Rozwiązanie Ad 1. Model zadania jest następujący:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązanie Ad 1. Model zadania jest następujący:"

Transkrypt

1 Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych mieszankach oraz ceny mieszanek podano w tabl.. Tablica Składniki odżywcze A B Zawartość składnika w kg mieszanki M M M M 6 5 Minimalne ilości składnika 8 Cena kg 6. W jakiej ilości należy zakupić poszczególne mieszanki, aby dostarczyć potrzebne składniki odżywcze i aby koszt zakupu mieszanek był minimalny?. Określić wrażliwość rozwiązania optymalnego na: a) zmiany cen poszczególnych mieszanek, b) zmiany norm żywienia", czyli minimalnych ilości składników odżywczych, jakie należy dostarczyć. Rozwiązanie Ad. Model zadania jest następujący: x + x + 6x + x min, x + x + 5x, x + 6x + x + x 8, x, x, x, x Model rozwiązano stosując algorytm simpleks. Końcową tablicę simpleksową przedstawiono w tabl.. Tablica c b c j 6 M M Zmienne bazowe x x x x x x x 5 x 6 s s,8 -,,8 /5 -, /5 -/6, -/5 -/ó Rozwiązanie z j,, -,6 -,5,6,5 6 c j -z j,6,6,6,5 M-,6 M-,5

2 Tak więc rozwiązanie optymalne jest następujące: x xb = =, x = x =, F ( x,..., x ) = 6. x Z tablicy można także odczytać rozwiązanie programu dualnego ( y =, 6 y =,5 ). Ponieważ w analizie wrażliwości wykorzystujemy obecnie zapis macierzowy tablic simpleksowych, zdefiniujemy na początek poszczególne jego elementy dla naszego zadania: x 5 x A= b c [ ] c x 6 = = = = 8 x,, 6, b,. x ponieważ x x =. b x 5 B = zatem macierz 6 gdzie jak pamiętamy macierz B jest macierzą współczynników przy zmiennych występujących w optymalnym rozwiązaniu w I tablicy simpleksowej, czyli w modelu zadania. Wobec tego Ad a. Analiza wrażliwości rozwiązania optymalnego na zmiany współczynników funkcji celu (cen mieszanek). Aby określić przedział dopuszczalnych zmian ceny mieszanki M podstawiamy: c = c + = + Uwzględniająca to podstawienie tablica simpleksowa będzie ' mieć zatem postać tabl.. 6 B 5 = 5 = 5 6

3 Tablica c b c j + 6 M M Rozwiązanie Zmienne bazowe x x x x x x x 5 x 6 s s,8 -,,8 /5 -, /5 -/6, -/5 z j,, -,6 -,5,6,5 6 -/ó c j -z j,6+,6,6,5 M-,6 M-,5 Ponieważ w tym przykładzie funkcja celu jest minimalizowana, zatem elementy wiersza zerowego powinny być nieujemne. Parametr występuje tu tylko w jednym elemencie, powinien więc spełniać warunek:,6 +, czyli,6, a zatem,6;, a c, ;. Analogicznie dla x, podstawiamy: c ' = c + = +, ostatnia tablica simpleksowa przyjmuje postać tabl. 5 i jedynym warunkiem jakie musi spełniać jest:, 6 +, czyli, 6, a zatem, 6;,, a c,;.. Tablica 5 c b c j 6+ M M Rozwiązanie Zmienne bazowe x x x x x x x 5 x 6 s s,8 -,,8 /5 -, /5 -/6, -/5 z j,, -,6 -,5,6,5 6 -/ó c j -z j,6,6+,6,5 M-,6 M-,5 Zauważmy, że x i x są zmiennymi niebazowymi, dlatego dla każdej z nich wystarczy rozwiązać jedno równanie (w pozostałych kolumnach C J Z J parametr nie występuje). Natomiast w przypadku x, po podstawieniu c ' = c + = + ostatnia tablica simpleks ma postać tabl. 6.

