Wprowadzenie do badań operacyjnych - wykład 2 i 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do badań operacyjnych - wykład 2 i 3"

Transkrypt

1 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008

2 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j x j max (min) n j=1 n j=1 n j=1 a ij x j b i (i = 1, 2,..., m) a ij x j b i (i = m + 1,..., p) a ij x j = b i (i = p + 1,..., r) x j 0 (j + 1, 2,..., n 1 ), n 1 n 1

3 Postać standardowa oraz kanoniczna PL Postać standardowa PL(max) PL(min): n j=1 n j=1 c j x j max a ij x j b i (i = 1, 2,..., m) n j=1 n j=1 c j x j min a ij x j b i (i = 1, 2,..., m) x j 0 (j = 1, 2,..., n) x j 0 (j = 1, 2,..., n) 2

4 Postać kanoniczna (wersja macierzowa): c T x max(min) c T = [c 1 c 2... c n ] x = x 1 x 2. x n ax = b A = a 11 a a 1n a 21. a a 2n. a m1 a m2... a mn x 0 b = b 1 b 2. b m 3

5 Sprowadzanie do postaci kanonicznej - zmienne swobodne Przykład: 2x 1 + 4x 2 + 2x 3 max 2x 1 + 3x 2 + x 3 3 4x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0 2x 1 + 4x 2 + 2x 3 + 0x 4 + 0x 5 max 2x 1 + 3x 2 + x 3 x 4 = 3 4x 1 + 2x 2 + 3x 3 + x 5 = 5 x 1, x 2, x 3, x 4, x 5 0 4

6 Dualność Zadanie pierwotne (ZP): n j=1 n j=1 Zadanie dualne (ZD): c j x j max, a ij x j b i (i = 1, 2,..., m), x j 0 (j = 1, 2,..., n) m i=1 m i=1 b i y i min, a ij y i c j (j = 1, 2,..., n), y i 0 (i = 1, 2,..., m) 5

7 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 6

8 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 7

9 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 8

10 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 9

11 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 10

12 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 11

13 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 12

14 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 13

15 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 14

16 1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 15

17 Twierdzenie 1 Jeżeli ZP i ZD mają rozwiązania dopuszczalne, to obydwa mają rozwiązania optymalne. Jeżeli natomiast chociaż jedno z nich nie ma rozwiązania dopuszczalnego, to obydwa nie mają rozwiązań optymalnych. Twierdzenie 2 Jeżeli istnieją rozwiązania: x ZP i y ZD, dla których odpowiadające funkcje celu dają te same wartości, to obydwa rozwiązania są optymalne. 16

18 Twierdzenie 3 (o równowadze) Jeżeli x 1, x 2,..., x n jest rozwiązaniem dopuszczalnym ZP oraz y 1, y 2,..., y m jest rozw. dop. ZD, to aby te rozwiązania były optymalnymi, wystarcza, że spełnione są następujące warunki: n j=1 m i=1 a ij x j < b i y i = 0, a ij y i > c j x j = 0, y i > 0 x j > 0 n j=1 m i=1 a ij x j = b i a ij y i = c j. 17

19 ZP f(x) = 9x 1 + 6x 2 max 3x 1 + 6x x 1 + 4x x 1 + 3x x 1, x 2 0 ZD f (y) = 240y y y 3 min 3y 1 + 8y 2 + 9y 3 9 6y 1 + 4y 2 + 3y 3 6 y 1, y 2, y 3 0 x = (20, 30) y = (0.6, 0, 0.8) 18

20 Metoda simpleks dla ZP: f(x) = 9x 1 + 6x 2 + 0x 3 + 0x 4 + 0x 5 max 3x 1 + 6x 2 + x 3 = 240 8x 1 + 4x 2 + x 4 = 400 9x 1 + 3x 2 + x 5 = 270 x 1, x 2, x 3, x 4, x 5 0 c j wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 0 x x x z j x 0 war.opt

21 Po obliczeniach: c j wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 6 x /5 0 1/ x /15 1 4/ x /15 0 2/15 20 z j x 0 war.opt Wartości bezwzględne wskaźników optymalności zmiennych decyzyjnych ZP są wartościami zm. bilansujących ZD, natomiast wartości bezwzględne wskaźników optymalności zmiennych bilansujących ZP są wartościami zm. decyzyjnych ZD. 20

22 Po obliczeniach: c j wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 6 x /5 0 1/ x /15 1 4/ x /15 0 2/15 20 z j x 0 war.opt Wartości bezwzględne wskaźników optymalności zmiennych decyzyjnych ZP są wartościami zm. bilansujących ZD, natomiast wartości bezwzględne wskaźników optymalności zmiennych bilansujących ZP są wartościami zm. decyzyjnych ZD. 21

23 Zadanie prymalne: f(x) = 9x 1 + 6x 2 + 0x 3 + 0x 4 + 0x 5 max 3x 1 + 6x 2 + x 3 = 240 8x 1 + 4x 2 + x 4 = 400 9x 1 + 3x 2 + x 5 = 270 x 1, x 2, x 3, x 4, x 5 0 Zadanie dualne: f (y) = 240y y y 3 + 0y 4 + 0y 5 min 3y 1 + 8y 2 + 9y 3 y 4 = 9 6y 1 + 4y 2 + 3y 3 y 5 = 6 y 1, y 2, y 3, y 4, y

24 c j wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 6 x /5 0 1/ x /15 1 4/ x /15 0 2/15 20 z j x 0 war.opt Zadanie prymalne Zadanie dualne Zmienne wartości wskaźniki zmienne wartości optymalności Decyzyjne x 1 = 20 0 bilansujące y 4 = 0 x 2 = 30 0 y 5 = 0 Bilansujace x 3 = decyzyjne y 1 = 0.6 x 4 = y 2 = 0 x 5 = y 3 =

25 Metoda simpleks PL: c T x max(min) c - n-wymiarowy wektor wag Ax = b A - macierz współczynników (m n) b - m-wymiarowy wektor wyrazów wolnych x 0 x - n-wymiarowy wektor zmiennych B - baza - macierz kwadratowa (m m), m liniowo niezależnych kolumn macierzy A; det(b) 0 Z każdą bazą B związane jest rozwiązanie bazowe, jest ich ( ) n m. 24

26 Jak uzyskać rozwiązanie bazowe? 1. Wybieramy bazę B. 2. Zmienne niebazowe przyjmują wartośc 0 (x N = 0). 3. Rozwiązujemy układ m r-ń z m niewiadomymi Bx B =b. Twierdzenie 4 Jeżeli zadanie PL ma rozwiązanie optymalne, to ma także rozwiązanie optymalne bazowe. Wniosek 1 Rozwiązania optymalnego wystarczy szukać wśród rozwiązań bazowych, których liczba jest skończona. 25

27 Jak uzyskać rozwiązanie bazowe? 1. Wybieramy bazę B. 2. Zmienne niebazowe przyjmują wartośc 0 (x N = 0). 3. Rozwiązujemy układ m r-ń z m niewiadomymi Bx B =b. Twierdzenie 3 Jeżeli zadanie PL ma rozwiązanie optymalne, to ma także rozwiązanie optymalne bazowe. Wniosek 2 Rozwiązania optymalnego wystarczy szukać wśród rozwiązań bazowych, których liczba jest skończona. 26

28 Jak uzyskać rozwiązanie bazowe? 1. Wybieramy bazę B. 2. Zmienne niebazowe przyjmują wartośc 0 (x N = 0). 3. Rozwiązujemy układ m r-ń z m niewiadomymi Bx B =b. Twierdzenie 3 Jeżeli zadanie PL ma rozwiązanie optymalne, to ma także rozwiązanie optymalne bazowe. Wniosek 1 Rozwiązania optymalnego wystarczy szukać wśród rozwiązań bazowych, których liczba jest skończona. 27

29 Pełny przegląd WSZYSTKICH rozwiązań bazowych jest nieefektywny! W metodzie simpleks przechodzimy od jednego dopuszczalengo rozwiązania bazowego do drugiego, o którym wiemy, że jest NIE GORSZE od poprzedniego. KROK A: Wyznaczamy rozwiązanie wejściowe - dopuszczalne i bazowe. KROK B: Sprawdzamy, czy aktualne rozwiązanie bazowe jest optymalne. KROK C: Jeżeli nie, to bierzemy pod uwagę sąsiednie rozwiązanie bazowe, o ktorym wiemy, że jest nie gorsze i wracamy do B. 28

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Zarządzania Katedra Metod Ilościowych OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH Prowadzący: dr Tomasz Pisula e-mail: tpisula@prz.edu.pl Treści kształcenia:

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych

Wprowadzenie do badań operacyjnych Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego 6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego Analiza wrażliwości est studium analizy wpływu zmian wartości różnych parametrów modelu PL na rozwiązanie optymalne. Na optymalne

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

- modele liniowe. - modele nieliniowe.

- modele liniowe. - modele nieliniowe. Model decyzyjny sformalizowane ujęcie działania związanego z podejmowaniem decyzji. Decyzje dopuszczalne decyzje uwzględniające warunki ograniczające, jest ich wiele. Decyzja optymalna decyzja dopuszczalna

Bardziej szczegółowo

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007 ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu

Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Optymalizacja liniowa w liczbach całkowitych (PLC)

Optymalizacja liniowa w liczbach całkowitych (PLC) * ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Rozwiązania zadań z listy T.Koźniewskiego

Rozwiązania zadań z listy T.Koźniewskiego Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Wybrane elementy badań operacyjnych

Wybrane elementy badań operacyjnych Wybrane elementy badań operacyjnych 1 Przykład 1. GWOŹDZIE. Pewna fabryczka może produkować dwa gatunki gwoździ II i I. Do wyprodukowania tony gwoździ II gatunku potrzeba 1,2 tony stali oraz 1 roboczogodzinę

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa...

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa... Funkcje i tabele Paweł Bednarz 29 marca 2015 Spis treści 1 Funkcje 2 1.1 Funckja liniowa............................ 2 1.1.1 Własności funkcji liniowej.................. 2 1.2 Funkcja kwadratowa.........................

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2 Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo