZAWA 3 ISSN 8-5658 Reaor
Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11)
PR DOMOW ŁK NIEOZNZON / Zadanie Oblicć całki Wniki prawdić oblicając pochodne ormanch funkcji pierwonch ) d ) d ) d ) d Zadanie Oblicć całki nieonacone całkując pre cęści ) ln d ) co d ) ln d ) d ) arcg
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA ZEREGÓW CZAWYCH zereg czasow zbór warosc baanej cech lub warosc baanego zjawska zaobserwowanch w róznch momenach czasu uporzakowan chronologczne. klank szeregu czasowego:. enencja rozwojowa (ren)
Elementy i Obwody Elektryczne
Elemeny Obwody Elekryczne Elemen ( elemen obwodowy ) jedno z podsawowych pojęć eor obwodów. Elemen jes modelem pewnego zjawska lb cechy fzycznej zwązanej z obwodem. Elemeny ( jako modele ) mogą meć róŝny
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
MODELOWANIE STEROWANIA OPTYMALNEGO TEMPERATURĄ I WILGOTNOŚCIĄ POWIETRZA W POMIESZCZENIU BUDYNKU Z KLIMATYZACJĄ
MODELOWANIE STEROWANIA OPTYMALNEGO TEMPERATURĄ I WILGOTNOŚCIĄ POWIETRZA W POMIESZCZENIU BUDYNKU Z KLIMATYZACJĄ DZIENISZEWSKI Wojcech Zała Problemów Eo-Buowncwa Insyu Posawowych Problemów Techn PAN MODELING
Iwona Müller - Frączek Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolsie Seminarium Nauowe, 4 6 września 2007 w Toruniu Kaera Eonomerii i Saysyi, Uniwersye Miołaa Kopernia w Toruniu Iwona Müller - Frącze Uniwersye Miołaa Kopernia
Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI
MERO MEtalurgczny Renng On-lne Modelowane oputerowe przean fazowych w stane stały stopów ze szczególny uwzględnene odlewów ADI Wyład III: Metoda różnc sończonych dla transportu cepła asy Wocech Kapturewcz
Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
; -1 x 1 spełnia powyższe warunki. Ale
Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]
4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH
4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
METODA ELEMENTU SKOŃCZONEGO. Termokinetyka
METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC
3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Pańswowa Wyższa Szkoła Zawoowa w Kaliszu Ć wiczenia laboraoryjne z fizyki Ćwiczenie Wyznaczanie współczynnika rozszerzalności objęościowej cieczy za pomocą piknomeru Kalisz, luy 25 r. Opracował: Ryszar
ę Ę ę ę ó ó Ę ę ś ś Ę ę Ę ń Ę Ę ó Ę ó ę ę Ę ń ęś ś ę ść Ę ó Ą ś ę ę ęę ę ę ń ę ę Ę ś Ł ę ę ę ć ś ę ś Ę ę ś ś ś Ą ś ę ę ń ó ę ć ś ń ó ó Ą ę ń ęę ś ś ś Ę ś ś ę ś ś ę ń ń Ę ĄĄ Ł Śę ó ń ś ń Ę ó ś ś ę ś Ę ś
METODY ANALIZY OBWODÓW LINIOWYCH
y p j y p y p y p WOJH M MTODY ANAZY OBWODÓW NOWYH wyane nerneowe www.eoraobwoow.eu.pl r. Wy. Nała egz SBN 8-894-4-5 r. Wy. (oru) 5 egz. SBN 8-894-6- Wyawncwa czelnane Aaem Technczno-olnczej w Bygozczy
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Algebra WYKŁAD 1 ALGEBRA 1
Algebra WYKŁAD ALGEBRA Realacja predmotu Wykład 30 god. Ćwcena 5 god. Regulamn alceń: www.mn.pw.edu.pl/~fgurny ALGEBRA Program ajęć Lcby espolone Algebra macery Układy równań lnowych Geometra analtycna
,..., u x n. , 2 u x 2 1
. Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać
Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.
eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
Ą Ł Ś ą Źą Ó Ż ŁŃĄ ś ą ś ą ą ż ó ń ą ż ś ś ć ą ś ą ś ć ż ść ó ś ó ą ó ą ń ą ę ą ę ż ń ą ś ó ś ą ą ą ś ś ń ą Ę ą ą ś ś ą ń ó ż ść ęż ęś ś śą ęś ś ą ą ś ż ź ś Ęść ż Ś ń ń ą Ź Ęó ę ó Żą Ń Ń ń ś ż ż ń ó ś
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę
Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń
Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaa Kopernka w Torunu Unwersye Mkołaa Kopernka w Torunu Ops kurozy rozkładów
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
COMPARISON OF CONJUGATE GRADIENT AND QUASI-NEWTON BFGS ALGORITHMS IN THE OPTIMAL POWER FLOW PROBLEM
ELEKTRYKA 9 Zeyt 3 () Ro LV Bernar BARO Artur PASIERBEK Intytut Eletrotecn Inormaty Poltecna Śląa w Glwcac PORÓWAIE WYDAJOŚCI ALGORYTMÓW GRADIETU SPRZĘŻOEGO I QUASI-EWTOOWSKIEGO BFGS W ZAGADIEIU OPTYMALIZACJI
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8
Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Rozruch silnika prądu stałego
Rozruch silnika prądu sałego 1. Model silnika prądu sałego (SPS) 1.1 Układ równań modelu SPS Układ równań modelu silnika prądu sałego d ua = Ra ia + La ia + ea d równanie obwodu wornika d uf = Rf if +
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t
Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n
METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA PSZENŻYTA
I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 01: Z. (14) T.1 S. 5- ISSN 149-764 Polske Towarstwo Inżner Rolnce http://www.ptr.org METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA
IV. WPROWADZENIE DO MES
Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.
Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó
Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż
Ekonometria I materiały do ćwiczeń data lp wykładu temat Wykład dr Dorota Ciołek Ćwiczenia mgr inż. Marta Chylińska
Ekonomera I maerał do ćwczeń daa lp wkładu ema Wkład dr Doroa Cołek Ćwczena mgr nż. Mara Chlńska - Rodzaje danch sascznch 1a) Przkład problemów badawczch - Zmenne ekonomczne jako zmenne hpoeza, propozcja
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Płaska fala monochromatyczna
Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s P s s - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
(estymator asymptotycznej macierzy kowariancji estymatora nieliniowej MNK w MNRN)
W ypowym zadanu z regresj nelnowej mamy nasępujące eapy: Esymacja (uzyskane ocen punkowych paramerów), w ym: 1. Dobór punków sarowych.. Kolejne eracje algorymu Gaussa Newona. 3. Zakończene algorymu Gaussa
WIELOKRYTERIALNY, NIELINIOWY MODEL WIELKOŚCI ZAMÓWIENIA MATERIAŁÓW DLA KOPALNI WĘGLA KAMIENNEGO *
Kaaryna Jakowka-Swalka WIELOKRYTERIALNY NIELINIOWY MODEL WIELKOŚCI ZAMÓWIENIA MATERIAŁÓW DLA KOPALNI WĘGLA KAMIENNEGO * Wprowadene W eor erowana apaam wyępje wele model kóre powalają alć polykę alana apaów
5.7. Przykład liczbowy
5.7. Prład licbow onać oblicenia nośności beli podsuwnicowej e sali S75 pręsłami o długościach l m swobodnie podparmi na słupach esaad obsługiwanej pre dwie suwnice naorowe o jednaowch paramerach usuowanej
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Kurtoza w procesach generowanych przez model RCA GARCH
Joanna Górka * Kuroza w procesach generowanych przez model RCA GARCH Wsęp Na przesrzen osanej dekady odnoowuje sę szybk rozwój model nelnowych. Wdoczna jes zwłaszcza różnorodność nelnowych specyfkacj modelowych,
Analiza obwodów elektrycznych
Analza obwodów elerycznych Oreślene mnmalneo zboru funcj obwodowych F o { u, } Analza Wyznaczene nnych welośc charaeryzujących obwód; np. moce, sprawnośc p. Obwód eleryczny Wyznaczene warośc paramerów
Konspekty wykładów z ekonometrii
Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć