Rozwiązanie jednokierunkowego przepływu w przewodach prostoosiowych o dowolnym kształcie przekroju poprzecznego metodą elementów skończonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązanie jednokierunkowego przepływu w przewodach prostoosiowych o dowolnym kształcie przekroju poprzecznego metodą elementów skończonych"

Transkrypt

1 Symulacja w Badanach Rozwoju Vol. 3, No. 1/2012 Tomasz Janusz TELESZEWSKI, Sławomr Adam SORKO Poltchnka Bałostocka, WBIŚ, ul.wjska 45E, Bałystok E-mal: t.tlszwsk@pb.du.pl, s.sorko@pb.du.pl Rozwązan jdnokrunkowgo przpływu w przwodach prostoosowych o dowolnym kształc przkroju poprzczngo mtodą lmntów skończonych 1 Wstęp W pracy przdstawono rozwązan jdnokrunkowgo lamnarngo przpływu w przwodach prostoosowych mtodą lmntów skończonych (MES) dla różnych kształtów przkroju poprzczngo przy zastosowanu płaskch satk. Mtoda lmntów skończonych ugruntowana tortyczn, najbardzj popularna, stosowana jst w wlu programach komrcyjnych. Klasyczny algorytm rozwązana przpływu w przwodach prostoosowych wymaga budowy pracochłonnych przstrznnych satk (rys.1). Wyprowadzony w publkacj algorytm pozwala zastąpć skomplkowaną satkę przstrznną wwnątrz przwodu satką płaską zlokalzowaną w przkroju przwodu (rys.2). Rys. 1. Przykładowa przstrznna satka stosowana w symulacj przpływu w przwodach prostoosowych składajaca sę z 512 prostopadłoścanów Fg. 1. Partton of th rctangl channl volum nto 512 paralllppd cll. 47

2 Tomasz Janusz TELESZEWSKI, Sławomr ADAM SORKO Rys. 2. Przykładowa płaska satka przkroju przwodu prostoosowgo składająca sę z 64 prostokątnych lmntów Fg. 2. On parttons of th cross-scton rctangl channl nto 64 rctangls. Przpływ jdnokrunkowy w przwodz prostolnowym opsany jst następującym równanm różnczkowym [1]: 2 2 cz cz p µ = (1) x y z gdz: c Z oznacza prędkość przpływu, p jst to cśnn, natomast µ jst współczynnkm lpkośc dynamcznj. Pol prędkośc przpływu jdnokrunkowgo c Z można podzlć na składową prędkośc przpływu nzakłócongo c oraz składową prędkośc przpływu wzbudzongo ścankam prostolnowgo kanału c w [2]: cz = c + cw (2) gdz: dp c = ( xq yq ) ; 4 + = µ dz (2a) Funkcja (2a) spłna równan (4). Wartość prędkośc na brzgu (L) matralnym nprzpuszczalnym równa jst zru, wobc czgo warunk brzgowy na ścanc (L) przyjmuj postać: c ( ) ; w q = c q L (3) Warunk brzgowy (3) rdukuj równan Possona (1) do równana Laplac a: 2 2 cw cw + = 0 (4) 2 2 x y 48

