Wstęp do astrofizyki I

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do astrofizyki I"

Transkrypt

1 Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21

2 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury z barwą Prawo przesunięć Wiena Prawo Stefana-Boltzmanna Słońce jako ciało doskonale czarne Równanie Plancka Kąt bryłowy Monochromatyczna moc promieniowania Monochromatyczny strumień promieniowania Jasności widome gwiazd Jasność bolometryczna Wskaźnik barwy Wykres kolor-kolor Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 2/21

3 Parę słów o pomieszaniu pojęć Ze względów historycznych w różnych naukach badających światło (fizyka, astronomia, meteorologia) pod tą samą nazwa rozumie się co innego Dla nas najważniejsze jest różne rozumienie pojęcia strumień promieniowania Dla fizyka to moc promieniowania, przechodzącego przez daną powierzchnię, wyrażana w [W] Dla astronoma to moc promieniowania przechodzącego przez powierzchnię, podzielona przez pole tej powierzchni [W/m 2 ] Dla zatwardziałego astrofizyka-teoretyka to moc promieniowania przechodzącego przez powierzchnię, podzielona przez pole tej powierzchni i dodatkowo podzielona przez π [W/m 2 ] Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 3/21

4 Związek temperatury z barwą Betelgeza (T e = 3400 K), Rigel (T e = K) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 4/21

5 Ciało doskonale czarne Ciało doskonale czarne (CDC) pochłania całą energię świetlną, która na nie pada i wypromieniowuje ją w widmie ciągłym Planety i gwiazdy w pierwszym przybliżeniu są CDC Rozkład energii w widmie CDC Rozkład ciągły (bez przerw) Występuje maksimum na λ max Im wyższa temperatura T, tym mniejsza λ max Im wyższa T, tym więcej energii emitowane na wszystkich λ (pole pod krzywą) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 5/21

6 Prawo przesunięć Wiena Prawo przesunięć Wiena (obowiązuje dla CDC): λ max T = m K Betelgeza: temp. powierzchni T = 3400 K, maksimum energii emituje na fali λ max = m K 3400 K = m = 8530 Å Rigel: temp. powierzchni T = K, maksimum energii emituje na fali λ max = m K K = m = 2870 Å Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 6/21

7 Prawo Stefana-Boltzmanna (Stefan to nazwisko!) Josef Stefan i Ludwig Boltzmann stwierdzili, że CDC o powierzchni A i temperaturze T wypromieniowuje moc L równą: L = AσT 4, gdzie: σ = W m 2 K 4 Dla sferycznej gwiazdy o promieniu R, A = 4πR 2 i prawo Stefana-Boltzmanna przyjmuje postać: L = 4πR 2 σt 4. (1) Temperatura występująca w równaniu (1) nazywa się temperatura efektywna T e powierzchni gwiazdy Strumień promieniowania na powierzchni gwiazdy F = L/4πR 2, stąd: F = σt 4 e (2) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 7/21

8 Słońce jako ciało doskonale czarne Moc promieniowania Słońca L = W Promień Słońca R = m Temperatura efektywna fotosfery: ( ) 1/4 L T e = 4πR 2 = 5770 K σ Z prawa Wiena, maks. energii Słońce wypromieniowuje na fali: λ max = m K 5770 K = m = 5030 Å Zaokrąglając: , mamy: λ max T = (5000 Å)(5800 K) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 8/21

9 Porównanie widma Słońca i ciała doskonale czarnego Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 9/21

10 Promieniowanie termiczne Zero bezwzględne to temp. T = 0 K = 273 C Wszystkie ciała o temp. powyżej zera bezwzględnego świecą Człowiek o temp. 36 C świeci w dalekiej podczerwieni (λ max 10 µm); w zakresie widzialnym jest widoczny, gdyż odbija światło; podobnie planety Chłodny gaz w kosmosie świeci w zakresie mikrofalowym i radiowym Bardzo gorący gaz świeci w zakresie UV, X i γ Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 10/21

11 Równanie Plancka Max Planck podał empiryczny wzór, opisujący widmo CDC: B λ (T) = a/λ5 e b/λt 1, (3) gdzie B λ to moc wypromieniowywana w temp. T z jednostki powierzchni na fali λ, a a, b to stałe By wyznaczyć stałe, Planck założył, że światło składa się ze skończonej ilości fotonów o energii hν lub hc/λ, gdzie c jest prędkością światła w próżni Przy tym założeniu równanie (3) przybiera postać: B λ (T) = 2hc2 /λ 5 e hc/λkt 1, (4) gdzie k = J K 1 to stałą Boltzmanna, a h = J s to stała Plancka Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 11/21

12 Kąt bryłowy Kąt bryłowy: Ω = A/r 2, jednostką jest steradian [sr] dω = da/r 2 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 12/21

13 W układzie współrzędnych sferycznych φ, θ mamy: dω = sin θdθdφ Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 13/21

14 Ilość energii na jednostkę czasu dl, wypromieniowywana przez CDC prostopadle z powierzchni da na falach od λ do dλ w kąt bryłowy dω wynosi: B λ dλdadω (5) Jeśli kierunek świecenia jest nachylony o θ do normalnej do powierzchni da, wówczas: B λ dλda cos θdω, (6) jednak więc dω = sin θdθdφ, (7) B λ dλda cos θ sin θdθdφ, (8) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 14/21

15 Monochromatyczna moc promieniowania L λ Monochromatyczna moc promieniowania to ilość energii, wypromieniowywana w ciągu sekundy na fali od λ do λ + dλ Sferyczna gwiazda o promieniu R i temp. powierzchni T wysyła w jednostce czasu na fali λ energię: L λ dλ = 2π π/2 φ=0 θ=0 A B λ dλda cos θ sin θdθdφ. (9) Całka po sferze daje w wyniku π, całka po powierzchni daje powierzchnie kuli A = 4πR 2, zatem: L λ dλ = 4π 2 R 2 B λ dλ (10) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 15/21

16 Monochromatyczny strumień promieniowania F λ Monochromatyczny strumień promieniowania gwiazdy F λ, mierzony w odległości r od gwiazdy, wynosi: F λ = L ( ) λ R 2 4π r 2 = π B λ, r a po podstawieniu wzoru Plancka za B λ : F λ = 2π h c2 /λ 5 e hc/λkt 1 ( R r ) 2 (11) F λ dλ to ilość energii na falach od λ do λ + dλ, która pada w ciągu sekundy na metr kwadratowy powierzchni, znajdującej się w odległości r od gwiazdy Na drodze od gwiazdy do obserwatora część światła ulega pochłonięciu lub rozproszeniu w materii międzygwiazdowej (ekstynkcja międzygwiazdowa) oraz w atmosferze ziemskiej (ekstynkcja atmosferyczna). Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 16/21

17 Jasność bolometryczna Jasność bolometryczna to jasność w magnitudo, mierzona w całym zakresie długości fali (od λ = 0 do λ = ) Można stosować bolometryczną jasność widomą, m bol i bolometryczną jasność absolutną M bol W praktyce pomiarów dokonuje się w filtrach, np U, B, V Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 17/21

18 Wskaźnik barwy Jeśli U, B, V to jasności widome gwiazd w filtrach U,B,V, to jej wskaźniki barwy są równe: U B i B V Różnica między jasnością bolometryczna gwiazdy m bol i jej jasnością widomą w filtrze V to poprawka bolometryczna BC: BC = m bol V (12) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 18/21

19 Związek między jasnością widomą i strumieniem: ( ) V = 2.5 log F λ S V dλ + C V, (13) 0 gdzie S V to współczynnik czułości systemu fotometrycznego, a C V to pewna stała System fotometryczny określa łącznie czułość teleskopu, filtra i detektora Podobne równania można napisać dla jasności widomych B i U Stałe C U, C B, C V dobiera się tak, by gwiazda Vega miała jasność widomą w filtrach U, B, V równą zeru Dzięki temu mierzone jasności widome odpowiadają w przybliżeniu jasnościom historycznym z katalogu Hipparcha Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 19/21

20 Wskaźnik barwy Wskaźnik barwy B V można wyliczyć z wzoru: ( ) Fλ S B dλ B V = 2.5 log + C B V (14) Fλ S V dλ gdzie: C B V = C B C V W podobny sposób można otrzymać U B Wskaźnik barwy nie zależy od promienia gwiazdy, ani od jej odległości od obserwatora, a tylko od temperatury gwiazdy Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 20/21

21 Wykres kolor-kolor Wykres kolor-kolor pokazuje związek między wskaźnikami barwy U B i B V dla gwiazd Gdyby gwiazdy zachowywały się dokładnie jak CDC, wykres byłby linią prostą Dla gwiazd ciągu głównego (ok. 90% wszystkich gwiazd), wykres jest nierówną krzywą Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 21/21

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Fotometria 1. Systemy fotometryczne.

Fotometria 1. Systemy fotometryczne. Fotometria 1. Systemy fotometryczne. Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 Fotometria Fotometria to jedna z podstawowych technik obserwacyjnych. Pozwala

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Techniczne podstawy promienników

Techniczne podstawy promienników Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,

Bardziej szczegółowo

w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma)

w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) Przydatne źródła informacji w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) wiarygodne źródło informacji to np. Radiometry and

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wielkości gwiazdowe. Systematyka N.R. Pogsona, który wprowadza zasadę, że różniaca 5 wielkości gwiazdowych to stosunek natężeń równy 100

Wielkości gwiazdowe. Systematyka N.R. Pogsona, który wprowadza zasadę, że różniaca 5 wielkości gwiazdowych to stosunek natężeń równy 100 Wielkości gwiazdowe Ptolemeusz w Almageście 6 wielkości gwiazdowych od 1 do 6 mag. 1830 r, John Herschel wiąże skalę wielkości gwiazdowych z natężeniem globlanym światła gwiazd, mówiąc, że różnicom w wielkościach

Bardziej szczegółowo

Skala jasności w astronomii. Krzysztof Kamiński

Skala jasności w astronomii. Krzysztof Kamiński Skala jasności w astronomii Krzysztof Kamiński Obserwowana wielkość gwiazdowa (magnitudo) Skala wymyślona prawdopodobnie przez Hipparcha, który podzielił gwiazdy pod względem jasności na 6 grup (najjaśniejsze:

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 1 Tomasz Kwiatkowski Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 1 1/30 Plan wykładu Uwagi wstępne Odległości do gwiazd Paralaksa trygonometryczna Hipparcos i Gaia

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 12 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO ĆWICZENIE 107 WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Cel ćwiczenia: pomiary zdolności emisyjnej ciała jako funkcji jego temperatury, wyznaczenie stałej

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 6 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p) 1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia

LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia Zadanie 1. LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia Z północnego bieguna księżycowego wystrzelono pocisk, nadając mu prędkość początkową równą lokalnej pierwszej prędkości kosmicznej.

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Fotometria 2. Ekstynkcja atmosferyczna i międzygwiazdowa.

Fotometria 2. Ekstynkcja atmosferyczna i międzygwiazdowa. Fotometria 2. Ekstynkcja atmosferyczna i międzygwiazdowa. Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 Ekstynkcja atmosferyczna Podczas przejścia przez atmosferę

Bardziej szczegółowo

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15 Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody LED. 2 Wy4 Oddziaływanie

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 3 17 października 2016 A.F.Żarnecki

Bardziej szczegółowo

Kolorowy Wszechświat część I

Kolorowy Wszechświat część I Kolorowy Wszechświat część I Bartłomiej Zakrzewski Spoglądając w pogodną noc na niebo, łatwo możemy dostrzec, że gwiazdy (przynajmniej te najjaśniejsze) różnią się między sobą kolorami. Wśród nich znajdziemy

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Promieniowanie cia la doskonale czarnego

Promieniowanie cia la doskonale czarnego Rozdzia l 2 Promieniowanie cia la doskonale czarnego 2.1 Wste ι p 1. Stosunek zdolności emisyjnej dowolnego cia la do jego zdolności absorpcyjnej jest sta ly i równy zdolności emisyjnej cia la doskonale

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Efekt cieplarniany i warstwa ozonowa

Efekt cieplarniany i warstwa ozonowa Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od

Bardziej szczegółowo

PODSTAWY BARWY, PIGMENTY CERAMICZNE

PODSTAWY BARWY, PIGMENTY CERAMICZNE PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Metody badania kosmosu

Metody badania kosmosu Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck

Bardziej szczegółowo

Ciało doskonale czarne ćwiczenie w Excelu

Ciało doskonale czarne ćwiczenie w Excelu Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL) Ciało doskonale czarne ćwiczenie w Excelu Wstęp Każde ciało o temperaturze wyższej od 0 K, czyli od tzw.

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Wyznaczanie stałej Stefana-Boltzmanna [27B]

Wyznaczanie stałej Stefana-Boltzmanna [27B] yznaczanie stałej Stefana-Boltzmanna [27B] Marcin Polkowski marcin@polkowski.eu 25 lutego 2008 Streszczenie Celem wykonanego doświadczenia było wyznaczenie stałej Stefana-Boltzmanna. 1 stęp teoretyczny

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Fizyka i wielkości fizyczne

Fizyka i wielkości fizyczne Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Wykład 32. ciało doskonale czarne T = 2000 K. wolfram T = 2000 K

Wykład 32. ciało doskonale czarne T = 2000 K. wolfram T = 2000 K Wykład 32 32. Światło a fizyka kwantowa 32.1 Źródła światła Najbardziej znanymi źródłami światła są rozgrzane ciała stałe i gazy, w których zachodzi wyładowanie elektryczne; np. wolframowe włókna żarówek

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu:

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu: Załącznik do rozporządzenia Ministra Pracy i Polityki Społecznej z dnia 27 maja 2010 r. Wyznaczanie poziomu ekspozycji na promieniowanie optyczne 1. Promieniowanie nielaserowe 1.1. Skutki oddziaływania

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Rozdział 1. Światło a fizyka kwantowa

Rozdział 1. Światło a fizyka kwantowa Rozdział 1. Światło a fizyka kwantowa 2016 Spis treści Promieniowanie termiczne Ciało doskonale czarne Teoria promieniowania we wnęce, prawo Plancka Zastosowanie prawa Plancka w termometrii Zjawisko fotoelektryczne

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 2 Fala świetlna

Metody Optyczne w Technice. Wykład 2 Fala świetlna Metody Optyczne w Technice Wykład Fala świetlna d d Różniczkowanie d d ( ) ( + ) ( ) lim 0 ( ) g( ) + h( ) ( ) g ( ) h ( ) ( ) g[ h( ) ] dg d + dh d d d dg d h + dh d g d d dh d dg dh n ( ) A ( ) Asin

Bardziej szczegółowo

Wy1. 2 Wy15 Test zaliczeniowy 2 Suma godzin 30

Wy1. 2 Wy15 Test zaliczeniowy 2 Suma godzin 30 Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery. 2 Wy4 Oddziaływanie promieniowania

Bardziej szczegółowo

XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Rozwiąż dowolnie przez siebie wybrane dwa zadania spośród poniższych trzech: Nazwa zadania: ZADANIE T A. Oblicz moment bezwładności jednorodnego

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika. Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany

Bardziej szczegółowo

Wirtualny Hogwart im. Syriusza Croucha

Wirtualny Hogwart im. Syriusza Croucha Wirtualny Hogwart im. Syriusza Croucha Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. EGZAMIN STANDARDOWYCH UMIEJĘTNOŚCI MAGICZNYCH ASTRONOMIA LISTOPAD 2013 Instrukcja dla

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne

Bardziej szczegółowo

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 9 Tomasz Kwiatkowski 1 grudnia 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 9 1/1 Plan wykładu Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 9 2/1 Odkrycie

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

7 Przepływ promieniowania przez atmosfery gwiazdowe

7 Przepływ promieniowania przez atmosfery gwiazdowe 7 Przepływ promieniowania przez atmosfery gwiazdowe W atmosferach gwiazdowych pole promieniowania jest silnie anizotropowe. W szczególności, warunek jaki możemy nałożyć na strumień na zewnȩtrznym brzegu

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Współrzędne trójchromatyczne x,y określają chromatyczność barwy, składowa Y wyznacza od razu jasność barwy.

Współrzędne trójchromatyczne x,y określają chromatyczność barwy, składowa Y wyznacza od razu jasność barwy. Współrzędne trójchromatyczne x,y określają chromatyczność barwy, składowa Y wyznacza od razu jasność barwy. Barwa achromatyczna (biała) ma w tej skali jasność Y=100, gdy zakres promieniowania obejmuje

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 15 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. Przyszłość. Ludzie mieszkają w stacjach kosmicznych w kształcie okręgu o promieniu

Bardziej szczegółowo