Tomasz Grbski. Liczby zespolone

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tomasz Grbski. Liczby zespolone"

Transkrypt

1 Tomas Grbsk Lcby espolone Krank 00

2 Sps Trec: Wstp. Podstawowe wadomoc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprone.. 5 Posta trygonometrycna lcby espolonej.. 7 Wór de Movre a.. 9 Perwastek stopna n lcby espolonej. 0 Rowywane równa kwadratowych w bore lcb espolonych.. Perwastek perwotny n-tego stopna jednoc... Zadana... Odpowed do ada. 8 Bblografa....

3 Wstp Jestem naucycelem matematyk nformatyk w Zespole Skół Nr m. Mkołaja Reja w Kranku. Pragn predstaw Pastwu referat dotyccy lcb espolonych. Zamerenem mom było ebrane najwanejsych wadomoc o tych lcbach omówene ch własnoc ora predstawene prykładowych ada ch astosowanem. Jako uupełnene podałem klkadest ada wra odpowedam. Omówone w referace agadnena osobce stosuj podcas kółka matematycnego ora jako dodatkowe lekcje w klasach o proflu matematycno fycnym nformatycnym. Ces s one duym anteresowanem rowjaj wyobran ucnów s pomocne w prygotowanu s do egamnu na wyse ucelne. Mam nadej e Pastwo wykorystaj ten referat w swojej pracy jak równe Pastwa ucnowe. Referat dostpny jest równe w forme elektroncnej na mojej strone nternetowej pod adresem: Tomas Grbsk

4 Podstawowe wadomoc o lcbe espolonej Lcb espolon naywamy wyraene a + b gde a b s lcbam recywstym - Dla dowolnych lcb espolonych (a + b) (c + d) mamy:. (a + b) (c + d) a c b d.. (a + b) + (c + d) (a + c) + (b + d). (a + b) (c + d) (a c) + (b d). (a + b) (c + d) ac + ad + bc + bd (ac - bd) + (ad + bc) gdy - (ac + bd) + (bc - ad) 5. (a + b) : (c + d) c + d Wór 5 otrymamy mnoc deln delnk pre c d a c + + b (a d (c + + pryjmujc - b)(c - d) d)(c - d) ac + bd + (bc - ad) c + d ac + bd + c + d bc - ad c + d + W bore lcb espolonych ne mona okrel nerównoc. Pojce potg o wykładnku naturalnym erowym ujemnym lcby espolonej okrelamy tak samo jak potg lcby recywstej. Jel jest lcb espolon n p q lcb naturaln to: n + n 0 - n n p q p + q p : q p q ( p ) q pq Interpretacja geometrycna lcby espolonej a + b rys..

5 Mdy punktam płascyny a lcbam espolonym achod odpowedno na mocy której punktow M o współrdnych (ab) psemy M (ab) odpowada lcba espolona a + b lcbe a + b gde a b s lcbam recywstym odpowada punkt o współrdnych (a b) rys.. Dla dowolnej lcby espolonej a + b lcby a b naywamy odpowedno jej cc recywst cc urojon. Onacamy je re ora m atem re a m b Lcb espolon naywamy jednostk urojon. Lcby postac b gde b jest lcb recywst naywamy lcbam urojonym. O OX naywa s os recywst o OY os urojon. Moduł lcby espolonej. Lcby sprone. Włacwoc modułu lcb spronych. rys.. Defncja Modułem lcby espolonej a + b naywamy lcb recywst neujemn onacamy j a + b a + Moduł lcby równa s odległoc punktu od poctku układu współrdnych. Wnosek: Dla kadego jest Prykład re Oblc moduł lcby espolonej b m

6 Nech a + b Pryjmjmy onacene Defncja a b () Lcb okrelon worem () naywamy lcb spron do danej lcby. rys.. Lcby s symetrycne wgldem os recywstej. Własnoc: Dla kadej lcby espolonej : Twerdene Dla dowolnych lcb espolonych jest ± ± ; ; 0 Twerdene Dla dowolnych lcb espolonych a) b) c) + + d)

7 Defncja Posta trygonometrycna lcby espolonej Argumentem lcby espolonej a + b 0 naywamy kad lcb recywst okrelon równanam: a b cos sn Argument lcby espolonej onacamy arg. Jest ona mar kta jak twory wektor O os recywst. rys.. Kada lcba 0 ma neskocene wele argumentów jeel ϕ jest jednym nch to kady nny wyraa s worem arg ϕ + kπ k0 ± ± Sporód argumentów tej samej lcby dokładne jeden spełna warunek π < ϕ π ; naywamy go argumentem głównym onacamy Arg. π < Arg. π ϕ (0 π Jel lcba jest recywsta to 0 Arg. jeel π > 0 < 0 Argumentem lcby 0 naywamy kad lcb recywst. Prykład. Dla lcby mamy + cos ϕ snϕ std π arg ( ) + kπ k CArg( ) Prykład. 7 π π Argkπ arg(-)(k+)π arg + kπ k C

8 Twerdene Kada lcba espolona daje s predstaw w postac nastpujcej: ( cosϕ snϕ) + Zwanej postac trygonometrycn lcby. Dowód: Jel 0 to twerdene jest ocywste. Nech a+b 0 wtedy a b a + b + a + b a + b a + b Prykład. (cos0+sn0) π π cos + sn c.n.d. π π π π cos + sn cos sn π π π π cos + sn cos sn Prykład. Predstaw w postac trygonometrycnej lcb cosα + sn α gde 0 < α < π ( cosα ) ( cosα ) + sn α cosα + cos α + sn α sn re cosα α cosϕ sn α sn π α std ϕ + kπ k C α m snα α snϕ cos α sn α π α π α cosα + snα sn cos + sn Dwe lcby espolone róne od era s równe wtedy tylko wtedy gdy maj równe moduły ch argumenty rón s o całkowt welokrotno π. Twerdene Dla dowolnych lcb espolonych arg arg + arg ) ( ) 8

9 ) arg arg arg ) arg arg ) arg k k arg k C. Wór de Movre a Dla kadej lcby recywstej ϕ kadej lcby całkowtej n n ( cos ϕ snϕ) cos nϕ + sn nϕ + () Wór de Movre a dla n naturalnego jest równowany worom: cos n ϕ cos n sn n ϕ cos n n ϕ cos n n ϕ sn n ϕ snϕ cos n ϕ + cos n ϕ sn n ϕ + ϕ sn ϕ + które otrymujemy stosujc do lewej strony wór Newtona na potg dwumanu ora porównujc cc recywste urojone obu stron równoc (). Stosujc wór () moemy w prosty sposób otryma nane nam wory ( cosϕ + snϕ) cos ϕ + sn ϕ cos ϕ + snϕ cosϕ + sn ϕ std cos ϕ cos ϕ sn ϕ bo sn ϕ snϕ cosϕ analogcne cosϕ cos sn ϕ cos ϕ cosϕ sn ϕ snϕ sn Prykład. Korystajc e woru Movre a oblc ϕ ϕ + 0 Lcb + predstawamy w postac trygonometrycnej π + cos ϕ snϕ std ϕ 9

10 π π cos + sn 0 π π cos + sn 0 0π 0π cos sn π π π cos6π + π + sn6π + cos + sn + Prykład. Oblcy ( + ) 0 π π π π cos π + + snπ + cos + sn ( 0 + ). Prykład. π π cos + sn 0 5 0π 0π cos + sn Oblcy Nech + cos sn std π π π cos + sn cos π + sn π Perwastek stopna n lcby espolonej Defncja Kad lcb espolon w spełnajc równane w n n N naywamy perwastkem stopna n lcby espolonej onacamy n. Twerdene Istneje dokładne n rónych perwastków n-tego stopna lcby espolonej 0 które onacamy pre w k gde k 0... k. jeel Z (cos+sn) to (A) W k n ϕ + kπ ϕ + kπ cos + sn k 0... (n-) n n gde n onaca perwastek arytmetycny. 0

11 Prykład. Oblcy. π Moduł lcby równa s l a jednym jej argumentów jest lcba ϕ. W myl woru (A) mamy W W W π π cos + sn + 0 5π 5π cos + sn π π cos + sn. Prykład. Oblcy Ponewa - a jednym argumentów jest wc π π W0 cos + sn W π π cos + sn. Prykład. Oblcy Ponewa argument spełna równana π cos ϕ snϕ : wc ϕ 6 atem sukanym perwastkam s lcby W W W 0 π π cos sn 8 8 π π cos + sn 8 8 π cos + sn 8 π 8 Perwastk drugego stopna dowolnej lcby espolonej a + b mona równe predstaw w nnej postac tw. kartejaskej.

12 Posta kartejaska perwastków drugego stopna W 0 a + b + a + E a + b jeel b>0 W - W 0 gde E - jeel b<0 a Rowywane równa kwadratowych w bore lcb espolonych Zajmemy s równanem kwadratowym o współcynnkach espolonych ax bx + c 0 a 0 Jeel współcynnk równana s lcbam recywstym < 0 to pryjmujc otrymujemy x b a x b + a w tym prypadku perwastk x x s lcbam spronym. Prykład. Rowa równane x + x + 0 ( ) 6 x + x. Prykład. Rowa równane x + x + 0 ( ) wc x x + + x + +

13 x + + Prykład. Rowa równane x -x+0 Ponewa 6 wc pryjmujc 6 mamy x - x + Defncja Perwastek perwotny n-tego stopna jednoc Lcb espolon naywamy perwastkem perwotnym n-tego stopna jednoc jeel Z n Z n dla s... n- np. lcby ora s perwastkam perwotnym jednoc cwartego stopna bo ora (-) ale natomast (-) ne s perwastkam perwotnym jednoc cwartego stopna bo te jest równy. (-). Perwastk n-tego stopna jednoc wyraaj s worem E k kπ kπ cos + sn k 0... n n n Perwastk perwotne jednoc maj nteresujce własnoc. We my pod uwag E. Ze woru de Movre a wynka e E Tym samym cg skocony E... n E E E E Zawera wsystke róne perwastk n-tego stopna. Nasuwa s pytane cy cg E E... E k k dla dowolnego k n dowolnego n awera wsystke perwastk E E E.... Odpowed jest precca bowem nech n wówcas E 0 E E E n k E n cg E E E E awera wsystke perwastk ale cg E E ne ma tej E E własnoc gdy E E E E Dla ustalonego k lcba E k kπ kπ cos + sn jest perwastkem perwotnym n-tego n n stopna jednoc wtedy tylko wtedy gdy k n s wgldne perwse tn. gdy najwksy wspólny delnk lcb k n równa s. Twerdene Jeel E k jest perwastkem perwotnym n-tego stopna jednoc to lcby E E E... E k k k n k

14 s wsystkm rónym perwastkam n-tego stopna jednoc. Prykład Znale wsystke perwastk perwotne równana 6 0 Sporód lcb 5 6 tylko lcby 5 s lcbam perwsym wgldem 6. Zatem perwastkam perwotnym równana s lcby π π E cos + sn π 0π E5 cos + sn 6 6 Zadane. Wykonaj dałana a) ( 5 ) + ( ) + ( 5 + ) b) ( + )( 5 + 6) + ( )( ) c) ( ) ( ) Zadana Zadane. Oblc 0 6 a) b) c) + +. Zadane. Nastpujce wyraena aps w postac a + b + a) + b) + c) + d) + 5 e) + + f). + Zadane. Oblc warto wyraena a) + b) + c) + + Zadane 5. Podaj wartoc recywste x y spełnajce równane a) ( + ) x + ( 5) y b) ( ) x + ( + ) y 0 c) ( + ) x + ( ) y 5 + 7

15 d) x + y x + y + e) ( ) ( ) 5 Zadane 6. Row układ równa newadomym espolonym: a) ( + ) + ( )t 6 ( + ) + ( )t 8 b) ( + ) (+)t 5 + ( ) + (+)t + 6 c) w + t 0 w + (+)t 0 w + t 0 Zadane 7. Row równana a) + b) + + c) + ( ) + d) ( + ) + ( ). Zadane 8. Oblc perwastk espolone welomanów stopna drugego rołó te welomany na cynnk lnowe a) x x + b) x + x + c) x + x + d) x x + 0 e) x + x + f) x + x + g) x x + h) x + x + ) x x 6 +. Zadane 9. Oblc perwastk espolone welomanów rołó te welomany na cynnk. Skorystaj wynków poprednego adana. a) x + b) x c) x 8 d) x 6 + 6x + 0 e) x + x + x + f) x x + x g) x + x h) x + x + ) x + x +. Zadane 0. Naps równana cwartego stopna którego perwastkam s lcby: a) + +. b) 0. c) ( 5 ) ( 5 ) ( 5 ) ( 5 ) 0 0 ; 5

16 Zadane. Predstaw w postac trygonometrycnej nastpujce lcby espolone: a) b) + c) + + d) + snα cosα + cosα + snα e). + cosα snα Zadane. Oblc na podstawe woru de Movre a: 5 + a) ( + ) f) ( ). b) 7 + c) e) d) ( ) Zadane. Zaps w postac: a) trygonometrycnej b) a + b perwastk stopna n lcby dla n 568. Zadane Rowa rownane : a) ² + 0 b) ² + 0 c) ² + (+) ++ 0 d) ² e) ² - ( + ) + 0 f) ² - ( + ) + (- + 7) 0 Zadane 5 Rowa równane : a) x (- ) b) x - ( + ) 0 c) x + 0 d) x 5 ( + ) 0 e) x

17 Zadane 6 Zanac na plascyne mennej espolonej nastepujace bory punktow. a) : < 5 b) : - 5 c) : 5 + d) : + e) : ( + )-( - ) f) : 5 g) : - h) : m ) : + re j) : k) : m l) :re m) : m n) : arg π Zadane 7 Naps rownane okregu O(Z 0 r) jeel a) Z r b) Z + r Zadane 8 Wynacyc srodek promen okregu o rownanu: a) + ( + ) + ( ) 0 b) ( ) ( + ) 0 c) ( ) ( ) + 0 7

18 Zadane a) b) 5 c) + Zadane a) b) c) Zadane a) b) c) + c d) e) f) Zadane a) b) c) Zadane 5 5 a) x y b) x - y Odpowed do ada c) x y x y - x - y x - y - d) x y -5 e) x y - Zadane 6 a) + t b) + t 8

19 c) w t 7-9 Zadane 7 a) b) + c) + d) - + e) - Zadane 8 a) x + x b) x - + x - c) x - - x - + d) x x + e) x ( 7) x ( + 7) f) x ( ) x ( + ) g) x x + h) x x + ) x ( ) x ( + ) Zadane 9 a) x x x + b) x x - + x - c) x x - - x - + d) x - x - x + e) x - x ( 7) x ( + 7) f) x x ( ) x ( + ) 9

20 g) x - x x x - h) x - x perwastk dwukrotne ) x x + x x + Zadane 0. a) x x + 0 x x b) x + x + 6x + x 0 c) x + x + 6x + 6x Zadane. a) (cos0 + sn 0) (cos Π Π + sn ) (cos Π + sn Π ) (cos Π + sn Π ) Π Π Π Π 5 5 b) (cos + sn ) (cos + sn ) (cos Π + sn Π ) 7 7 (cos Π + sn Π) Π Π c) (cos + sn ) (cos Π + sn Π ) (cos Π + sn Π) 5 5 (cos Π + sn Π) Π α Π α Π α d) cos( ) cos( ) sn( ) e) cosα + snα Zadane. a) 5 5 Π Π (cos + sn ) ( ) 5 5 (cos Π + sn Π) 8 8 b) Π Π cos( ) + sn( ) cos( Π) + sn( Π) 6 6 c) (cos Π + sn Π) cos8π + sn 8Π + Π Π 5 d) (cos + sn ) (cos Π + sn Π) ( + ) ( + ) e) cos sn cos sn ( ) Π + Π Π + Π 5 0

21 f) Π Π (cos Π + sn Π) (cos + sn ) Π Π (cos Π + sn Π) (cos + sn ) Zadane. n cos0 + sn 0 cosπ + sn Π 0 n 0 cos sn Π + Π + cos Π + sn Π n 0 n-5 0 kπ kπ k cos + sn 5 5 dla k n n n Zadane. a) b) + c) d) e) + + f) + Zadane 5. a) x ( + ( + ) x x ( + + ( )) b) x 0 ( + + ( ) x ( + ( + )) x x 0 x x 7 5 +

22 + + c) x0 x x x 0 x x d) x k (cos(6 + k 7 ) + sn(6 + k 7 )) k e) x k cos( ) sn( ) Π + kπ + Π + kπ 7 7 k05 Zadane 6. a) wntre koła o rodku (00) promenu r5 b) koło o rodku (0) promenu r c) d) symetralna odcnka AB a(5-)b(-) e) prosta o równanu x-y+0 f) prosta o równanu y5x- g) koło ( x ) + ( y ) 0 9 y h) x + y + 0 ewntre koła wra okrgem ) c płascyny ogranconej parabol y x 6( x ) j) elpsa y + 00 k) prosta x5 l) okrg x + y m) hperbola xy n) yx x 0 y 0 Zadane 7. a) ( x ) + ( y + ) b) ( x ) + ( y ) 9 Zadane 8. a) O(-;) r b) O(;) r 6 c) O(;) r

23 Bblografa. Algebra Wysa Andrej Mostowsk PWN 970. Repetytorum predmaturalne praca borowa. Anala matematycna w adanach W.Krysck L.Włodarsk PWN 966

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Algebra WYKŁAD 2 ALGEBRA 1

Algebra WYKŁAD 2 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną

Bardziej szczegółowo

Algebra WYKŁAD 1 ALGEBRA 1

Algebra WYKŁAD 1 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Realacja predmotu Wykład 30 god. Ćwcena 5 god. Regulamn alceń: www.mn.pw.edu.pl/~fgurny ALGEBRA Program ajęć Lcby espolone Algebra macery Układy równań lnowych Geometra analtycna

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy 4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

http://www-users.mat.umk.pl/~pjedrzej/matwyz.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego i opanowanie przez nich podstawowych pojęć dotyczących

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła,

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła, Struktury drewaste rogrywające parametrycne od każdego werchołka pocątkowego różną sę medy sobą kstałtem własnoścam. Stopeń łożonośc struktury może być okreśony pre współcynnk łożonośc L G ++ ) ++ L G

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne)

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne) Naprężena wywołane cężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwonego: h γ h γ h jednorodne podłoże gruntowe o cężare objętoścowym γ γ h n m γ Wpływ wody gruntowej na naprężena

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z adane W obwode, o schemace pokaanym na rysnk, oblcyć moc reystora. Dane: 4,5,,. ( ) K: [] G [W] adane Wynacyć stosnek napęć k / w obwode o schemace pokaanym na rysnk. Dane: k, 4 k, 5 k, g,5. g s s g s

Bardziej szczegółowo

ANALIZA OBLICZENIOWA MODELU DYNAMICZNEGO SUM SAMOTOKOWEGO UKŁADU NAPDOWEGO W OPARCIU O METODY NUMERYCZNE PAKIETU MATLAB/SIMULINK

ANALIZA OBLICZENIOWA MODELU DYNAMICZNEGO SUM SAMOTOKOWEGO UKŁADU NAPDOWEGO W OPARCIU O METODY NUMERYCZNE PAKIETU MATLAB/SIMULINK Jans Flasa Poltechnka Cstochowska Cstochowa ANALIZA OBLICZENIOWA MODELU DYNAMICZNEGO SUM SAMOTOKOWEGO UKŁADU NAPDOWEGO W OPACIU O METODY NUMEYCZNE PAKIETU MATLAB/SIMULINK A COMPUTATIONAL ANALYSIS OF DYNAMIC

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Magdalena Dynus Katedra Fnansów Bankowośc Wyżsa Skoła Bankowa w Torunu OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Wprowadene Okres wrotu należy do podstawowych metod

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Układy równań i nierówności

Układy równań i nierówności Układy równań i nierówności Zad : Dla jakich wartości parametru m rozwiązaniem układu równań: + y m = 0 + y = 0 y jest para liczb x, y spełniająca warunek: =? x Odp: m = lub m = 4 Zad : Dla jakich wartości

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó

Bardziej szczegółowo

MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha

MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J Cha dyński Wste p do analiy espolonej wyd VII Wyd U L Lódź 993 [Kr]J Kryż Zbiór adań funkcji analitycnych PWN Warsawa 975 [Ku] K Kuratowski

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,

Bardziej szczegółowo

Matematyczne Metody Fizyki I

Matematyczne Metody Fizyki I Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 19 MARCA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 54 3 24 2 18

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 7 KWIETNIA 2018 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż liczbę, która

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Krzywe stożkowe Lekcja VII: Hiperbola

Krzywe stożkowe Lekcja VII: Hiperbola Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie

Bardziej szczegółowo

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI SPRWZIN Z 1. SEMESTRU KLSY 2 ROZSZ ZNIE 1 (5 PKT) Funkcja f określona jest wzorem f (x) = (3m 5)x 2 (2m 1)x + 0, 25(3m 5). Wyznacz te wartości

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 183264 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dziedzina funkcji

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb

Bardziej szczegółowo

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................

Bardziej szczegółowo

Dr Maciej Grzesiak, Instytut Matematyki

Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.maciej.grzesiak.pracownik.put.poznan.pl podręcznik: i algebra liniowa

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Precesja koła rowerowego

Precesja koła rowerowego Precesja koła rowerowego L L L L g L t M M F L t F O y [( x ( x s r S y s Twerene Stenera y r s s ] x Z efncj ukłau śroka asy: y s s - oent bewłanośc wgęe os równoegłej o os prechoącej pre śroek cężkośc

Bardziej szczegółowo

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

Ile wynosi suma miar kątów wewnętrznych w pięciokącie?

Ile wynosi suma miar kątów wewnętrznych w pięciokącie? 1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 MARCA 2012 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Który z zaznaczonych

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn

Bardziej szczegółowo

TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR

TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR W układzie współrzędnych zaznaczmy dowolny punkt A = (x, y) oraz wektor u r = [p, q]. Po przesunięciu punktu A o wektor u r otrzymamy punkt

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 24 MARCA 202 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 3 3 3 jest równa A)

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

UZUPEŁNIA ZDAJ CY miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJ CY

UZUPEŁNIA ZDAJ CY miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJ CY Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJ CY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca 017 r.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Do kg roztworu soli

Bardziej szczegółowo

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował

Bardziej szczegółowo