TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR
|
|
- Jolanta Karczewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR W układzie współrzędnych zaznaczmy dowolny punkt A = (x, y) oraz wektor u r = [p, q]. Po przesunięciu punktu A o wektor u r otrzymamy punkt B = (x + p, y + q) (x + p, y + q) u r = [p, q] (x, y) Przykład 1 Wyznaczmy współrzędne wierzchołków trójkąta ABC, gdzie A = (-4, 1), B = (3, -2), C = (-2, 4) w przesunięciu równoległym o wektor u r = [-1, 3] W wyniku tego przesunięcia otrzymamy trójkąt A 1 B 1 C 1, gdzie: A 1 = (-4 + (-1), 1 + 3) = (-5, 4) B 1 = (3 + (-1), ) = (2, 1) C 1 = (-2 + (-1), 4 + 3) = (-3, 7) 1
2 Przesuwać równolegle o dany wektor możemy również wykresy funkcji. Wartości o jakie przesuwamy wykres najłatwiej jest zapisywać w postaci wektora przesunięcia. PRZESUNIĘCIE WZDŁUŻ OSI OX Wykres funkcji y = f(x 3) powstał w wyniku przesunięcia wykresu funkcji y = f(x) o 3 jednostki w prawo wzdłuż osi OX. Jest to przesunięcie o wektor u r = [3, 0] Wykres funkcji y = f(x + 2) powstał w wyniku przesunięcia wykresu funkcji y = f(x) o 2 jednostki w lewo wzdłuż osi OX. Jest to przesunięcie o wektor u r = [-2, 0] 2
3 PRZESUNIĘCIE WZDŁUŻ OSI OY Wykres funkcji y = f(x) + 1 powstał w wyniku przesunięcia wykresu funkcji y = f(x) o 1 jednostkę w górę wzdłuż osi OY. Jest to przesunięcie o wektor u r = [0, 1] Wykres funkcji y = f(x) 4 powstał w wyniku przesunięcia wykresu funkcji y = f(x) o 4 jednostki w dół wzdłuż osi OY. Jest to przesunięcie o wektor u r = [-2, 0] 3
4 PRZESUNIĘCIE RÓWNOLEGŁE O WEKTOR [p, q] Wykres funkcji y = f(x + 5) + 2 powstał w wyniku przesunięcia wykresu funkcji y = f(x) o 5 jednostek w lewo wzdłuż osi OX, a następnie o 2 jednostki do góry wzdłuż osi OY. Jest to przesunięcie o wektor u r = [-5, 2] Ogólnie: Wykres funkcji y = f(x p) + q powstaje w wyniku przesunięcia równoległego wykresu funkcji y = f(x) o wektor u r = [p, q]. PRZYKŁAD 2 1. Wykres funkcji y = f(x 5) powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 5 jednostek w prawo wzdłuż osi OX, czyli o wektor u r = [5, 0]. 2. Wykres funkcji y = f(x + 7) powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 7 jednostek w lewo wzdłuż osi OX, czyli o wektor u r = [ 7, 0]. 3. Wykres funkcji y = f(x) +6 powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 6 jednostek w górę wzdłuż osi OY, czyli o wektor u r = [0, 6]. 4. Wykres funkcji y = f(x) 6 powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 6 jednostek w dół wzdłuż osi OY, czyli o wektor u r = [0, 6]. 5. Wykres funkcji y = f(x 9) +2 powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 9 jednostek w prawo wzdłuż osi OX i 2 jednostki do góry, czyli o wektor u r = [9, 2]. 6. Wykres funkcji y = f(x 7) 4 powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 7 jednostek w prawo wzdłuż osi OX i 4 jednostki do dołu czyli o wektor u r = [7, 4]. 7. Wykres funkcji y = f(x +1) + 1 powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 1 jednostkę w lewo wzdłuż osi OX i 1 jednostkę do góry czyli o wektor u r = [ 1, 1]. 8. Wykres funkcji y = f(x + 2) 3 powstaje w wyniku przesunięcia wykresu funkcji y = f(x) o 2jednostki w lewo wzdłuż osi OX i 3 jednostki do dołu czyli o wektor u r = [ 2, 3]. 4
5 POSTAĆ KANONICZNA FUNKCJI KWADRATOWEJ Funkcja kwadratowa zapisana w postaci kanonicznej wygląda następująco: f(x) = a(x p) 2 + q gdzie a, p, q są współczynnikami liczbowymi i a 0. Z postaci kanonicznej można wywnioskować, że wykres funkcji kwadratowej f(x) = a(x p) 2 + q powstaje w wyniku przesunięcia równoległego wykresu funkcji y = ax 2 o wektor u r = [p, q]. PRZYKŁAD 3 a. Wykres funkcji f(x) = 2(x 4) powstaje w wyniku przesunięcia równoległego wykresu funkcji y = 2x 2 o wektor u r = [4, 7]. b. Wykres funkcji f(x) = 3(x + 6) 2 1 powstaje w wyniku przesunięcia równoległego wykresu funkcji y = 3x 2 o wektor u r = [ 6, 1]. c. Wykres funkcji f(x) = (x + 4) powstaje w wyniku przesunięcia równoległego wykresu funkcji y = x 2 o wektor u r = [ 4, 5]. Współczynniki p i q są także współrzędnymi wierzchołka paraboli, będącej wykresem funkcji kwadratowej. Oznaczmy ten wierzchołek przez W = (p, q). Jeżeli znamy postać ogólną funkcji kwadratowej (y = ax 2 + bx + c), to możemy obliczyć współrzędne wierzchołka ze wzorów: p = b, q = 2a 4a, gdzie = b 2 4ac ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA 1. Na rysunku 1 przedstawiony jest wykres funkcji y = f(x) dla x < -7, 4> 5
6 Rysunek 2 przedstawia wykres funkcji: A. y = f(x + 2) B. y = f(x) 2 C. y = f(x 2) D. y = f(x) Rysunek przedstawia wykres funkcji y = f(x). Wskaż rysunek na którym jest przedstawiony wykres funkcji y = f(x + 1). 6
7 3. Na rysunku 1. jest przedstawiony wykres funkcji y = f(x) Rysunek 2 przedstawia wykres funkcji: A. y = f(x + 2) B. y = f(x) 2 C. y = f(x 2) D. y = f(x) Uzupełnij: a. Wykres funkcji f(x) = (x 9) 2 8 powstaje w wyniku przesunięcia równoległego wykresu funkcji.. o wektor u r =... b. Wykres funkcji f(x) = -13(x + 1) 2 7 powstaje w wyniku przesunięcia równoległego wykresu funkcji.. o wektor u r =... ŹRÓDŁA: 1. Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda - Matematyka. Podręcznik do liceów i techników. Klasa 1 Oficyna Edukacyjna Krzysztof Pazdro Warszawa Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda - Matematyka. Zbiór zadań do liceów i techników. Klasa 1. Oficyna Edukacyjna Krzysztof Pazdro Warszawa
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
KURS FUNKCJE. LEKCJA 2 PODSTAWOWA Przekształcenia wykresu funkcji ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA PODSTAWOWA Przekształcenia wykresu unkcji ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Wykres unkcji ( x) q otrzymujemy
Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
Troszkę przypomnienia
Troszkę przypomnienia Przesunięcie o wektor Przesunięcie funkcji o wektor polega na przesunięciu jej w układzie współrzędnych o określoną ilośc jednostek w poziomie oraz w pionie. Pierwsza współrzędna
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Skrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym
Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Test sprawdzający wiadomości i umiejętności funkcja kwadratowa
Test sprawdzający wiadomości i umiejętności funkcja kwadratowa W zadaniach zamkniętych 1 5 zaznacz prawidłową odpowiedź: Zadanie 1 () y f(x)=1/*x^-x+ + 1/ 6 5 4 3 1 x Wykres funkcji f ( rysunek obok )
M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300
M A T E M A T Y K A Podział kursów w procesie nauczania: -podstawowe 5 kursów (300 godzin) -rozszerzone 8 kursów (480 godzin) MATURA zakres podstawowy 5 KURSÓW PP: 101,102,103,104,105 MATURA zakres rozszerzony
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Funkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO
Semestr 3A, 3B, 3C TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO PRZYKŁAD 1 Temperaturę w stopniach Celsjusza x przelicza się na stopnie y w skali Fahrenheita według wzoru: y = 5
FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Przekształcenia wykresów funkcji
Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0 Związek między funkcją
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz
Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
ROZWIĄZANIA DO ZADAŃ
TURNIRJ MATEMATYCZNY ELIPSA dla klas LO ROZWIĄZANIA DO ZADAŃ Zadanie. (2 pkt.) Dla jakich wartości parametru m (m R), część wspólna przedziałów A = (, m m i B = 2m 2, + ) jest zbiorem pustym? / Jeśli A
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Podstawowy., Oficyna Edukacyjna
Funkcja f jest ograniczona, jeśli jest ona ograniczona z
FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
Przekształcenia wykresów funkcji
Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0. Związek między funkcją
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
x+h=10 zatem h=10-x gdzie x>0 i h>0
Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
Miejsce na identyfikację szkoły PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ZGODNY Z WYMOGAMI NA 015 ROK POZIOM PODSTAWOWY CZERWIEC 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy
FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.
FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów
========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Skrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 KWIETNIA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Która z liczb jest
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x
Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik 1A, 1B
1A, 1B Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik Agata Faryniarz - Gumienna Program nauczania matematyki w liceach i technikach 16-2013/2014 Matematyka dla liceów i
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Przedmiot Tytuł podręcznika Autor Wydawnictwo Nr dopuszczenia
WYKAZ PODRĘCZNIKÓW DO KLASY I A ( HUMANISTYCZNO-PRAWNICZA 1,2 ) Podręczniki zostaną podane po podziale klasy na grupy w zależności od stopnia zaawansowania 1 grupa Język francuski 2 grupa 1. Podręcznik
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych
Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.
Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością
ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym
S t r o n a ZBIÓR ZADAŃ Matematyczne ABC maturzysty na poziomie podstawowym Każdy uczeń, który kończy szkołę ponadgimnazjalną i chce przystąpić do matury, zobowiązany jest do zdawania egzaminu z matematyki
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r.
Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 016/017r. Ocena dopuszczająca: Temat lekcji Uczeń: Elementy logiki matematycznej rozpoznaje spójniki logiczne, zna wartości logiczne
Wymagania na egzamin poprawkowy z matematyki
23 czerwca 2017r. Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej LICEUM Strona 1 z 13 1. Funkcja i jej własności Uczeń:
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.
Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
zał.1 do Regulaminu konkursu Zostań Euklidesem
zał.1 do Regulaminu konkursu Zostań Euklidesem Zakres materiału do konkursu Zostań Euklidesem dla uczniów szkół średnich biorących udział w projekcie Młodzieżowe Uniwersytety Matematyczne w roku szkolnym
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
Skrypt dla ucznia. Geometria analityczna część 3: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Geometria analityczna
I V X L C D M. Przykłady liczb niewymiernych: 3; 2
1 LICZBY Liczby naturalne: 0; 1; 2; 3;.... Liczby całkowite:...; -3; -2; -1; 0; 1; 2; 3;.... Liczbą wymierną nazywamy każdą liczbę, którą można zapisać w postaci ułamka a b, gdzie a i b są liczbami całkowitymi,
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.
FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji
Plan wynikowy. Zakres podstawowy klasa 1
lan wynikowy Zakres podstawowy klasa MATeMAtyka. lan wynikowy. Z Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające ogrubieniem
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy
Dorota onczek, arolina Wej MATeMAtyka 1 Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej Zakres podstawowy Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające,
Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE.
Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania zamknięte. Zebrano plony z części pola, która jest
SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI SPRWZIN Z 1. SEMESTRU KLSY 2 ROZSZ ZNIE 1 (5 PKT) Funkcja f określona jest wzorem f (x) = (3m 5)x 2 (2m 1)x + 0, 25(3m 5). Wyznacz te wartości
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,