Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Wielkość: px
Rozpocząć pokaz od strony:

Download "Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott"

Transkrypt

1 Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott

2 Problemy NP-zupełne

3 Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca warunki: 1. Dla każdej instancji I 2 εd π2 odpowiedź brzmi tak, wtedy i tylko wtedy, gdy dla instancji f(i 2 ) odpowiedź również jest tak, 2. Czas obliczenia funkcji f przez DMT dla każdej instancji I 2 εd π2 jest ograniczony od góry przez wielomian od N I 2.

4 Własności transformacji wielomianowej Lemat 1 Transformacja wielomianowa jest przechodnia, tzn. jeśli π 2 π 1 i π 3 π 2, to π 3 π 1. Lemat 2 Jeżeli π 2 π 1 i π 1 εnp, to π 2 εnp. Lemat 3 Jeżeli π 2 π 1 i π 2 εnp, to π 1 εnp. Wniosek Jeżeli π 2 π 1, to problem π 1 jest co najmniej tak trudny jak π 2.

5 Problem decyzyjny π 1 jest nazywany NP-zupełnym, jeśli: 1. π 1 εnp, 2. Dla każdego innego problemu decyzyjnego π 2 εnp jest π 2 π 1. Zatem, jeśli istniałby algorytm wielomianowy do rozwiązywa- nia jakiegokolwiek problemu NP-zupełnego, to każdy problem z klasy NP (w tym również problemy NP-zupełne) mógłby być rozwiązany za pomocą algorytmu wielomianowego. Z bezskuteczności poszukiwań algorytmu wielomianowego dla któregokolwiek problemu NP-zupełnego wynika, że prawie na pewno wszystkie problemy NP-zupełne można rozwiązać tylko przy użyciu algorytmów ponadwielomianowych.

6 Do udowodnienia NP-zupełności problemu decyzyjnego π wystarczy: 1. Dowieść, że πεnp, 2. Przetransformować wielomianowo dowolny znany problem NP-zupełny do problemu π. W celu zbadania złożoności obliczeniowej danego problemu, staramy się znaleźć dla niego optymalny deterministyczny algorytm wielomianowy lub wykazać trudność tego problemu. Aby wykazać trudność, wystarczy udowodnić NP-zupełność. Do klasy problemów NP-zupełnych należą najtrudniejsze problemy klasy NP.

7 Twierdzenie Problem plecakowy jest NP-zupełny. Cel: Udowodnić NP-zupełność problemu plecakowego poprzez wielomianową transformację problemu podziału, który jest NP-zupełny, do plecakowego.

8 Problem podziału zbioru Dane: C = c 1,, c i,, c k zbiór k elementów, Rozmiar s c i > 0 elementu c i, gdzie s(c i ) N +, N + = 1,2,, B N +, k i=1 s c i = 2B. Pytanie: Czy istnieje podzbiór C C taki, że c i C s c i = B?

9 Problem plecakowy wersja decyzyjna Dane: Skończony zbiór elementów A = a 1, a 2,, a n. Rozmiar s a i > 0 i waga (wartość) w a i > 0 elementu a i. Pojemność plecaka b > 0 i stała y > 0. Zadanie: Czy istnieje podzbiór A A taki, że: s( a i A a i ) b a i A w(a i ) y?

10 Dowód, że problem plecakowy π 1 NP Aby rozwiązać instancję (konkretny problem) I π 1, NDMT musi wygenerować podzbiór A A i sprawdzić w co najwyżej wielomianowym czasie, czy odpowiedź dla tego problemu brzmi tak. Należy sprawdzić nierówności s( a i A a i ) b w(a i ) y a i A

11 Dowód, że problem plecakowy π 1 NP NDMT dla Problemu plecakowego Głowica zapisująca Moduł zgadujący Sterowanie Głowica odczytująco-zapisująca.. Łańcuch S Dane wejściowe Łańcuch S - liczba binarna, której i-ta pozycja wskazuje czy i-ty element zbioru A należy do wygenerowanego rozwiązania A Dane wejściowe n s a 1 s a n w a 1 w a n b y

12 Dowód, że problem plecakowy π 1 NP n s(a 1 ) s a n w a 1 w a n b y log 2 n ( log 2 s a i + 1) i=1 N I n + ( log 2 w a i + 1) + (log 2 b (log 2 y i=1 x - najmniejsza liczba całkowita nie mniejsza niż x N(I) < (2n + 3)( log 2 max {n, s a i : 1, n, {w a i : {1, n}}, b, y} + 1) n

13 Dowód, że problem plecakowy π 1 NP Do sprawdzania nierówności: wystarcza 2 A porównania. a i A s( a i ) b, a i A w(a i ) y 2 2n operacji dodawania i 2 operacje Operacje porównania i dodawania dwóch liczb b 1 i b 2 DTM może wykonać w czasie wielomianowym zależnym od (log 2 b 1 i (log 2 b 2. Zatem złożoność weryfikacji odgadniętego rozwiązania jest ograniczona od góry przez wielomian p(n I ) czyli π 1 NP.

14 Dowód, że Problem podziału π 2 π 1 Problem podziału π 2 jest NP-zupełny Dla instancji I 2 εd π2 konstruujemy instancję I 1 εd π1 taką, że: n = k, wzajemnie jednoznaczne przyporządkowanie g c i = a i, s a i = s(c i ) dla iε{1, n}, w a i = s(c i ) dla iε{1, n}, b = y = B.

15 Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca warunki: 1. Dla każdej instancji I 2 εd π2 odpowiedź brzmi tak, wtedy i tylko wtedy, gdy dla instancji f(i 2 ) odpowiedź również jest tak, 2. Czas obliczenia funkcji f przez DMT dla każdej instancji I 2 εd π2 jest ograniczony od góry przez wielomian od N I 2.

16 Dowód, że Problem podziału π 2 π 1 1. Dowód, że dla każdej instancji I 2 εd π2 odpowiedź brzmi tak, wtedy i tylko wtedy, gdy dla instancji I 1 π 1 odpowiedź również jest tak. Niech odpowiedź dla I 1 π 1 brzmi tak. Zatem istnieje A A taki, że: a i A s( a i ) b, a i A w(a i ) y. Ponieważ s a i = w a i =s c i dla iε{1, n} oraz b = y = B, a więc dla zbioru C = c i : c i = g 1 a i a i εa prawdziwe jest s(c i ) = B. c i C Zatem dla instancji I 2 εd π2 odpowiedź brzmi tak.

17 Dowód, że Problem podziału π 2 π 1 1. Dowód, że dla każdej instancji I 2 εd π2 odpowiedź brzmi tak, wtedy i tylko wtedy, gdy dla instancji I 1 π 1 odpowiedź również jest tak. Niech odpowiedź dla I 2 εd π2 brzmi tak. Zatem istnieje C C taki, że: s(c i ) = B. Ponieważ c i C s a i = w a i =s c i dla iε{1, n} oraz b = y = B, a więc dla zbioru A = a i : a i = s c i c i εc prawdziwe jest s( a i A a i ) = w a i = b = y a i A Zatem dla instancji I π odpowiedź brzmi tak.

18 Dowód, że Problem podziału π 2 π 1 2. Czas obliczenia funkcji f przez DMT dla każdej instancji I 2 εd π2 jest ograniczony od góry przez wielomian od N I 2. Czas konstrukcji danych I 1 εd π1 jest ograniczony od góry przez wielomian od rozmiaru I 2 εd π2, ponieważ DMT musi przepisać 2n + 3 liczb.

19 Wnioski 1. Klasa problemów NP-zupełnych zawiera problemy równoważne wielomianowo, tzn. jeśli π 1 jest NP-zupełny i π 2 jest NP-zupełny, to π 2 π 1 i π 1 π Klasa problemów NP-zupełnych zawarta jest w klasie NP. 3. Jeśli dla pewnego problemu NP-zupełnego istnieje wielomianowy algorytm rozwiązania, to wszystkie problemy NP-zupełne są rozwiązywalne w czasie wielomianowym. 4. Klasa problemów NP-zupełnych zawiera najtrudniejsze problemy z klasy NP.

20 Podsumowanie P klasa problemów rozwiązywalnych w czasie wielomianowym. NP zupełne klasa problemów prawie na pewno nie rozwiązywalnych w czasie wielomianowym. Problemy otwarte to takie, dla których nie znaleziono algorytmu wielomianowego rozwiązania ani nie wykazano NP-zupełności.

21 Do udowodnienia NP-zupełności problemu decyzyjnego π wystarczy: 1. Dowieść, że πεnp, 2. Przetransformować wielomianowo dowolny znany problem NP-zupełny do problemu π. W celu zbadania złożoności obliczeniowej danego problemu, staramy się znaleźć dla niego optymalny deterministyczny algorytm wielomianowy lub wykazać trudność tego problemu. Aby wykazać trudność, wystarczy udowodnić NP-zupełność. Do klasy problemów NP-zupełnych należą najtrudniejsze problemy klasy NP.

22 Problemami NP-zupełnymi są: Problem podziału, Problem komiwojażera, Problem cyklu Hamiltona.

23 W celu wykazania NP-zupełności problemu π 1 należy: 1. Pokazać, że π 1 NP, 2. Wybrać odpowiedni NP-zupełny problem π 2, 3. Skonstruować transformację f: D π2 D π1, 4. Pokazać, że f jest obliczana w czasie wielomianowym, 5. Pokazać, że π 2 π 1, 6. Pokazać, że π 1 π 2 lub π 2 π 1. Zwykle najtrudniejsze są punkty 2. i 6.

24 Zasadnicze techniki dowodzenia NP-zupełności problemów decyzyjnych: Ograniczanie, Lokalna zamiana, Projektowanie części składowych. Którą z technik zastosowano dowodząc NP-zupełności Problemu plecakowego poprzez przetransformowanie do niego Problemu podziału?

25 Problem cyklu Hamiltona Dane: Graf nieskierowany G =< V, E >, n = V Pytanie: Czy G zawiera cykl Hamiltona, tzn. czy istnieje takie uporządkowanie wierzchołków grafu < v i[1], v i[2],, v i[n] >, że: {v i[j], v i[j+1] } E dla jε 1, n 1 oraz {v i n, v i[1] } E?

26 Problem ścieżki Hamiltona Dane: Graf nieskierowany G =< V, E >, n = V Pytanie: Czy G zawiera ścieżkę Hamiltona, tzn. czy istnieje takie uporządkowanie wierzchołków grafu < v i[1], v i[2],, v i[n] >, że {v i[j], v i[j+1] } E dla jε 1, n 1?

27 Twierdzenie Problemy cyklu Hamiltona i ścieżki Hamiltona są NP-zupełne.

28 Problem najdłuższej ścieżki Graf nieskierowany G =< V, E >, liczba naturalna K V. Pytanie: Czy G zawiera ścieżkę prostą (ścieżkę przechodząca przez każdy z jej wierzchołków dokładnie jeden raz) zawierającą K lub więcej krawędzi?

29 Zasadnicze techniki dowodzenia NP-zupełności problemów decyzyjnych: Ograniczanie, Lokalna zamiana, Projektowanie części składowych.

30 Twierdzenie Problem najdłuższej ścieżki jest NPzupełny. Dowód wykonany techniką ograniczania. Jako znany problem NP-zupełny przyjmiemy Problem ścieżki Hamiltona.

31 NDMT dla Problemu najdłuższej ścieżki Głowica zapisująca Moduł zgadujący Sterowanie Głowica odczytująco-zapisująca.. Łańcuch S Dane wejściowe Łańcuch S - ciąg K+1 indeksów wierzchołków, którego i-ta pozycja wskazuje na i-ty wierzchołek wygenerowanej sekwencji. Dane wejściowe V v 0, v j v k, v l v p, v r

32 Twierdzenie Problem najdłuższej ścieżki π 1 jest NP-zupełny. Dowód, że π 1 εnp Podczas rozwiązywania problemu π 1, moduł zgadujący NDMT generuje sekwencję K + 1 wierzchołków, tzn. K krawędzi. W jaki sposób? Jaka jest złożoność obliczeniowa? Deterministyczna część NDMT sprawdza czy dla każdych dwu kolejnych wierzchołków v i[j], v i[j+1] jest {v i[j], v i[j+1] } E oraz czy wierzchołki powtarzają się. Ponieważ te czynności można wykonać w czasie wielomianowym, a więc π 1 εnp.

33 Twierdzenie Problem najdłuższej ścieżki jest NP-zupełny. Dowód, że π 2 π 1 π 1 - Problem najdłuższej ścieżki, π 2 - Problem ścieżki Hamiltona.

34 Problem ścieżki Hamiltona Dane: Graf nieskierowany G =< V, E >, n = V Pytanie: Czy G zawiera ścieżkę Hamiltona, tzn. czy istnieje takie uporządkowanie wierzchołków grafu < v i[1], v i[2],, v i[n] >, że {v i[j], v i[j+1] } E dla jε 1, n 1? Problem najdłuższej ścieżki Graf nieskierowany G =< V, E >, liczba naturalna K V. Pytanie: Czy G zawiera ścieżkę prostą (ścieżkę przechodząca przez każdy z jej wierzchołków dokładnie jeden raz) zawierającą K lub więcej krawędzi? Czy jeden z powyższych problemów jest ogólniejszy od drugiego? Jak dobrać K?

35 Twierdzenie Problem najdłuższej ścieżki jest NP-zupełny. Dowód, że π 2 π 1 π 1 - Problem najdłuższej ścieżki, π 2 - Problem ścieżki Hamiltona. W celu wykazania powyższego należy π 1 ograniczyć tylko do tych instancji I 1 D π1, takich, że K = V 1. Tak ograniczony π 1 jest problemem π 2.

36 Graf pełny W grafie pełnym każda para wierzchołków jest połączona. Izomorfizm grafów Dane: Grafy G 1 =< V 1, E 1 >, G 2 =< V 2, E 2 >. Pytanie: Czy istnieje funkcja jeden na jeden f: V 1 V 2 taka, że {u, v}εe 1 wtedy i tylko wtedy gdy {f(u), f(v)}εe 2?

37 Izomorfizm grafów Dane: Grafy G 1 =< V 1, E 1 >, G 2 =< V 2, E 2 >. Pytanie: Czy istnieje funkcja jeden na jeden f: V 1 V 2 taka, że {u, v}εe 1 wtedy i tylko wtedy gdy {f(u), f(v)}εe 2? G 1 =< V 1, E 1 > G 2 =< V 2, E 2 > u 2 f f v 5 v 2 u 1 u 3 u 4 f u 5? v 3 v 4 v 1

38 Testy izomorfizmu grafów?

39 Testy izomorfizmu grafów Liczba wierzchołków Liczba krawędzi Stopnie wierzchołków

40 Niech grafy G 1 =< V 1, E 1 >, G 2 =< V 2, E 2 > będą takie, że V 1 = V 2 = n. Ile jest funkcji jeden na jeden f: V 1 V 2?

41 Niech grafy G 1 =< V 1, E 1 >, G 2 =< V 2, E 2 > będą takie, że V 1 = V 2 = n. Funkcji jeden na jeden f: V 1 V 2 jest n!.

42 Problem kliki Dane: Graf nieskierowany G =< V, E >, liczba naturalna k V. Pytanie: Czy graf zawiera klikę o rozmiarze k lub większym, tzn. podgraf pełny zawierający V k wierzchołków. Problem największego wspólnego podgrafu Dane: Grafy nieskierowane G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 >, liczba naturalna K. Pytanie: Czy istnieją podzbiory E 1 E 1 i E 2 E 2 takie, że E 1 = E 2 K i podgrafy G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 > są izomorficzne?

43 Problem największego wspólnego podgrafu Dane: Grafy nieskierowane G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 >, liczba naturalna K. Pytanie: Czy istnieją podzbiory E 1 E 1 i E 2 E 2 takie, że E 1 = E 2 K i podgrafy G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 > są izomorficzne? v 6 v 1 u 1 u 4 u 3 v 5 v 2 u 2 u 5 v 4 v 3 u 6

44 Kryteria kosztów operacji elementarnych (zapisania, dodawania, odejmowania, porównania dwu liczb, itp.) Logarytmiczne kryterium kosztów Czas wykonania elementarnej operacji zależy liniowo od długości łańcucha danych kodujących liczby, a zatem od logarytmów liczb. Analiza teoretyczna z użyciem DMT prowadzona jest przy tym kryterium. Jednorodne kryterium kosztów Czas wykonania elementarnej operacji jest jednostkowy. Analiza praktyczna często oparta jest na tym kryterium.

45 Twierdzenie Problem największego wspólnego podgrafu π 1 jest NP-zupełny. Dowód, że π 1 εnp

46 Dowód, że Problem największego wspólnego podgrafu π 1 εnp Dane: Grafy nieskierowane G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 >, liczba naturalna K. Pytanie: Czy istnieją podzbiory E 1 E 1 i E 2 E 2 takie, że E 1 = E 2 i podgrafy G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 > są izomorficzne? v 5 v 6 e 1 v 4 e 2 v 3 v 1 e 4 e 3 v 2 v 2 v 5, v 1 v 3, v 2 v 1, e 1, e 2, e 3 u 6 u 4, u 5 u 2, u 6 u 5, f 2, f 3, f 1 u 1 u 2 f 3 u 4 u 6 f 2 f 1 u 3 u 5 K

47 NDMT dla Problemu najdłuższej ścieżki Głowica zapisująca Moduł zgadujący Sterowanie Głowica odczytująco-zapisująca.. Łańcuch S Dane wejściowe.. Łańcuch S Pary reprezentujące odwzorowanie g: V 1 V2 v 0, u j v k, u l v p, u r Dane wejściowe Liczby wierzchołków obu grafów z łukami V 1 v 0, v j v k, v l v p, v r V 2 u 0, v k v k, v m v r, v p

48 Wyznaczanie liczby krawędzi w podgrafach izomorficznych Dla każdej krawędzi {v k, v l } w grafie G 1 wykonać wyznacz zbiór {g(v k ), g(v l )} ; sprawdź czy {g(v k ), g(v l )} jest krawędzią w G 2 ; jeśli {g(v k ), g(v l )} jest krawędzią w G 2, to liczbę krawędzi w podgrafach izomorficznych zwiększ o 1

49 Dowód, że Problem największego wspólnego podgrafu π 1 εnp NDMT musi sprawdzić, czy: Czy istnieją podzbiory E 1 E 1 i E 2 E 2 takie, że E 1 = E 2 i podgrafy G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 > są izomorficzne? K Generacja jednego rozwiązania i sprawdzenie warunków mogą być wykonane w czasie ograniczonym przez wielomian od rozmiaru problemu. Zatem π 1 εnp.

50 Problem kliki Dane: Graf nieskierowany G =< V, E >, liczba naturalna k V. Pytanie: Czy graf zawiera klikę o rozmiarze k lub większym, tzn. podgraf pełny zawierający V k wierzchołków. Problem największego wspólnego podgrafu Dane: Grafy nieskierowane G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 >, liczba naturalna K. Pytanie: Czy istnieją podzbiory E 1 E 1 i E 2 E 2 takie, że E 1 = E 2 K i podgrafy G 1 =< V 1, E 1 > i G 2 =< V 2, E 2 > są izomorficzne?

51 Dowód, że π 2 π 1 Problem kliki π 2 Problem największego wspólnego podgrafu π 1 Punktem wyjścia jest twierdzenie Problem kliki jest NP-zupełny. Niech w Problemie kliki dane będzie k V. W Problemie największego wspólnego podgrafu, jako G 2 przyjmijmy graf zawierający graf pełny o k wierzchołkach. Jego pozostałe V 2 k wierzchołki mają stopnie równe 0. 2 W G 2 jest krawędzi w liczbie i 1 = (k 1) k/2 i=k

52 Dowód, że π 2 π 1 Problem kliki π 2 Problem największego wspólnego podgrafu π 1 Ograniczamy π 1 do postaci, gdy graf G 2 jest grafem jak poprzednio określony, a K = E 2 = (k 1) k/2. Tak zdefiniowany Problem największego podgrafu polega na szukaniu kliki o k wierzchołkach w grafie G 1. Zatem tak ograniczony Problem największego wspólnego podgrafu daje rozwiązanie dla Problemu kliki.

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Problemy łatwe i trudne Problemy łatwe to problemy rozwiązywalne w czasie wielomianowym. Problemy trudne to takie, których

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Lista 6 Problemy NP-zupełne

Lista 6 Problemy NP-zupełne 1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Złożoność problemów. 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok.

Złożoność problemów. 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok. Złożoność problemów Przykład - wieże Hanoi Problem jest zamknięty (dolne ograniczenie złożoności = złożoność algorytmu rekurencyjnego lub iteracyjnego) i ma złożoność O(2 N ). Mnisi tybetańscy podobno

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZŁOŻONOŚĆ OBLICZENIOWA ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ dr hab. Krzysztof SZKATUŁA, prof. PAN Instytut Badań Systemowych PAN Uniwersytet

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

Teoria grafów - Teoria rewersali - Teoria śladów

Teoria grafów - Teoria rewersali - Teoria śladów 17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące

Bardziej szczegółowo

Zakładamy, że maszyna ma jeden stan akceptujacy.

Zakładamy, że maszyna ma jeden stan akceptujacy. Złożoność pamięciowa Rozważamy następujac a maszynę Turinga: 1 0 0 1 1 0 1 1 1 1 Taśma wejściowa (read only) 1 0 1 1 0 0 0 1 0 0 1 Taśma robocza (read/write) 0 1 1 0 0 1 0 0 1 Taśma wyjściowa (write only)

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ. Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Złożoność obliczeniowa wybranych problemów szeregowania zadań jednostkowych na równoległych procesorach

Złożoność obliczeniowa wybranych problemów szeregowania zadań jednostkowych na równoległych procesorach Wydział Matematyki i Informatyki Bartłomiej Przybylski Numer albumu: 362824 Złożoność obliczeniowa wybranych problemów szeregowania zadań jednostkowych na równoległych procesorach Computational complexity

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych

Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych POLITECHNIKA POZNAŃSKA Wydział Informatyki Instytut Informatyki Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych Tomasz

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań

Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych. NP-optymalizacyjny problem Π składa się: zbioru instancji D Π rozpoznawalnego

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

9. Schematy aproksymacyjne

9. Schematy aproksymacyjne 9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset

Bardziej szczegółowo

Lista 0. Kamil Matuszewski 1 marca 2016

Lista 0. Kamil Matuszewski 1 marca 2016 Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow 9: Digrafy (grafy skierowane) Spis zagadnień Digrafy Porządki częściowe Turnieje Przykłady: głosowanie większościowe, ścieżka krytyczna Digraf (graf skierowany) Digraf to równoważny termin z terminem graf

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Zadania z egzaminów z Algorytmiki

Zadania z egzaminów z Algorytmiki Zadania z egzaminów z Algorytmiki 1 Geometria obliczeniowa Zadanie 1 Zaprojektuj efektywny algorytm dla następującego problemu. Dany jest zbior n prostokątów na płaszczyźnie (o bokach niekoniecznie równoległych

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Podstawy Informatyki. Sprawność algorytmów

Podstawy Informatyki. Sprawność algorytmów Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych

Bardziej szczegółowo