4 Tablica 6 c b c j + 6 M M Rozwiąz anie Zmienne x bazowe x x x x 5 x 6 s s x x,8 -,,8 /5 -, /5 -/6, -/5 -/ó z j,-, +,+ /5 -,6+ /5 -,5-/6 6 c j -z j,6+,,6+ /5,6- /5,5+/6 Parametr musi spełniać następujący układ warunków:,6 +,,, 6 +, 5, 6, 5, Warunek pierwszy jest spełniony dla, warunek drugi dla 7, warunek trzeci dla i warunek czwarty dla. Rozwiązaniem układu jest ;,, a c ;+. czyli c ;. Podobnie dla ceny mieszanki M, po podstawieniu c = c + = +, ostatnia tablica simpleks przybierze postać tabl. 7. ' Tablica 7 c b c j 6 + M M Rozwiąz anie Zmienne bazowe x x x x x 5 x 6 s s + x x z j,8 -,,+,8,+,8 /5,8 + -, /5 U -,6-, -,5- -/6 /6, -/5 -/ó 6 c j -z j,6-,8,6-,8,6+,,5+/6

5 Układ warunków:, 6,8,, 6,8,, 6,. jest spełniony dla jest 8;, 5,, a zatem c 8; +,5, czyli c 6;7,5.. Ad b. Aby określić dopuszczalne zmiany prawostronnych ograniczeń (w tym przypadku norm żywienia) przyjmujemy na początek: b = b + ε i wektor ' ' b ma postać ' + ε b = 8 A zatem ' 5 + ε + ε 5 B b = 8 = ε a układ nierówności: + ε, 5 ε. 5 jest spełniony dla ε ;5,. Stąd b ; + 5,, czyli b ;5.. Dla wyrazu wolnego z warunku drugiego ' b = 8 ε + a zatem B b ' 5 = 8 ε = ε warunek + 6 ε jest spełniony dla ε 8;, a wobec tego b 8 8;,, czylib 6;.. Jeżeli zatem przykładowo norma żywienia" dla składnika S wzrośnie do 5 ( ε =, co mieści się w wyznaczonym przedziale), nowe wartości zmiennych bazowych będą następujące: 5

6 x x 5 5 = = = = = ' b B b x y a wartość funkcji celu (koszty zakupu mieszanek) wzrosną o ε =,6 = 8 i będą wynosić = 5. Analogicznie (Czytelnik zechce sprawdzić), spadek normy żywienia" dla składnika ε S (przy niezmienionej normie dla składnika S), np. do 6 ( = - 8), spowoduje iż x rozwiązaniem optymalnym będą: x = i =, a wartość funkcji celu zmieni się o yε =,5 (-8) = -7, tzn. do 5 zł. Przykład 5. Trzy magazyny: M, M i M zaopatrują w mąkę cztery piekarnie: P P, P P. Jednostkowe koszty transportu (w zł za tonę), oferowane miesięcznie wielkości dostaw A i (w tonach) oraz miesięczne zapotrzebowania piekarni B j (w tonach) podaje tablica. Tablica Magazyny M M M Piekarnie P P P P A i 7 5 SO B J Opracować plan przewozu mąki z magazynów do piekarń, minimalizujący całkowite koszty transportu. Rozwią zanie. A = Bj = t, a więc jest to przykład zamkniętego i i= j= zagadnienia transportowego (ZZT). Zmienne decyzyjne x ij oznaczają ilość ton mąki, jaka powinna być dostarczona z r-tego magazynu (i =,, ) do y-ej piekarni (j =,,,,); jest ich =. Ponieważ jest to zagadnienie transportowe zamknięte (zbilansowane), dostawcy sprzedadzą całą ilość oferowanego towaru, a zapotrzebowania piekarń zostaną w całości zaspokojone. Wyrażają 6

7 to warunki: a) dla dostawców: x + x + x + x = x = 7. j j= tzn, suma wielkości dostaw mąki z magazynu M do wszystkich piekarń powinna być równa podaży magazynu; i analogicznie dla magazynów M i M : x + x + x + x = x = 5. j j= x + x + x + x = x = 8. j j= b) dla odbiorców: x + x + x = x =. i i= tzn. suma dostaw mąki otrzymanych przez piekarnię P ze wszystkich trzech magazynów powinna być równa całkowitemu jej zapotrzebowaniu; podobnie dla pozostałych odbiorców (piekarń): x + x + x = x = 6. i i= Muszą być także spełnione warunki brzegowe x ij >= (i=,, ; j=,,, ), a funkcji celu należy zminimalizować łączne koszty transportu, czyli: x + x + x = x = 5. i i= x + x + x = x = 5. i i= K( x ) = 5x + x + 5x + x ij + x + 8x + 7x + x + 6x + x + 7x + 8x min Dla tak sformułowanego modelu wyznaczymy początkowe rozwiązanie dopuszczalne przykładowo za pomocą dwu wybranych metod. Pierwsza z nich metoda kąta północno-zachodniego polega na tym, że wypełnianie macierzy 7

8 przewozów [x ij ] rozpoczyna się od klatki w lewym górnym rogu (stąd nazwa kąta nocnozachodniego). Wpisuje się do niej mniejszą z liczb (A, B ) odpowiadających tej klatce, a następnie przesuwa się w prawo lub w dół: w prawo, gdy towar pierwszego dostawcy nie został jeszcze całkowicie rozdysponowany, a w dół, gdy całą podaż tego dostawcy rozdzielono odbiorcom. W rozpatrywanym przykładzie do klatki M, P wpisujemy t (x =) i przesuwamy się w prawo (ponieważ zapotrzebowanie piekarni P zostało zaspokojone, a magazynowi M, pozostało jeszcze t, które dostarczy do piekarni P (x = ). Obecnie przesuwamy się w dół do magazynu M, który dostarczy brakujące t mąki do piekarni P (x = ) i pozostałe t mąki do piekarni P (x = ). Przesuwamy się powtórnie w dół do magazynu M, który dostarczy brakujące t mąki do piekarni P (x = ) i pozostałe 5 t mąki do piekarni P (x =5). Rozwiązanie to przedstawiono w tabl.. Tablica Piekarnie Magazyny A i P P P P M 7 M 5 M 5 8 B j Rozwiązaniu temu odpowiadają następujące koszty transportu: K( x ij ) = = zl. Rozwiązanie powyższe będzie poprawiane w kolejnych iteracjach algorytmu transportowego, aż do momentu uzyskania rozwiązania optymalnego. Ponieważ jednak metoda kąta północno -zachodniego abstrahuje od kosztów transportu, dlatego też algorytm transportowy wymaga zwykle większej liczby iteracji niż wówczas, gdy rozwiązanie początkowe wyznaczymy metodą minimalnego elementu macierzy. Metoda minimalnego elementu macierzy polega, bowiem na rozmieszczeniu przewozów przede wszystkim po tych trasach, na- których koszty są najniższe. Punktem wyjścia jest przekształcenie macierzy kosztów do takiej postaci, by w każdym wierszu i w każdej kolumnie występowało, co najmniej jedno zero. Można to uzyskać, odejmując od elementów poszczególnych wierszy macierzy kosztów najmniejszy element znajdujący się w danym wierszu, a następnie od poszczególnych kolumn otrzymanej w ten sposób macierzy, odejmując element 8

9 najmniejszy, znajdujący się w danej kolumnie. Mając tak przekształconą macierz kosztów, staramy się rozmieścić przewozy na trasy, gdzie koszty są najniższe, czyli gdzie występują zera. Rozmieszczanie przewozów rozpoczynamy od dowolnej klatki zerowej". Jeżeli uda się rozmieścić przewozy wyłącznie w klatkach, w których występują zera, to otrzymane rozwiązanie jest już optymalnym planem przewozów. Jeżeli nie, należy je poprawiać stosując algorytm transportowy. Wróćmy obecnie do rozpatrywanego przykładu. Odejmując najmniejszy element każdego wiersza od pozostałych elementów tego wiersza, otrzymujemy tab. 5. Magazyny M M M Tablica 5 Piekarnie P P P P 5 B j A i Ponieważ jeszcze nie we wszystkich kolumnach występują zera, również od poszczególnych kolumn odejmujemy ich najmniejsze elementy. Rezultatem jest tablica 6. Tablica 6 Magazyny M M M Piekarnie P P P P 5 A i B j Rozdysponowanie przewozów rozpoczynamy np. od klatki M P (Jak zaznaczono wcześniej, wypełnianie macierzy przewozów rozpoczynamy od klatki zerowej", jednak najlepiej jest zacząć od tych wierszy lub kolumn, w których występuje jedno zero, a więc nie mamy wyboru.), gdzie możemy wpisać tylko (tyle wynosi zapotrzebowanie P ). Przechodząc do drugiej kolumny do klatki M P wpisujemy 6, w kolumnie trzeciej wpisujemy np. na trasę M P i na trasę M P. Dla zbilansowania wpisujemy na trasę M P i na trasę M P., Ponieważ w tym wypadku udało się rozmieścić wszystkie przewozy w klatkach z zerami otrzymane rozwiązanie jest optymalne. Rozwiązanie to przedstawiono w tabl. 7.

10 Tablica 7 Piekarnie Magazyny A i P P P P M 7 M 5 M 6 8 B j Związane są z nim następujące koszty transportu: K( x ij ) = = 8 zl. A zatem najniższe całkowite koszty transportu (8 zł) ( Nawet gdyby rozwiązanie to nie było jeszcze optymalne, to koszty będą znacznie niższe niż wtedy, gdy rozwiązanie początkowe wyznaczono metodą kata północno zachodniego.) Można osiągnąć, jeżeli magazyn M dostarczy t mąki do piekarni P i t mąki do piekarni P, magazyn M t mąki do piekarni P i t mąki do piekarni P, a magazyn M 6 t mąki do piekarni P i t mąki do piekarni P.

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 6 (Materiały)

Badania Operacyjne Ćwiczenia nr 6 (Materiały) Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220

Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220 Zagadnienie transportowe Firma produkująca papier kserograficzny posiada 4 wytwórnie i 5 hurtowni, do których dostarczany jest papier. Każda z fabryk wytwarza określoną liczbę ton papieru na miesiąc, i

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu

Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów

Bardziej szczegółowo

Zadanie transportowe

Zadanie transportowe Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7 Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem

Bardziej szczegółowo

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007 ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 3 Problem transportowy... 16 3.1 Wstęp... 16 3.2 Metoda

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Badania operacyjne. Lista zadań projektowych nr 2

Badania operacyjne. Lista zadań projektowych nr 2 Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto

Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

c j x x

c j x x ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Programowanie Dynamiczne dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 14 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego. Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Laboratorium Metod Optymalizacji. Sprawozdanie nr 1

Laboratorium Metod Optymalizacji. Sprawozdanie nr 1 PAWEŁ OSTASZEWSKI PIŁA, dn. 01.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 1 1. TREŚĆ ZADANIA: Producent soku jabłkowego posiada fabryki w trzech miastach A, B i C. Sok jest

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11

1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 Spis treści 1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 1.4 Metoda VAM... 18 1.5 Metoda e-perturbacji... 28 1.6 Metoda potencjałów...

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,

Bardziej szczegółowo

Ekonometria dla Finansów i Rachunkowości

Ekonometria dla Finansów i Rachunkowości Ekonometria dla Finansów i Rachunkowości Dr Adam Kucharski Spis treści 1 Optymalizacja liniowa 2 1.1 Programowanie liniowe................................. 2 1.2 Metoda graficzna....................................

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

Wieloetapowe zagadnienia transportowe

Wieloetapowe zagadnienia transportowe Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych

Bardziej szczegółowo

Narzędzia wspomagania decyzji logistycznych

Narzędzia wspomagania decyzji logistycznych Narzędzia wspomagania decyzji logistycznych Dr Adam Kucharski Spis treści Optymalizacja liniowa. Programowanie liniowe.................................. Metoda graficzna.....................................

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Komentarz technik logistyk 342[04]-01 Czerwiec 2009

Komentarz technik logistyk 342[04]-01 Czerwiec 2009 Strona 1 z 16 Strona 2 z 16 Strona 3 z 16 W rozwiązaniu zadania ocenie podlegały następujące elementy: I. Tytuł pracy egzaminacyjnej wynikający z treści zadania. II. Założenia wynikające z treści zadania

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Model przepływów międzygałęziowych (model Leontiewa)

Model przepływów międzygałęziowych (model Leontiewa) Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów

Bardziej szczegółowo

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s]. Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Modele liniowe.......................... 5 1.1.

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM GOSPODARKI ELEKTROENERGETYCZNEJ INSTRUKCJA DO ĆWICZENIA 5 Planowanie

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Zarządzania Katedra Metod Ilościowych OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH Prowadzący: dr Tomasz Pisula e-mail: tpisula@prz.edu.pl Treści kształcenia:

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo