Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie"

Transkrypt

1 Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

2 OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego rozplanowania wielkości dostaw towaru klasyczne zagadnienie dotyczy m - dostawców i n - odbiorców

3 OPIS ZAGADNIENIA Dane można przedstawić w postaci macierzowej oraz grafowej

4 OPIS ZAGADNIENIA Szukamy rozwiązania dla funkcji celu: celem jest minimalizacja kosztów transportu (co wyraża się przez sumę iloczynów jednostkowych kosztów przewozu i wielkości transportu od poszczególnych punktów odbioru)

5 OPIS ZAGADNIENIA Warunki ograniczające nieujemność przewozów (brak możliwości przewożenia towaru od odbiorcy do dostawcy i pomiędzy dostawcami/odbiorcami) odbiorcy nie przyjmują więcej towaru niż potrzebują (zapotrzebowanie Dj) tzw. warunki bilansowe dostawców dostawcy nie dostarczają więcej towaru niż ich zdolności podażowe (Cj) tzw. warunki bilansowe odbiorców

6 OPIS ZAGADNIENIA Zadanie zbilansowane Zadanie zbilansowane to takie: jeśli nie jest zbilansowane to sprowadzamy je do zbilansowanego poprzez wprowadzenie fikcyjnego odbiorcy: lub dostawcy: Każde zbilansowane zadanie ma rozwiązanie optymalne (skończone). Proces wyznaczania rozwiązania optymalnego jest dwuetapowy (najpierw rozwiązanie wstępne- które może być rozwiązaniem bazowym czyli z m+n-1 zmiennymi)

7 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Trzy magazyny: M1, M2, M3, zaopatrują w kruszywo cztery place budowy: P1, P2, P3, P4. Jednostkowe koszty transportu ( w zł. za tonę), oferowane miesięczne wielkości dostaw Ai ( w tonach) oraz miesięczne zapotrzebowanie placów budowy Bj (w tonach) podano w tabeli poniżej. Magazyny kij Place budowy P1 P2 P3 P4 M M M Ai[t] Bj[t]

8 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Należy opracować plan przewozu kruszywa z magazynów na place budowy, minimalizujący całkowite koszty transportu. Oznacza to, że mamy do czynienia z zagadnieniem transportowym zamkniętym (ZTZ). xij zmienne decyzyjne, które oznaczają ilość ton kruszywa, jaka powinna być dostarczona z i-tego magazynu (i=1,2,3) na j-ty plac budowy (j=1,2,3,4); jest ich 3*4=12.

9 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Należy opracować plan przewozu kruszywa z magazynów na Ograniczenia dla dostawców (Suma wielkości dostaw kruszywa z magazynu M do wszystkich placów budowy powinna być równa podaży magazynu.) Ograniczenia dla odbiorców (Suma dostaw kruszywa otrzymanych na plac budowy P ze wszystkich trzech magazynów powinna być równa całkowitemu jej zapotrzebowaniu.)

10 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Funkcja celu

11 ZAGADNIENIE TRANSPORTOWE WYZNACZANIE ROZWIĄZAŃ WSTĘPNYCH Metoda kąta północno-zachodniego Nazwa metody związana z przyjętą zasadą postępowania numerycznego, według której w każdym kroku wybiera się tę zmienną, która znajduje się w pn-zach rogu macierzy przewozów, redukowanej w trakcie realizacji algorytmu obliczeniowego. Numery (k,l) dla kolejnych zmiennych xkl wybieranych w danym kroku na zmienną bazową ustalane są na podstawie zależności: I - zbiór numerów dostawców, których zasoby w danym kroku nie zostały jeszcze rozdysponowane J - zbiór numerów odbiorców, których zapotrzebowanie w danym kroku nie zostało jeszcze zaspokojone Po wyborze kolejnych bazowych, ich wartości są obliczane z zależności:

12 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Rozwiązanie - Metoda kąta północno-zachodniego kij Place budowy Magazyny P1 P2 P3 P4 Ai[t] M M M Bj[t] Magazyny Place budowy P1 P2 P3 P4 Ai M Rozwiązaniutemu odpowiadają następujące koszty transportu: M M Bj

13 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda minimalnego elementu macierzy (klatek zerowych) Polega na rozmieszczaniu przewozów przede wszystkim po tych trasach, na których koszty są najmniejsze. Magazyny kij Place budowy P1 P2 P3 P4 Ai[t] M /20/0 M /10/0 M /40/ Bj [t] 40/0 60/40/0 50/40 50/0 200

14 Krok 1 ckl = min cij = c14 =20 stąd zmienna bazowa x14 = min{50,70} = 50. Redukujemy zbiór odbiorców usuwając z macierzy kolumnę 4. Krok 2 ckl = min cij = c12 = c21 = c32 = 40. Wybieram w sposób dowolny zmienną bazową. Będzie to x12 = min {60,20}=20. Redukuję zbiór odbiorców usuwając wiersz 1. Krok 3 ckl = min cij = c21=c32 = 40, stąd wybieram zmienną bazową x21 = min {50,40} = 40. Redukujemy zbiór dostawców usuwając kolumnę 1. Krok 4 ckl = min cij = c32 = 40. Wybieram w sposób dowolny jedną zmienną bazową. Będzie to x32 = min {40,80} = 40 Krok 5 ckl = min cij = c23 = c33 = 70, stąd x23 = min {50, 10} = 10 Krok 6 ckl = min cij = c33 = 70 stąd x33= min {40,40} Funkcja celu wynosi 8500 zł ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda minimalnego elementu macierzy Magazy ny Place budowy P1 P2 P3 P4 Ai M M M Bj

15 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda klatek zerowych kij Place budowy Magazyny P1 P2 P3 P4 Ai[t] M M M Bj[t] Magazyny Placebudowy P1 P2 P3 P4 Ai M M M Punktem wyjścia jest przekształcenie macierzy kosztów do takiej postaci, by w każdym wierszu i w każdej kolumnie występowało, co najmniej jedno zero. Można to uzyskać, między innymi odejmując od elementów poszczególnych wierszy macierzy kosztów, najmniejszy element znajdujący się w danym wierszu. Bj

16 Magazyny kij ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda minimalnego elementu macierzy (klatek zerowych) Place budowy P1 P2 P3 P4 M M Ai[t] M Bj[t] Place budowy Magazyny P1 P2 P3 P4 Ai M Następnie od poszczególnych kolumn otrzymanej w ten sposób macierzy, odejmując element najmniejszy, znajdujący się w danej kolumnie. M M Bj

17 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda klatek zerowych Mając tak przekształconą macierz kosztów, staramy się rozmieścić przewozy na trasy, gdzie koszty są najniższe, czyli gdzie występują zera. Rozmieszczanie przewozów rozpoczynamy od dowolnej klatki zerowej. Jeżeli uda się rozmieścić przewozy wyłącznie w klatkach, w których występują zera, to otrzymane rozwiązanie jest już optymalnym planem przewozów. Jeżeli nie, należy je poprawić stosując algorytm transportowy. Magazyny Placebudowy P1 P2 P3 P4 M M M Bj Ai

18 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW W tym algorytmie wykorzystujemy rozwiązanie wstępne wyznaczone jedną z dwóch poprzednich metod. Postać algorytmu jest następująca: 1. Wyznaczenie rozwiązania bazowego wstępnego dla zadania zbilansowanego (wg. Jednej z poprzednio przedstawionych metod) 2. Rozwiązanie układu równań:,, są niewiadomymi układu równań (tzw. potencjały) o indeksach odpowiadających dotychczasowym wierzchołkom grafu rozwiązań, B - zbiór par (i,j) takich, że xij jest zmienną bazową. Powyższy układ równań jest układem nieoznaczonym, gdyż składa się z m+n-1 równań i m+n niewiadomych. Aby rozwiązać układ należy przyjąć w jednym z równań dowolną wartość dla jednej z niewiadomych. 3. Wyznaczenie tzw. równoważną macierz zerową rozwiązania bazowego, której elementy wynoszą:

19 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW 4. Sprawdzić,czy. Jeśli warunek jest spełniony to uzyskaliśmy rozwiązanie optymalne, jeśli nie to szukamy dalej. 5. Ustalić indeksy (k,l) nowej zmiennej bazowej!" przy wykorzystaniu kryterium wejścia według formuły:!" #$% & (). 6. Wyznaczyć cykl Ł(k,l) oraz podzbiory Łn(k,l) i Łp(k,l) łuki, cykl, po dołączeniu nowego wierzchołka (bazowego) CYKL TO TAKI ZBIÓR WĘZŁÓW, DLA KTÓREGO W KAŻDEJ LINII (WIERSZU LUB KOLUMNIE) ZNAJDUJĄ SIĘ 0 LUB 2 WĘZŁY TEGO ZBIORU. Ł(k,l) to graf tworzący cykl w rozwiązaniu bazowym przez dołączenie wierzchołka (k,l). Chcąc wyodrębnić wierzchołki parzyste i nieparzyste w grafie oznacza się je indeksami n i p.

20 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW 7. Ustalić za pomocą kryterium wyjścia numer (r,s) zmiennej +, usuwanej z części bazowej rozwiązania. Kryterium ma postać: +, $, Ł. /,0 & :, ) 8. Wyznaczyć nowe rozwiązanie bazowe przy zastosowaniu tzw. wzór przejścia 4", 5 Ł!," 2 3 +, 4", Ł!," +, 4", Ł.!," Nowo wprowadzonej zmiennej!" można nadać wartość zmiennej +,, określoną wzorem: +, $, Ł. /,0 & :, ) W celu dotrzymania przy tym warunków ograniczających, należy zmniejszyć o +,, przewozy na trasach przechodzących przez węzły ze zbioru Łp(k,l) i zwiększyć o +, przewozy na trasach przebiegających przez węzły Łn(k,l). Tak uzasadniona jest ostatnia zależność.

21 Układ dla naszego przykładu (metoda minimalnego elementu macierzy): (1) =0 (2) 6 +7 : +9 : =0 (3) =0 (4) ; +9 8; =0 (5) 6 ; +7 ; +9 ;; =0 (6) 6 ; ;8 =0 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Jest to układ nieoznaczony, dlatego też należy przyjąć np. w pierwszym równaniu. Wtedy podstawiając znane wartości pozostałe niewiadome można wyznaczyć jednoznacznie. Oblicza się: v2 = -c12 - u1 = = -40 v4 = -c14 - u1 = = -20 u3 = -c32 - v2 = =0 u2 = -c23 - v3 = = 0 v3 = -c33 -u3 = = -70 v1 = -c21 - u2 = = -40 Dla, którego obliczona funkcja celu wynosi 8500 zł. Tak wyznaczone zostały potencjały łącznie z danymi wstępnymi.

22 Wyznaczamy równoważną macierz C 0 odpowiadającą rozwiązaniu wstępnemu. Poszczególne elementy tej macierzy wynoszą: = (-40) = 10 = (-40) = 0 c 0 13 = 50+0+(-70)=-20 c 0 14 = (-20) = 10 c 0 21 = (-40) = 0 c 0 22 = (-40) = 40 c 0 23 = (-70) = 0 c 0 24 = (-20) = 10 c 0 31 = (-40) = 20 c 0 32 = (-40) = 0 c 0 33 = (-70) = 0 = (-20) = 60 c 0 11 c 0 12 c 0 34 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Wpisane w tabelce powyżej w prawym rogu. Sprawdzamy czy C 0 jest większa od zera. Widzimy, że ma 1 element mniejszych od zera. Widzimy, że rozwiązanie wstępne nie jest rozwiązaniem optymalnym.

23 Dane widoczne są w tabeli: WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW FDA<B 6D=HIFGB D JJKJ kij Magazyny Place budowy P1 P2 P3 P4 Ai [t] ui 9 ; 6 ; +7 M M M Bj [t] vj

24 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Ustalamy więc numer (k,l) nowej zmiennej bazowej x kl przy zastosowaniu kryterium wejścia. Zgodnie z nim (!" #$% & (). ) mamy: c 0 kl= c Czyli w celu poprawienia rozwiązanianależy do części bazowej wprowadzić zmienną x 13. Wyznaczamy cykl Ł(k,l) oraz podzbiory Łn i Łp. Widzimy, że po dołączeniu wierzchołka (1,3) powstał cykl. Wprowadzając przewóz na trasie (1,3) należy, w celu zachowania bilansów, powiększyć przewozy w węzłach oznaczonych "+" oraz 2 zmniejszyć w węzłach oznaczonych"-". 3 4", 5 Ł!," +, 4", Ł!," +, 4", Ł.!," Ustalamy za pomocą kryterium wyjścia numer (r,s) zmiennej x rs, która zostanie teraz usunięta z części bazowej rozwiązania. Mamy więc: x rs = x 12 =20. Czyli ją usuwamy.

25 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Wyznaczamy nowe rozwiązanie bazowe przy zastosowaniu wzorów przejścia. Dla wierzchołków (i,j) należących do Łn. x' 13 = =20 x' 23 = =10 // nie dodaje w nieparzystym wierzchołku x' 32 = =60 A dla wierzchołków (i,j) należących do Łp x' 12 = = 0 x' 33 = =20 Reszta bez zmian.

26 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Rozwiązanie po drugiej iteracji: kij Magazyny Place budowy P1 P2 P3 P4 Ai [t] ui M1 M M Bj [t] vj

27 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Rozwiązanie optymalne: kij Magazyny Place budowy P1 P2 P3 P4 Ai [t] ui M M2 M Bj [t] vj

28 Dziękuję za uwagę

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Zadanie transportowe

Zadanie transportowe Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli

Bardziej szczegółowo

Wieloetapowe zagadnienia transportowe

Wieloetapowe zagadnienia transportowe Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11

1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 Spis treści 1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 1.4 Metoda VAM... 18 1.5 Metoda e-perturbacji... 28 1.6 Metoda potencjałów...

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 3 Problem transportowy... 16 3.1 Wstęp... 16 3.2 Metoda

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220

Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220 Zagadnienie transportowe Firma produkująca papier kserograficzny posiada 4 wytwórnie i 5 hurtowni, do których dostarczany jest papier. Każda z fabryk wytwarza określoną liczbę ton papieru na miesiąc, i

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 1/11 Spis treści Rozdział 1. Zagadnienie transportowe................... 5 1.1.

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego. Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów. Metody dokładne rozwiązywania układów równań liniowych.. Układy równań o macierzach trójkątnych.. Metoda eliminacji Gaussa.3. Metoda Gaussa-Jordana.4.

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX

Bardziej szczegółowo

Narzędzia wspomagania decyzji logistycznych

Narzędzia wspomagania decyzji logistycznych Narzędzia wspomagania decyzji logistycznych Dr Adam Kucharski Spis treści Optymalizacja liniowa. Programowanie liniowe.................................. Metoda graficzna.....................................

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Badania operacyjne. Lista zadań projektowych nr 2

Badania operacyjne. Lista zadań projektowych nr 2 Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Analiza danych przy uz yciu Solvera

Analiza danych przy uz yciu Solvera Analiza danych przy uz yciu Solvera Spis treści Aktywacja polecenia Solver... 1 Do jakich zadań wykorzystujemy Solvera?... 1 Zadanie 1 prosty przykład Solvera... 2 Zadanie 2 - Optymalizacja programu produkcji

Bardziej szczegółowo

Optymalizacja. Programowanie Matematyczne

Optymalizacja. Programowanie Matematyczne . dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Zakres tematyczny Metodyka optymalizacja liniowa, całkowitoliczbowa, nieliniowa, heurystyki,

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

Komentarz Sesja letnia 2012 zawód: technik logistyk 342[04] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją.

Komentarz Sesja letnia 2012 zawód: technik logistyk 342[04] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją. Komentarz Sesja letnia 2012 zawód: technik logistyk 342[04] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją. Wydział Egzaminów Zawodowych OKE Jaworzno 1 Wydział Egzaminów Zawodowych OKE

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Uszereguj dla obydwu firm powyższe sytuacje od najkorzystniejszej do najgorszej. Uszereguj powyższe sytuacje z punktu widzenia konsumentów.

Uszereguj dla obydwu firm powyższe sytuacje od najkorzystniejszej do najgorszej. Uszereguj powyższe sytuacje z punktu widzenia konsumentów. Strategie konkurencji w oligopolu: modele Bertranda, Stackelberga i lidera cenowego. Wojna cenowa. Kartele i inne zachowania strategiczne zadania wraz z rozwiązaniami Zadanie 1 Na rynku działają dwie firmy.

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

Procedura wyznaczania i przypisania do danego centrum dystrybucji rejonu obsługi

Procedura wyznaczania i przypisania do danego centrum dystrybucji rejonu obsługi 2005-07-27 Procedura wyznaczania i przypisania do danego centrum dystrybucji rejonu obsługi Celem artykułu jest przedstawienie procedury wyznaczania rejonu obsługi dla centrum dystrybucji. Czytelnik zapozna

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Rozdział 7 ZARZĄDZANIE PROJEKTAMI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Modelowanie przy uŝyciu arkusza kalkulacyjnego

Modelowanie przy uŝyciu arkusza kalkulacyjnego Wydział Odlewnictwa Wirtualizacja technologii odlewniczych Modelowanie przy uŝyciu Projektowanie informatycznych systemów zarządzania 2Modelowanie przy uŝyciu Modelowania przy uŝyciu Wprowadzenie Zasady

Bardziej szczegółowo