3 Rozwązan jdnokrunkowgo przpływu w przwodach prostoosowych o dowolnym kształc przkroju poprzczngo mtodą lmntów skończonych 2 Rozwązan zagadnna ustalongo jdnokrunkowgo lamnarngo przpływu w przwodach prostoosowych mtodą lmntów skończonych W rozwązanu zagadnna przpływu jdnokrunkowgo w przwodach prostolnowych mtodą lmntów skończonych przyjęto trójkątn lmnty podzału obszaru. Na rysunku 3 przdstawono przykładowy lmnt trójkątny, gdz: (Ω) jst obszarm lmntu, natomast (L) jst brzgm lmntu skończongo. Y 1 Ω L Rys. 3. Trójkątny lmnt skończony Fg. 3. Trangular fnt lmnt Oblczna wykonano za pomocą mtody Galrkna [3,4]: 2 c Φ dω = 0 ( ) Ω gdz Φ jst funkcją kształtu (funkcją ntrpolacyjną). Prędkość c jst aproksymowana w obręb lmntu skończongo szrgm: c = Φ c (6) gdz, c są to węzłow wartośc funkcj c, natomast Φ są to funkcj ntrpolacyjn. Prędkość c w lmnc trójkątnym przyblżono funkcją lnową: Φ % = a + b x + c y (7) Całkując równan (5) przz częśc uzyskamy równan: c c c Φ c Φ nx + ny Φ dl λ λ d 0 + Ω = x y (8) x x y y L Ω Po podstawnu zalżnośc (6) do równana (8), otrzymuj sę równan dla -tgo węzła: A c = F (9) gdz: A 3 2 X j j Φ Φ j = + dω x x y y (10) Φ j Φ j Ω (5) 49

4 Tomasz Janusz TELESZEWSKI, Sławomr ADAM SORKO c c F = nx + ny dω x y Ω (11) Koljnym krokm jst przjśc z układu lokalngo (9) do układu globalngo. Globalny układ równań w MES, można uzyskać poprzz sumowan układów równań otrzymanych dla poszczgólnych lmntów skończonych. 3 Wryfkacja rozwązana zagadnna ustalongo jdnokrunkowgo lamnarngo przpływu w przwodach prostoosowych mtodą lmntów skończonych przy zastosowanu dwuwymarowych satk W clu wykonana wryfkacj mtody MES przy zastosowanu płaskch satk w modlowanu przpływów jdnokrunkowych w przwodach prostoosowych porównano rzultaty oblczń numrycznych MES z znanym rozwązanm analtycznym dla przwodu lptyczngo. Oblczna wykonano dla satk składających sę z lmntów trójkątnych o trzch gęstoścach: 30 (rys. 4), 510 oraz 2046 (rys. 5) lmntów dla = 1. Rozwązan tortyczn pola prędkośc w przwodz prostolnowym o przkroju lpsy opsan jst następującym wzorm [1]: a b x y 1 dp (1 ) ; a + b a b µ dz ct = = 2 gdz: a=2, b=1 są to półos lpsy. (12) Rys. 4. Przykładowa satka przkroju przwodu lptyczngo składająca sę z 30 trójkątnych lmntów Fg.4. On parttons of th cross-scton llptcal channl nto 30 trangls 50

5 Rozwązan jdnokrunkowgo przpływu w przwodach prostoosowych o dowolnym kształc przkroju poprzczngo mtodą lmntów skończonych Rys. 5. Przykładowa satka przkroju przwodu lptyczngo składająca sę z 2046 trójkątnych lmntów Fg.5. On parttons of th cross-scton llptcal channl nto 2046 trangls Błąd rozwązana MES dla prędkośc w wybranych punktach wyznaczono z zalżnośc: δ cmes = ct cmes *100%, ct (13) gdz: cmes oznacza prędkość wyznaczoną mtodą lmntów skończonych przy zastosowanu płaskch satk, natomast ct jst to prędkość wyznaczona z rozwązana tortyczngo (12). Na rysunku 6 wykrślono pol prędkośc w przwodz lptycznym wyznaczon mtodą MES przy zastosowanu satk płaskch. Rys. 6. Pol prędkośc w przwodz prostoosowym o przkroju lptycznym wyznaczon mtodą MES przz zastosowanu płaskch satk ( = 1 ) Fg.6. FEM soluton wth two-dmnsonal grd - vlocty n llptcal channl ( = 1 ) 51

