BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe"

Transkrypt

1 BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe

2 Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania (dostawcy) a punktami odbioru (odbiorcy). podaż a punkty nadania (i) D x c punkty odbioru (j) O popyt b x 2 c 2 x n c n x 2 c 2 a 2 D 2 x 22 c 22 O 2 b 2 x 2n c 2n x m c m x m2 c m2 a m D m x mn c mn O n b n

3 Klasyczne zagadnienie transportowe 2 Założenia klasycznego zadania transportowego: x ij a i b j - zmienne decyzyjne; ilość przewożonego jednorodnego dobra na trasie pomiędzy i-tym dostawcą a j-tym odbiorcą [i=,2,,m; j=,2,,n;] - parametr problemu; zasób dobra u i-tego dostawcy (podaż) [i=,2,,m] a = [a,a 2,,a m ] - parametr problemu; zapotrzebowanie na dobro j-tego odbiorcy (popyt) [j=,2,,n] b = [b,b 2,,b n ] c ij i m - parametr problemu; koszt przewozu jednostki dobra na trasie pomiędzy i-tym dostawcą a j-tym odbiorcą [i=,2,,m; j=,2,,n;] c c c j n a i b j C c c 2 m c c 2 22 m2 c c n 2n mn

4 Klasyfikacja zadań transportowych:. Zamknięte ( zbilansowane ) m n i a i b j Klasyczne zagadnienie transportowe 3 j 2. Otwarte ( niezbilansowane ) - przypadek i m n a i b j j Otwarte Zamknięte: a) dodać n+ punkt odbioru b) zapotrzebowanie b n+ dodanego punktu odbioru różnica między całkowitą podażą a całkowitym popytem: m n b n i a i j b j

5 Klasyczne zagadnienie transportowe 4 jednostkowe koszty transportu podaż jednostkowe koszty transportu podaż O O2 O3 O O2 O3 O4 D D D D D D popyt popyt

6 Klasyczne zagadnienie transportowe 5 2. Otwarte ( niezbilansowane ) - przypadek 2 i m n a i b j j Otwarte Zamknięte: a) dodać m+ punkt nadania b) zapotrzebowanie a m+ dodanego punktu nadania różnica między całkowitym popytem a całkowitą podażą: a m n j b j - i m a i

7 Klasyczne zagadnienie transportowe 6 jednostkowe koszty transportu podaż jednostkowe koszty transportu podaż O O2 O3 O O2 O3 D D D D D D popyt D popyt

8 Funkcja celu: (łączny koszt transportu) m n F( x) Ograniczenia: n i m i i x ij a x ij b i j Klasyczne zagadnienie transportowe 8 model decyzyjny j c ij x ij i =,2,,m min ( niezbilansowane ) j =,2,,n (bilanse dla punktów nadania) (bilanse dla punktów odbioru) Warunki brzegowe: x ij 0 i =,2,,m j =,2,,n Rozwiązać można tylko zbilansowane zagadnienie transportowe!!!!

9 Klasyczne zagadnienie transportowe 9 Przykład Pewien jednorodny produkt należy dostarczyć z trzech hurtowni do trzech sklepów. Hurtownie dysponują następującymi ilościami produktu: 60, 30 i 20 jednostek. Zapotrzebowanie sklepów to: 30,35 i 45 jednostek. Jednostkowe koszty transportu między każdą hurtownią a sklepem ( w zł za sztukę ) dane są w następującej macierzy kosztów: C Należy znaleźć taki plan przewozów, przy którym łączne koszty transportowe będą najniższe.

10 Klasyczne zagadnienie transportowe 0 Przykład jednostkowe koszty transportu O O2 O3 podaż D D D popyt

11 popyt podaż Klasyczne zagadnienie transportowe Przykład F( ) = 4x +2x 2 +3x 3 +3x 2 +x 22 +2x 23 +x 3 +3x 32 +x 33 min x +x 2 +x 3 = 60 +x 2 +x 22 +x 23 = 30 +x 3 +x 32 +x 33 = 20 x +x 2 +x 3 = 30 x 2 +x 22 +x 32 = 35 x 3 +x 23 +x 33 = 45 x 0 x 2 0 x 3 0 x 2 0 x 22 0 x 23 0 x 3 0 x 32 0 x 33 0

12 Klasyczne zagadnienie transportowe 2 Algorytm transportowy Początkowy program przewozowy 6 Skoryguj program przewozowy 2 Program optymalny? NIE 5 Ustal maksymalny przewóz na trasie ustalonej w [3] TAK 4 Zbuduj cykl Korygujący przewozy KONIEC Wybierz trasę dającą największą obniżkę kosztów 3

13 Klasyczne zagadnienie transportowe 3 Algorytm transportowy 2 Początkowy program przewozowy Metoda kąta północno-zachodniego. Wprowadź maksymalny przewóz na trasie (i,j): x ij = min(a i,b j ) - rozpoczynamy od trasy D O 2. Skoryguj podaż w i-tym punkcie nadania: a i = a i x ij i popyt w j-tym punkcie odbioru: b i = b i x ij

14 Klasyczne zagadnienie transportowe 4 Algorytm transportowy 2 jednostkowe koszty transportu O O2 O3 podaż D D D popyt Koszty = 30*4 +30*2 + 5* + 25*2 + 20* = 255

15 Klasyczne zagadnienie transportowe 5 Algorytm transportowy 3 Początkowy program przewozowy Metoda minimalnego elementu macierzy. Wybierz trasę o najmniejszym jednostkowym koszcie transportu. Jeżeli jest ich kilka wybór jest dowolny. 2. Wprowadź maksymalny przewóz na wybranej trasie (i,j): x ij = min(a i,b j ) 3. Skoryguj podaż w i-tym punkcie nadania: a i = a i x ij i popyt w j-tym punkcie odbioru: b i = b i x ij

16 Klasyczne zagadnienie transportowe 6 Algorytm transportowy 4 jednostkowe koszty transportu O O2 O3 podaż D D D popyt

17 Klasyczne zagadnienie transportowe 7 Algorytm transportowy 5 jednostkowe koszty transportu O O2 O3 podaż D 60 D2 30 D popyt

18 Klasyczne zagadnienie transportowe 8 Algorytm transportowy 6 jednostkowe koszty transportu O O2 O3 podaż D D D3 20 popyt

19 Klasyczne zagadnienie transportowe 9 Algorytm transportowy 7 jednostkowe koszty transportu O O2 O3 podaż D 60 D D popyt

20 Klasyczne zagadnienie transportowe20 Algorytm transportowy 8 jednostkowe koszty transportu O O2 O3 podaż D D D popyt Koszt= 0*4 + 5*2 + 45*3 + 30* + 20* = 235 porównaj wynik z poprzednią metodą

21 Klasyczne zagadnienie transportowe 2 Algorytm transportowy 9 Sprawdzenie optymalności programu przewozowego - tabela wskaźników optymalności. pola tabeli wskaźników optymalności, dla których x ij >0 zawierają jedną liczbę: jednostkowy koszt transportu c ij 2. pozostałe pola tabeli wskaźników optymalności zawierają dwie liczby: (u i +v j ) oraz wskaźnik optymalności ij = c ij (u i +v j ) 3. program przewozowy jest optymalny, jeżeli wszystkie ij 0 ( gdy wszystkie ij>0 to rozwiązanie jest optymalne jednoznacznie, jeżeli przynajmniej jeden wskaźnik optymalności jest równy 0 to rozwiązanie jest optymalne niejednoznacznie ) 4. wyznaczenie trasy dającej największą obniżkę kosztów (jeżeli uzyskany program przewozowy nie jest optymalny): dla wszystkich ij<0 kl = min{ ij }

22 Klasyczne zagadnienie transportowe 22 Algorytm transportowy 0 Sprawdzenie optymalności programu przewozowego uzyskanego metodą kąta północno - zachodniego O O2 O3 u i 3 D 4 2 D D v j 4 2 3

23 Klasyczne zagadnienie transportowe 23 Algorytm transportowy Korekta programu przewozowego. postaw znak + na wytypowanej trasie dającej największą obniżkę kosztów 2. w rozpatrywanym programie przewozowym znakuj trasy o przewozie niezerowym znakami + i - w taki sposób, aby w każdym wierszu i każdej kolumnie była para + - lub nie było ich w ogóle 3. wyznacz wielkość korekty poprzez wybór wartości najmniejszej oznaczonej znakiem - : = min(x ij - ) 4. skoryguj rozpatrywany program przewozowy poprzez: x ij* = x ij + dla tras oznaczonych znakiem + x ij* = x ij + dla tras oznaczonych znakiem - x ij* = x ij dla tras nieoznaczonych

24 Klasyczne zagadnienie transportowe 24 Algorytm transportowy 2 Korekta programu przewozowego O O2 O3 podaż D D D popyt min{30,5,20} = 5

25 Klasyczne zagadnienie transportowe 25 Algorytm transportowy 3 Poprawiony program przewozowy O O2 O3 podaż D D D popyt Koszt = = 250 lub Koszt = ( )= = 250

26 Klasyczne zagadnienie transportowe 26 Algorytm transportowy 4 Sprawdzenie optymalności programu przewozowego iteracja 2 O O2 O3 u i D D D v j 4 2 4

27 Klasyczne zagadnienie transportowe 27 Algorytm transportowy 5 Korekta programu przewozowego O O2 O3 podaż D D D popyt min{25,5} = 5

28 Klasyczne zagadnienie transportowe 28 Algorytm transportowy 6 Poprawiony program przewozowy O O2 O3 podaż D D D popyt Koszt = = 235 lub Koszt = ( ) = = 235

29 Klasyczne zagadnienie transportowe 29 Algorytm transportowy 7 Sprawdzenie optymalności programu przewozowego iteracja 3 O O2 O3 u i D D D v j Rozwiązanie optymalne niejednoznacznie

30 Klasyczne zagadnienie transportowe 30 Algorytm transportowy 8 O O2 O3 podaż D D D popyt min{0,30} = 0

31 Klasyczne zagadnienie transportowe 3 Algorytm transportowy 9 Pierwszy alternatywny program przewozowy O O2 O3 podaż D D D popyt Koszt = = 235

32 Klasyczne zagadnienie transportowe 32 Algorytm transportowy 20 O O2 O3 podaż D D D popyt min{35,30} = 30

33 Klasyczne zagadnienie transportowe 33 Algorytm transportowy 2 Drugi alternatywny program przewozowy O O2 O3 podaż D D D popyt Koszt = = 235

34 Klasyczne zagadnienie transportowe 34 Algorytm transportowy 22 Kombinacja liniowa rozwiązania niejednoznacznego: X opt , 2, 3 0

35 Klasyczne zagadnienie transportowe 32 Całkowita blokada trasy Załóżmy, że z trzeciej hurtowni nie można dostarczyć towaru do pierwszego sklepu. W celu całkowitej blokady wybranej trasy zwiększamy odpowiadający jej jednostkowy koszt transportu. O O2 O3 podaż D D M D3 M 3 20 popyt

36 Klasyczne zagadnienie transportowe 33 Częściowa blokada trasy Załóżmy, że z pierwszej hurtowni do trzeciego sklepu można dostarczyć nie więcej niż 0 sztuk towaru. W celu częściowej blokady wybranej trasy podwajamy odbiorcę lub dostawcę, który jej odpowiada. Przypadek I podwojenie odbiorcy: O O2 O3 O3 poda ż D M 60 D M D popyt

37 Klasyczne zagadnienie transportowe 33 Częściowa blokada trasy Przypadek II podwojenie dostawcy: O O2 O3 poda ż D D 4 2 M 50 M D D popyt

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Zadanie transportowe

Zadanie transportowe Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Wieloetapowe zagadnienia transportowe

Wieloetapowe zagadnienia transportowe Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych

Bardziej szczegółowo

Narzędzia wspomagania decyzji logistycznych

Narzędzia wspomagania decyzji logistycznych Narzędzia wspomagania decyzji logistycznych Dr Adam Kucharski Spis treści Optymalizacja liniowa. Programowanie liniowe.................................. Metoda graficzna.....................................

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11

1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 Spis treści 1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 1.4 Metoda VAM... 18 1.5 Metoda e-perturbacji... 28 1.6 Metoda potencjałów...

Bardziej szczegółowo

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 3 Problem transportowy... 16 3.1 Wstęp... 16 3.2 Metoda

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,

Bardziej szczegółowo

Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220

Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220 Zagadnienie transportowe Firma produkująca papier kserograficzny posiada 4 wytwórnie i 5 hurtowni, do których dostarczany jest papier. Każda z fabryk wytwarza określoną liczbę ton papieru na miesiąc, i

Bardziej szczegółowo

Analiza danych przy uz yciu Solvera

Analiza danych przy uz yciu Solvera Analiza danych przy uz yciu Solvera Spis treści Aktywacja polecenia Solver... 1 Do jakich zadań wykorzystujemy Solvera?... 1 Zadanie 1 prosty przykład Solvera... 2 Zadanie 2 - Optymalizacja programu produkcji

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 1/11 Spis treści Rozdział 1. Zagadnienie transportowe................... 5 1.1.

Bardziej szczegółowo

Rozwiązywanie zadań za pomocą pakietu WinQSB

Rozwiązywanie zadań za pomocą pakietu WinQSB Rozwiązywanie zadań za pomocą pakietu WinQSB Pakiet WinQSB (Windows Quantitative System for Business) jest przeznaczony do komputerowego rozwiązywania zadań z zakresu programowania matematycznego. Uruchomienie

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

PROGRAM OPTYMALIZACJI PLANU PRODUKCJI

PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Strona 1 PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Program autorski opracowany przez Sławomir Dąbrowski ul. SIENKIEWICZA 3 m. 18 26-220 STĄPORKÓW tel: 691-961-051 email: petra.art@onet.eu, sla.dabrowscy@onet.eu

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Nr ćwiczenia: 2 Temat: Problem transportowy Cel ćwiczenia: Nabycie umiejętności formułowania zagadnienia transportowego

Bardziej szczegółowo

Komentarz technik logistyk 342[04]-01 Czerwiec 2009

Komentarz technik logistyk 342[04]-01 Czerwiec 2009 Strona 1 z 16 Strona 2 z 16 Strona 3 z 16 W rozwiązaniu zadania ocenie podlegały następujące elementy: I. Tytuł pracy egzaminacyjnej wynikający z treści zadania. II. Założenia wynikające z treści zadania

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Problem 1 [Sieć telekomunikacyjna routing]

Problem 1 [Sieć telekomunikacyjna routing] Problem 1 [Sieć telekomunikacyjna routing] Sieć z komutacją pakietów (packet switched newtork) z dwoma różnymi klasami danych: A packet switched network is a digital communications network that groups

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

1. Opakowania wielokrotnego użytku: 2. Logistyczny łańcuch opakowań zawiera między innymi następujące elementy: 3. Które zdanie jest prawdziwe?

1. Opakowania wielokrotnego użytku: 2. Logistyczny łańcuch opakowań zawiera między innymi następujące elementy: 3. Które zdanie jest prawdziwe? 1. Opakowania wielokrotnego użytku: A. Są to zwykle opakowania jednostkowe nieulegające zniszczeniu po jednokrotnym użyciu (opróżnieniu), które podlegają dalszemu skupowi. B. Do opakowań wielokrotnego

Bardziej szczegółowo

Typowe zadania decyzyjne (zadania transportowe, zadania przydziału)

Typowe zadania decyzyjne (zadania transportowe, zadania przydziału) (zadania transportowe, zadania przydziału) Autor: Paweł Szołtysek O układzie prezentacji Decyzja Bardzo trudna decyzja Typowe zadania decyzyjne Wstęp Co to jest problem decyzyjny? I kwartał I II III IV

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik logistyk 342[04]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik logistyk 342[04] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik logistyk 342[04] 1 2 3 Rozwiązanie zadania egzaminacyjnego polegało na opracowaniu projektu realizacji prac logistycznych w zakładzie

Bardziej szczegółowo

Gospodarka magazynowa

Gospodarka magazynowa Pracownia Inżynierii Procesowej Modelowanie Symulacja Optymalizacja Gospodarka magazynowa Procesy magazynowe Ekonomiczna wielkość zamówienia PROCESY MAGAZYNOWE Gospodarka magazynowa Proces magazynowy Proces

Bardziej szczegółowo

Zadania przykładowe na egzamin. przygotował: Rafał Walkowiak

Zadania przykładowe na egzamin. przygotował: Rafał Walkowiak Zadania przykładowe na egzamin z logistyki przygotował: Rafał Walkowiak Punkt zamawiania Proszę określić punkt dokonywania zamawiania jeżeli: zapas bezpieczeństwa wynosi 10 sztuk, czas realizacji zamówienia

Bardziej szczegółowo

KOSZTY, PRZYCHODY, WYNIK EKONOMICZNY. dr Sylwia Machowska

KOSZTY, PRZYCHODY, WYNIK EKONOMICZNY. dr Sylwia Machowska KOSZTY, PRZYCHODY, WYNIK EKONOMICZNY dr Sylwia Machowska 1 NIE MA DZIAŁAŃ BEZ KOSZTÓW Koszty stanowią zawsze punkt wyjścia myślenia ekonomicznego dlatego, że każde działanie podmiotów jest związane z ponoszeniem

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

1 AKTYWACJA POLECENIA SOLVER... 1 2 DO JAKICH ZADAŃ WYKORZYSTAMY SOLVERA?... 1 3 PROSTY PRZYKŁAD SOLVERA... 2 4 WIĘCEJ O SOLVERZE...

1 AKTYWACJA POLECENIA SOLVER... 1 2 DO JAKICH ZADAŃ WYKORZYSTAMY SOLVERA?... 1 3 PROSTY PRZYKŁAD SOLVERA... 2 4 WIĘCEJ O SOLVERZE... Analiza danych przy użyciu Solvera Informatyka ekonomiczna laboratorium Spis treści 1 AKTYWACJA POLECENIA SOLVER... 1 2 DO JAKICH ZADAŃ WYKORZYSTAMY SOLVERA?... 1 3 PROSTY PRZYKŁAD SOLVERA... 2 4 WIĘCEJ

Bardziej szczegółowo

c j x x

c j x x ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony

Bardziej szczegółowo

SAMOROZLICZANIE VAT. w aptece szpitalnej KS-ASW

SAMOROZLICZANIE VAT. w aptece szpitalnej KS-ASW - INSTRUKCJA w aptece szpitalnej KS-ASW Na mocy art.17 ust.1, pkt 5 oraz ust. 2 Dz. U. nr 64, poz 332 (o podatku od towarów i usług) w przypadku faktur VAT wystawionych przez podmioty spoza terytorium

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Metody sterowania zapasami ABC XYZ EWZ

Metody sterowania zapasami ABC XYZ EWZ Zarządzanie logistyką Dr Mariusz Maciejczak Metody sterowania zapasami ABC XYZ EWZ www.maciejczak.pl Zapasy Zapasy w przedsiębiorstwie można tradycyjnie rozumieć jako zgromadzone dobra, które w chwili

Bardziej szczegółowo

TEORIA DECYZJE KRÓTKOOKRESOWE

TEORIA DECYZJE KRÓTKOOKRESOWE TEORIA DECYZJE KRÓTKOOKRESOWE 1. Rozwiązywanie problemów decyzji krótkoterminowych Relacje między rozmiarami produkcji, kosztami i zyskiem wykorzystuje się w procesie badania opłacalności różnych wariantów

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Badania Operacyjne Ćwiczenia nr 1 (Materiały) Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup

Bardziej szczegółowo

HEURYSTYCZNA PUŁAPKA DECYZYJNA GLOBALNEGO OPTIMUM

HEURYSTYCZNA PUŁAPKA DECYZYJNA GLOBALNEGO OPTIMUM DECYZJE nr 3 czerwiec 2005 HEURYSTYCZNA PUŁAPKA DECYZYJNA GLOBALNEGO OPTIMUM Witold T. Bielecki * WSPiZ im. Leona Koźmińskiego Artykuł rozważa kwestię zawodności intuicji menedżera przy próbie dokonywania

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Model klasyczny podstawowe założenia Podstawowe założenia modelu są dokładnie takie same jak w modelu klasycznym gospodarki

Bardziej szczegółowo

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź

Bardziej szczegółowo

Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś

Bardziej szczegółowo

Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć

Bardziej szczegółowo

Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę

Bardziej szczegółowo

Ż ź ź ź ź ź ć ć Ą Ą ć Ą ź ź ć Ż Ś ź ć ć Ę ć ź ź ć ź Ą ĄĄ Ń Ą Ń ć ć ć ć Ę ć Ń ć ć ć ć Ą ć ć ć ć ć Ń Ń ć ć ź ź ć Ę Ę ć Ą ć ć ć ć ć Ń Ę ć ć ć ć ć ć ć ć ć ź ć ź Ą ć ć ć Ń ć ć ć ć ź ć ć ć Ń Ń ć ź ź ć ź ź ć

Bardziej szczegółowo

Ę Ę Ę Ę Ę Ź Ą Ę Ą Ę Ą Ą Ę ć Ś ć Ę Ą ź Ą Ź ć Ę Ź Ę ć Ą Ę Ś Ę Ę Ź Ą Ę ć ź Ą Ź Ę ź Ę Ą Ś Ł Ą Ź Ę Ę Ę Ę ć Ę Ą Ę Ę Ą Ś Ą Ę ź ć Ę Ę Ę ź Ź ź Ą Ź Ę Ź ź Ź ć ć Ę Ę Ę Ą Ą Ą Ę ć Ę Ę ć Ę Ę Ą Ę Ą Ę Ę Ę Ą Ę Ś ć Ą ć ć

Bardziej szczegółowo

Ł Ą Ś Ą Ą ź ć ź Ł Ą ć ć ć ć ź Ś ć ć ć Ą Ł ć ź ć ć ć ć Ł ć ć ć ć ć Ł Ą ć Ś Ś Ż ć ź Ą ź ź ź ć ź ć ć ć ć ź ź ć ź ź ź Ś ź ź ć ć ć ć Ś ć ź ź ć ć Ą ź ź ź ź ź ć ć ć ć Ś ć ć ć Ś ć Ż Ł Ś Ł Ł Ł Ł Ż Ł Ś Ś ź ć Ą

Bardziej szczegółowo

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2 PAWEŁ OSTASZEWSKI PIŁA, dn. 15.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 2 1. TREŚĆ ZADANIA: Firma produkująca sok jabłkowy przewiduje następujące zapotrzebowanie na ten

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Komentarz Sesja letnia 2012 zawód: technik logistyk 342[04] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją.

Komentarz Sesja letnia 2012 zawód: technik logistyk 342[04] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją. Komentarz Sesja letnia 2012 zawód: technik logistyk 342[04] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją. Wydział Egzaminów Zawodowych OKE Jaworzno 1 Wydział Egzaminów Zawodowych OKE

Bardziej szczegółowo