6 Tomasz Janusz TELESZEWSKI, Sławomr ADAM SORKO Tablaryczn zstawn porównana rozwązana numryczngo tortyczngo w wybranych punktach przkroju prędkośc znajduj sę tabl 1. Błąd mtody MES przy zastosowanu płaskch satk malj wraz z zagęszcznm satk. Mtoda numryczna MES charaktryzuj sę dużą dokładnoścą dla satk składającj sę już z 510 trójkątnych lmntów, gdz błąd n przkracza 0.45%. Tab. 1. Prędkość w przwodz lptycznym- błąd rozwązana MES przy zastosowanu dwuwymarowych satk Tab. 1. Vlocty n llptcal duct rror analyss appld n MES wth two-dmnsonal grd Lp Współrzdn obszaru Rozwązan Rozwązan Błąd mtody x y analtyczn MES 30l. MES 30l. - mm mm mm/s mm/s % 1 0, , , , , , , , , , , , , , , , , , , , , , , , MES 510 l. 1 0, , , , , , , , , , , , , , , , , , , , , , , , MES 2046 l. 1 0, , , , , , , , , , , , , , , , , , , , , , , , Przykłady oblcznow Ponżj przdstawono rzultaty oblczń numrycznych MES przy zastosowanu satk dwuwymarowych pól prędkośc w przwodach prostoosowych, dla których n są znan rozwązana analtyczn. Wszystk oblczna wykonano dla = 1. Na rysunkach 7-10 wykrślono pola prędkośc w przwodz o przkroju: trójkąta rozwartokątngo (rys.7), równolgłoboku (rys.8), trapzu równoramnngo (rys.9), oraz szścokąta (rys.10). Symulacj zostały przprowadzon na autorskm program oblcznowym FEM 1D DUCT FLOW. 52

7 Rozwązan jdnokrunkowgo przpływu w przwodach prostoosowych o dowolnym kształc przkroju poprzczngo mtodą lmntów skończonych Rys. 7. Pol prędkośc w przwodz prostoosowym o przkroju trójkąta rozwartokątngo wyznaczon mtodą MES przz zastosowanu płaskch satk ( = 1) Fg.7. FEM soluton wth two-dmnsonal grd - vlocty n soscls trangl channl ( = 1) Rys. 8. Pol prędkośc w przwodz prostoosowym o przkroju równolgłoboku wyznaczon mtodą MES przz zastosowanu płaskch satk ( = 1) Fg.8. FEM soluton wth two-dmnsonal grd - vlocty n paralllogram channl ( = 1) Rys. 9. Pol prędkośc w przwodz prostoosowym o przkroju trapzu wyznaczon mtodą MES przz zastosowanu płaskch satk ( = 1) Fg.9. FEM soluton wth two-dmnsonal grd - vlocty n trapzum channl ( = 1) 53

8 Tomasz Janusz TELESZEWSKI, Sławomr ADAM SORKO Rys. 10. Pol prędkośc w przwodz prostoosowym o przkroju szścokąta wyznaczon mtodą MES przz zastosowanu płaskch satk ( = 1) Fg.10. FEM soluton wth two-dmnsonal grd - vlocty n hxagon channl ( = 1) 5 Podsumowan Wyprowadzona mtoda MES, którą oparto na budow dwuwymarowych satk w przkroju przwodu znaczn upraszcza klasyczny algorytm MES dla przpływu w przwodach prostoosowych, w których wymagana jst budowa pracochłonnych, przstrznnych satk. Elmnacja satk trójwymarowych znaczn przyśpsza budowę modlu skraca czas komputrowych oblczń. Zaprzntowany algorytm charaktryzuj sę dużą dokładnoścą równż dla nwlkch gęstośc satk. Główną zaltą przdstawonj numrycznj mtody w stosunku do mtody lmntów brzgowych jst brak błędu z względu na osoblwośc funkcj podcałkowych mtody MEB. Mtoda szczgóln moż być stosowana do dynamczn rozwjanych mtod symulacj w mkrokanałach, gdz przpływy są zgodn z mchanzmm makroprzpływów [5,6]. Ltratura 1. Batchlor G.K.: An ntroducton to flud dynamcs. Cambrdg Unvrsty Prss Tlszwsk T.J., Sorko S.A.: Zastosowan mtody lmntów brzgowych do wyznaczana jdnokrunkowgo przpływu w przwodach prostoosowych o dowolnym kształc przkroju poprzczngo, Acta Mchanca t Automatca, s , Vol.5, nr 3, Rddy J.N., Gartlng D.K.: Th Fnt Elmnt Mthod n Hat Transfr and Flud Dynamcs. CRC Prss Chung T.J.: Fnt Elmnt Analyss n Flud Dynamcs, Mc-Graw-Hll, Nw York

9 Rozwązan jdnokrunkowgo przpływu w przwodach prostoosowych o dowolnym kształc przkroju poprzczngo mtodą lmntów skończonych 5. Clata, G.P.; Cumo, M.; McPhal, S.; Zummo, G., Charactrzaton of flud dynamc bhavour and channl wall ffcts n mcrotub, Intrnatonal Journal of Hat and Flud Flow, Vol. 27, Issu 1, , Wbl, W.; Ehrhard, P., Exprmnts on th lamnar/turbulnt transton of lqud flows n rctangular mcrochannls, Hat Transfr Engnrng, Vol. 30, Issu 1-2, pp , 2009 Strszczn W pracy przdstawono rozwązan jdnokrunkowgo lamnarngo przpływu w przwodach prostoosowych mtodą lmntów skończonych (MES) dla różnych kształtów przkroju poprzczngo przy zastosowanu płaskch satk. W publkacj wykonano waldację wyprowadzonj mtody oraz przdstawono przykłady zastosowana algorytmu. W clu wykonana waldacj mtody oraz symulacj napsano autorsk program oblcznowy FEM 1D DUCT FLOW w języku Fortran. Słowa kluczow: mtoda lmntów skończonych, przpływy lamnarn, przwody prostoosow Implmntaton of th Fnt Elmnt Mthod for th soluton of undrctonal flow through straght pps Summary Th work contans th mplmntaton of th Fnt Elmnt Mthod for th soluton of undrctonal flow through straght pps usng a two-dmnsonal grd. Th algorthm was vrfd by numrcal tsts and compard wth analytcal soluton. A numrcal xampls ar prsntd. Th computr program FEM 1D DUCT FLOW was wrttn n Fortran programmng languags. Opracowan zralzowano w ramach pracy własnj nr W/WBIŚ/8/

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

L6 - Obwody nieliniowe i optymalizacja obwodów

L6 - Obwody nieliniowe i optymalizacja obwodów L6 - Obwody nlnow optymalzacja obwodów. Funkcj optymalzacj Tabla Zstawn najważnjszych funkcj optymalzacyjnych Matlaba [] Nazwa funkcj Rodzaj rozwązywango zadana Matmatyczny ops zadana fmnbnd Mnmalzacja

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

Modelowanie przepływu ciepła w przegrodach z instalacjami ciepłej wody użytkowej metodą brzegowych równań całkowych

Modelowanie przepływu ciepła w przegrodach z instalacjami ciepłej wody użytkowej metodą brzegowych równań całkowych Symulacja w Badaniach i Rozwoju Vol., No. /011 Tomasz Janusz TELESZEWSKI, Piotr RYNKOWSKI Politechnika Białostocka, WBiIŚ, ul.wiejska 45E, 15-351 Białystok E-mail: t.teleszewski@pb.edu.pl, rynkowski@pb.edu.pl

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma

Bardziej szczegółowo

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter Scntfc ournal Martm Unvrt of Szczcn Zzt Naukow Akadma Morka w Szczcn 8, 13(85) pp. 5 9 8, 13(85). 5 9 ozcjonowan bazując na wlonorowm fltrz Kalmana otonng bad on th mult-nor Kalman fltr otr Borkowk, anuz

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Analiza porównawcza parametrów fizykalnych mostków cieplnych przy zastosowaniu analiz numerycznych

Analiza porównawcza parametrów fizykalnych mostków cieplnych przy zastosowaniu analiz numerycznych PAWŁOWSKI Krzysztof 1 DYBOWSKA Monka 2 Analza porównawcza paramtrów fzykalnych mostków cplnych przy zastosowanu analz numrycznych WSTĘP Nowoczsn rozwązana konstrukcyjno-matrałow stosowan w budownctw nrozrwaln

Bardziej szczegółowo

MODELOWANIE ODKSZTAŁCEŃ STRUKTURALNYCH ELEMENTÓW STALOWYCH Z PRZETOPIENIEM WARSTWY WIERZCHNIEJ

MODELOWANIE ODKSZTAŁCEŃ STRUKTURALNYCH ELEMENTÓW STALOWYCH Z PRZETOPIENIEM WARSTWY WIERZCHNIEJ ODELOWANIE INŻYNIERKIE IN 1896-771X 43, s. 131-136, Glwc 01 ODELOWANIE ODKZTAŁCEŃ TRUKTURALNYCH ELEENTÓW TALOWYCH Z PRZETOPIENIE WARTWY WIERZCHNIEJ ADA KULAWIK Instytut Informatyk Tortyczn tosowan, Poltchnka

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałośc Matrałów Mtod Komutrowych Mchank Rozrawa doktorska Tytuł: Analza wrażlwośc otymalzacja wolucyjna układów mchancznych

Bardziej szczegółowo

OSZACOWANIE BŁĘDÓW A POSTERIORI I GĘSTOŚCI PUNKTÓW DANYCH EKSPERYMENTALNO-NUMERYCZNYCH

OSZACOWANIE BŁĘDÓW A POSTERIORI I GĘSTOŚCI PUNKTÓW DANYCH EKSPERYMENTALNO-NUMERYCZNYCH JÓZEF KROK, JAN WOJAS OSZACOWANIE BŁĘDÓW A POSERIORI I GĘSOŚCI PUNKÓW DANYCH EKSPERYMENALNO-NUMERYCZNYCH ESIMAION OF A POSERIORI ERROR AND MESH DENSIY OF EXPERIMENAL-NUMERICAL DAA Strszczn Abstract W nnjszym

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

VI. MATEMATYCZNE PODSTAWY MES

VI. MATEMATYCZNE PODSTAWY MES Kurs na Studac Dotorancc Poltcn Wrocławsj (wrsja: luty 007) 40 I. MATEMATYCZE PODSTAWY MES. Problm abstracyjny Rozwązujmy problm lptyczny np. przstrznn zagadnn tor sprężystośc. Poszuujmy rozwązana u( nmatyczn

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ĆWICZEIE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH Cl ćwczna: lustracja praktyczngo sposobu wyznaczana wybranych wskaźnków opsujących nzawodność typowych struktur nzawodnoścowych. Przdmot ćwczna: wrtualn

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Wsiądź do Ciuchci Wybierz się w podróż z Przedszkolem Ciuchcia

Wsiądź do Ciuchci Wybierz się w podróż z Przedszkolem Ciuchcia Wybrz sę w podróż z Przdszkolm Cuchca s t u w j n a Z w uśmch dzcka Dla kogo? dla wszystkch gmn dla wszystkch gmn dla dla nwstorów prywatnych nwstorów prywatnych a przd wszystkm dla małych naukowców, sportowców,

Bardziej szczegółowo

1 n 0,1, exp n

1 n 0,1, exp n 8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałości Matriałów i Mtod Komputrowych Mchaniki Rozprawa doktorska Tytuł: Optymalizacja układów powirzchniowych z wykorzystanim

Bardziej szczegółowo

ALGORYTM WYZNACZANIA WSPÓŁCZYNNIKA CORIOLISA PRZEPŁYWÓW LAMINARNYCH W KANAŁACH PROSTOKĄTNYCH METODĄ ELEMENTÓW BRZEGOWYCH

ALGORYTM WYZNACZANIA WSPÓŁCZYNNIKA CORIOLISA PRZEPŁYWÓW LAMINARNYCH W KANAŁACH PROSTOKĄTNYCH METODĄ ELEMENTÓW BRZEGOWYCH ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ Nr 283 Budownictwo i Inżynieria Środowiska z. 59 (4/12) 2012 Tomasz Janusz TELESZEWSKI Politechnika Białostocka ALGORYTM WYZNACZANIA WSPÓŁCZYNNIKA CORIOLISA PRZEPŁYWÓW

Bardziej szczegółowo

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj

Bardziej szczegółowo

XLIV SESJA STUDENCKICH KÓŁ NAUKOWYCH KOŁO NAUKOWE MAGNESIK

XLIV SESJA STUDENCKICH KÓŁ NAUKOWYCH KOŁO NAUKOWE MAGNESIK XLIV SESJ STUDENCKICH KÓŁ NUKOWYCH KOŁO NUKOWE MGNESIK naliza własności silnika typu SRM z wykorzystaniem modeli polowych i obwodowych Wykonali: Miłosz Handzel Jarosław Gorgoń Opiekun naukow: dr hab. inż.

Bardziej szczegółowo

NIEZAWODNOŚĆ KONSTRUKCJI O PARAMETRACH PRZEDZIAŁOWYCH I LOSOWYCH

NIEZAWODNOŚĆ KONSTRUKCJI O PARAMETRACH PRZEDZIAŁOWYCH I LOSOWYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2 Sra: BUDOWNICTWO z. Nr kol. Andrzj POWNUK NIEZAWODNOŚĆ KONSTRUKCJI O PARAETRACH PRZEDZIAŁOWYCH I LOSOWYCH Strszczn. W pracy wykazano, ż mtoda projktowana konstrukcj

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

Automatyzacja Procesów Przemysłowych

Automatyzacja Procesów Przemysłowych Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

MES dla ustrojów prętowych (statyka)

MES dla ustrojów prętowych (statyka) MES dla ustrojów prętowych (statyka) Jrzy Pamin -mail: jpamin@l5.pk.du.pl Piotr Pluciński -mail: pplucin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

WPŁYW PRĘDKOŚCI ZANURZANIA DO CHŁODZIWA NA STAN NAPRĘŻENIA W HARTOWANYCH ELEMENTACH STALOWYCH

WPŁYW PRĘDKOŚCI ZANURZANIA DO CHŁODZIWA NA STAN NAPRĘŻENIA W HARTOWANYCH ELEMENTACH STALOWYCH ODELOWAIE IŻYIERSKIE ISS 896-77X 43,. 37-44, Glwc 202 WPŁYW PRĘDKOŚCI ZAURZAIA DO CHŁODZIWA A SA APRĘŻEIA W HAROWAYCH ELEEACH SALOWYCH ADA KULAWIK, JOAA WRÓEL Intytut Informatyk ortyczn Stoowan, Poltchnka

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

TOMASZ TELESZEWSKI * SYMULACJA KONWEKCJI WYMUSZONEJ W PRZEWODACH PROSTOOSIOWYCH PRZY PRZEPŁYWIE LAMINARNYM METODĄ ELEMENTÓW BRZEGOWYCH

TOMASZ TELESZEWSKI * SYMULACJA KONWEKCJI WYMUSZONEJ W PRZEWODACH PROSTOOSIOWYCH PRZY PRZEPŁYWIE LAMINARNYM METODĄ ELEMENTÓW BRZEGOWYCH UNIWERSYTET ZIELONOGÓRSKI ZESZYTY NAUKOWE NR 153 Nr 33 INŻYNIERIA ŚRODOWISKA 014 TOMASZ TELESZEWSKI * SYMULACJA KONWEKCJI WYMUSZONEJ W PRZEWODACH PROSTOOSIOWYCH PRZY PRZEPŁYWIE LAMINARNYM METODĄ ELEMENTÓW

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Topologiczna struktura modeli skończenie elementowych mechaniki ośrodków ciągłych

Topologiczna struktura modeli skończenie elementowych mechaniki ośrodków ciągłych BIULETYN WAT VOL. LVII, NR, 008 Topologczna struktura modl skończn lmntowych mchank ośrodków cągłych KRYSPIN MIROTA Akadma Tchnczno-Humanstyczna, Katdra Podstaw Budowy Maszyn, 43-309 Blsko-Bała, ul. Wllowa

Bardziej szczegółowo

Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego:

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ( 1)=3 u(2)= 2

Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ( 1)=3 u(2)= 2 Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ()=3 u(2)= 2 (1) metodami residuów ważonych i MES. Metoda residuów ważonych Zanim zaczniemy obliczenia metodami wariacyjnymi zamienimy

Bardziej szczegółowo

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1 1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z

Bardziej szczegółowo

Algorytm MEB wyznaczania pola temperatury w przepływie Poiseuille a w przewodach prostoosiowych o stałej temperaturze ścianki

Algorytm MEB wyznaczania pola temperatury w przepływie Poiseuille a w przewodach prostoosiowych o stałej temperaturze ścianki Symulacja w Badaniach i Rozwoju Vol. 3, No. 4/01 Tomasz Janusz TELESZEWSKI, Anna WERNER-JUSZCZUK Politechnika Białostocka, WBiIŚ, ul.wiejska 45E, 15-351 Białystok E-mail: t.teleszewski@pb.edu.pl, a.juszczuk@pb.edu.pl

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Planowanie trajektorii ruchu chwytaka z punktem pośrednim

Planowanie trajektorii ruchu chwytaka z punktem pośrednim Dr nŝ. Andrzj Graboś Dr nŝ. ark Boryga Katdra InŜynr chancznj Automatyk, Wydzał InŜynr Produkcj, Unwrsytt Przyrodnczy w ubln, ul. Dośwadczalna 50A, 0-80 ubln, Polska -mal: andrzj.grabos@up.lubln.pl -mal:

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie Jak zwększyć fktywność radość z wykonywanj pracy? Motywacja do pracy - badan, szkoln czym sę zajmujmy? szkolna, symulacj Komunkacja, współpraca Cągł doskonaln Zarządzan zspołm Rozwój talntów motywacja

Bardziej szczegółowo

Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB

Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB W artykule przedstawiono wyniki eksperymentu numerycznego - pola temperatury na powierzchni płyty grzejnej dla wybranych

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz 1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski

Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski Optymaln rozmiszczani tłumików lpkosprężystych na rami płaskij Macij Dolny Piotr Cybulski Poznań 20 Spis trści. Wprowadzni 3.. Cl opracowania...3.2. Znaczni tłumików drgań.3 2. Omówini sposobu rozwiązania

Bardziej szczegółowo

ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH

ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH Strona z 9 ENERGETYCZNE KRYTERUM STANÓW GRANCZNYC DA MATERAŁÓW KOMÓRKOWYC Piotr Kordzikowki Małgorzata Janu-Michalka Ryzard B. Pęchrki Katdra Wytrzymałości Matriałów ntytut Mchaniki Budowli Wydział nżynirii

Bardziej szczegółowo

MES dla stacjonarnego przepływu ciepła

MES dla stacjonarnego przepływu ciepła ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ

ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ Buownictwo o zoptymalizowanym potencjale energetycznym 1(13) 2014, s. 22-27 Anna DERLATKA, Piotr LACKI Politechnika Częstochowska ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ

Bardziej szczegółowo

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

ADAPTACYJNA ANALIZA POWŁOK ZDOMINOWANYCH GIĘTNIE O ZŁOŻONYM OPISIE MECHANICZNYM

ADAPTACYJNA ANALIZA POWŁOK ZDOMINOWANYCH GIĘTNIE O ZŁOŻONYM OPISIE MECHANICZNYM Mgr inż. Magdalna ZIELIŃSKA DOI: 10.17814/mchanik.2015.7.320 Uniwrsytt Warmińsko-Mazurski w Olsztyni, Wydział Nauk Tchnicznych Dr hab. inż. Grzgorz ZBOIŃSKI Instytut Maszyn Przpływowych PAN w Gdańsku ADAPTACYJNA

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie Jak zwększyć fktywność radość z wykonywanj pracy? Motywacja do pracy - badan, szkoln Osoba prowadząca badan zawodowo aktywator własna dzałalność gospodarcza Gtn Nobl Bank trnr wwnętrzny Konrad Dębkowsk

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

Q n. 1 1 x. el = i. L [m] q [kn/m] P [kn] E [kpa], A [m 2 ] n-1 n. Sławomir Milewski

Q n. 1 1 x. el = i. L [m] q [kn/m] P [kn] E [kpa], A [m 2 ] n-1 n. Sławomir Milewski Ćwiczni a: Statyka rozciągango pręta - intrpolacja liniowa Dany jst pręt o długości L, zamocowany na lwym końcu, obciążony w sposób jdnorodny ciągły (obciążni q) i skupiony (siła P na prawym swobodnym

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Modelowanie procesów transportu masy i ciepła w płaskich kolektorach słonecznych

Modelowanie procesów transportu masy i ciepła w płaskich kolektorach słonecznych Symulacja w Badaniach i Rozwoju Vol. 5, No. 1/014 Anna Barbara DEMIANIUK, Sławomir Adam SORKO Politechnika Białostocka, WBiIŚ, ul.wiejska 45E, 15-351 Białystok E-mail: a.b.demianiuk@10g.pl, s.sorko@pb.edu.pl

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

MATEMATYCZNY I NUMERYCZNY MODEL CZYSZCZENIA STOPU METODĄ PRZETAPIANIA STREFOWEGO

MATEMATYCZNY I NUMERYCZNY MODEL CZYSZCZENIA STOPU METODĄ PRZETAPIANIA STREFOWEGO 5/4 oldfcaton of Mtals and Alloys Yar 999 Volum Book No. 4 Krpnęc Mtal topów Rok 999 Rocnk Nr 4 PAN Katowc P IN 8-986 MATEMATYZNY I NUMERYZNY MOE ZYZZENIA TOPU METOĄ PRZETAPIANIA TREFOWEGO BOKOTA Adam

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH

WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH Górnictwo i Goinżyniria Rok 32 Zszyt 1 28 Agniszka Maj* WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH 1. Wstęp Obsrwacj

Bardziej szczegółowo

ZASTOSOWANIE METODY ELEMENTÓW BRZEGOWYCH DO WYZNACZANIA PŁASKICH PRZEPŁYWÓW CIECZY LEPKIEJ

ZASTOSOWANIE METODY ELEMENTÓW BRZEGOWYCH DO WYZNACZANIA PŁASKICH PRZEPŁYWÓW CIECZY LEPKIEJ Tomasz J. Teleszewski Sławomir A. Sorko Zastosowanie metody elementów brzegowych do wyznaczania płaskich przepływów cieczy lepkiej ZASTOSOWANIE METODY ELEMENTÓW BRZEGOWYCH DO WYZNACZANIA PŁASKICH PRZEPŁYWÓW

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy .7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

Modelowanie przepływu Taylora-Couetta metodą elementów brzegowych

Modelowanie przepływu Taylora-Couetta metodą elementów brzegowych Symulacja w Badaniach i Rozwoju Vol. 7, No. 1-/016 Tomasz Janusz TEESZEWSKI, Sławomir Adam SORKO Politechnika Białostocka, WBiIŚ, ul.wiejska 45E, 15-351 Białystok E-mail: t.teleszewski@pb.edu.pl, s.sorko@pb.edu.pl

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor

Bardziej szczegółowo

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I P O Z N AŃSKIEJ Nr Budowa Maszyn Zarządzane Produkcją 005 PIOTR GORZELAŃCZYK, JAN ADAM KOŁODZIEJ OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo