Rozwiązywanie problemów z użyciem Solvera programu Excel

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązywanie problemów z użyciem Solvera programu Excel"

Transkrypt

1 Rozwiązywanie problemów z użyciem Solvera programu Excel Podstawowe czynności: aktywować dodatek Solver oraz ustawić w jego opcjach maksymalny czas trwania algorytmów na sensowną wartość (np. 30 sekund). Przy rozwiązywaniu zadań z użyciem Solvera należy określić: komórkę celu, rodzaj optymalizacji (w naszym przypadku zawsze minimalizacja), komórki decyzyjne (zmieniane przez algorytm), ograniczenia, metodę (LP, nieliniowa, ewolucyjna). Zadanie 1. Minimum funkcji kwadratowej. Zaczniemy od prostego przykładu znalezienia dla funkcji kwadratowego wartości x dla której funkcja przyjmuje wartość minimalną. Ogólnie funkcja kwadratowa dana jest wzorem: f(x) = Ax 2 + Bx + C Problem minimalizacji modelujemy tworząc 5 komórek w Excelu. Komórki A, B i C przechowują wartości współczynników, zaś komórka X przechowuje wartość zmiennej. Dodatkowa komórka W powinna posiadać formułę, która oblicza wartość funkcji na podstawie wartości komórek A, B, C oraz X. Załóżmy teraz, że mamy konkretną postać funkcji z wartościami parametrów A = 7, B = 9 oraz C = 13. Przechodzimy do dodatku Solvera i wybieramy następujące ustawienia: komórka celu W, typ minimalizacja, komórki decyzyjne komórka X, metoda nieliniowa GRG, ograniczenia: brak (zostawić puste). Po uzyskaniu rozwiązania zmienić współczynnik A na 7 i spróbować ponownie. Zadanie 2. Problem transportowy. Dane w tym problemie przyjmują następującą postać: D1 D2 D3 S1 K1,1 K2,1 K3,1 S2 K1,2 K2,2 K3,2

2 S oznacza liczbę sztuk dobra (podaż) dostawców 1 i 2, zaś D oznacza zapotrzebowanie (popyt) odbiorców 1, 2 i 3. Kx,y oznacza koszt transportu jednostkowego dobra pomiędzy dostawcą x a odbiorcą y. Rozpatrujemy problem zrównoważony, więc wartości popytu i podaży należy dobrać tak, aby S1+S2 = D1 + D2 + D3. Komórkami decyzyjnymi będzie kolejna tabela T rozmiaru 2x3, Tx,y symbolizuje liczbę sztuk transportowanych od dostawcy x do odbiorcy y. Celem jest minimalizacja sumy kosztów transportu, gdzie koszt dla każdej pary dostawca/odbiorca polega na wymnożeniu jednostkowego kosztu przez liczbę transportowanych dóbr. W tym celu tworzymy trzecią tabele W o rozmiarze 2x3. Element Wx,y = Kx,y * Tx,y. Następnie w kolejnej komórce C wpisujemy formułę obliczającą sumę elementów tabeli W. C jest naszą wartością funkcji celu. Oprócz tego tworzymy 2 komórki, oznaczmy je przez A1 i A2, w których będzie suma poszczególnych wierszy tabeli T. Analogicznie tworzymy 3 komórki B1 do B3, które przechowują sumę poszczególnych kolumn tabeli T. Tych 5 komórek posłuży do zapewnienia, że dostawcy wysyłają wszystkie swoje towary, a odbiorcy otrzymują tyle ile wynosi ich zapotrzebowanie. W tym przypadku ustawienia dla Solvera są następujące: komórka celu C, typ minimalizacja, komórki decyzyjne tabela T, metoda LP, ograniczenia: wartości w zakresie tabeli T są całkowite (relacja "int"), wartości w tabeli T są nieujemne (można to uzyskać formalnym ograniczeniem >= 0 lub zaznaczając odpowiednią opcję pod polem ograniczeń), wartość S1 = A1, S2 = A2, D1 = B1, D2 = B2, D3 = B3.

3 Zadanie 3. Problem równoważenia obciążeń. W problemie dane jest 8 zadań i 3 maszyny: T1 T2 T3 T4 T5 T6 T7 T8 S1 L1,1 L2,1 L3, S2 L1,2 L2, S3 L1, Wartości od T1 do T8 to czasy wykonywania zadań. Wartości S1 do S3 to (nie)sprawności maszyn. Czas wykonywania zadania x przez maszynę y jest iloczynem Tx * Sy, czyli im wyższa (nie)sprawność tym dłużej zadanie jest wykonywane. Wartości S1 do S3 są, jak wszystkie inne, całkowitoliczbowe. Wartości Lx,y (tabela L) będą służyć do przedstawienia na której maszynie wykonywane jest zadanie x. To znaczy, że w każdej kolumnie tabeli L musi być dokładnie jedna wartość 1 i dokładnie dwie wartości 0. Poniżej znajduje się przykładowa zawartość tabeli L: Przygotowujemy teraz drugą tabelę rozmiaru 8x3 (taki sam jak dla tabeli L), którą nazwiemy K. Wartości w tej tabeli liczone są według wzoru (przydatne będzie posługiwanie się adresami bezwzględnymi komórek): Kx,y = Lx,y * Tx * Sy Następnie liczymy 3 wartości M1, M2 i M3 jako suma poszczególnych wierszy tabeli K. Wartością celu jest komórka C = max( M1, M2, M3 ). Komórką celu jest więc C, komórkami decyzyjnymi jest tabela L. Ograniczenia są zaś następujące: wartości w tabeli L są binarne (relacja "bin"). Ewentualnie można użyć relacji całkowitoliczbowej ("int"), w każdej kolumnie tabeli L znajduje się dokładnie jedna jedynka. W tym celu można stworzyć 8 wartości D1 do D8 pod tabelą L, gdzie Dx oznacza sumę kolumny y tabeli L i podać Solverowi osiem ograniczeń postaci Dy = 1.

4 analogicznie można napisać 2 ograniczenia A = 1 oraz B = 1, gdzie A i B to odpowiednio minimum i maksimum z komórek D1 do D8 (ta wersja nie jest pewna). Jako metodę wybieramy metodę nieliniową. Wartości T1 do T8 oraz S1 do S3 powinny być losowe (funkcja LOS.ZAKR). Zadanie 4. Problem przepływowy. Dane to tabela D rozmiaru 6x3, gdzie Dx,y oznacza czas wykonywania zadania x na maszynie y. W problemie każde zadanie musi być wykonane na każdej maszynie w zadanej kolejności (najpierw na maszynie 1, potem na 2, potem na 3). Wartości w tej tabeli powinny być losowe. Tworzymy teraz tabelę P rozmiaru 6x1, która będzie zawierała kolejność (permutację) zadań. Mamy 6 zadań, numerowanych od 1 do 6, więc przykładowa zawartość tej tabeli to: 5, 3, 1, 4, 2, 6. Tworzymy tabelę T rozmiaru 7x4, która będzie przechowywała czas zakończenia danej operacji. Do pierwszego wiersza i pierwszej kolumny tabeli wpisujemy zera i tabela przyjmuje postać: T1,1 T2,1 T3, T1,2 T2, T1, Wartości w tabeli T definiujemy następująco: Tx,y = Zx,y + maksimum( Tx-1,y, Tx,y-1 ) Tx-1,y oznacza poprzednik technologiczny tzn. nie możemy wykonać zadania x na maszynie y wcześniej niż zakończy się na niej wykonywać zadanie x-1. Dla x = 1 poprzednikiem technologicznym jest 0 (stąd zerowa kolumna tabeli T). Tx,y-1 oznacza poprzednik maszynowy tzn. nie może wykonać zadania x na maszynie y wcześniej niż zakończy się jego wykonywanie na maszynie y-1. Dla y = 1 poprzednikiem technologicznym jest 0 (stad zerowy wiersz tabeli T). Największym problemem jest znalezienie formuły dla wartości Zx,y, która oznacza czas wykonania x-tego zadania w permutacji P na maszynie y. Jeśli więc x wynosi 2, a wartości w tabeli P to 6, 5, 4, 3, 2, 1, to chodzi nam o wartość D5,y a nie D2,y!

5 Do policzenia tego posłużą funkcje ADR.POSR, ZNAK oraz operator sklejania &. Wywołanie funkcji ADR.POSR(A5) oznacza wartość komórki A5, tak jakbyśmy użyli po prostu A5. Możemy jednak z użyciem tej funkcji napisać: ADR.POSR(A&5) Operator & sklei tekst (wynik) "A" z wynikiem "5", co da "A5", zaś funkcja ADR.POSR odwoła się wtedy do komórki A5. Z kolei funkcja: ZNAK(65) da w wyniku literę "A", zaś ZNAK(65+1) da literę "B". Jeśli więc w komórce Q5 jest wartość 1, a my użyjemy: ZNAK(65+Q5) To otrzymamy wartość "B". Jeśli w Q5 była wartość 2, to otrzymamy "C" itd. Możemy więc teraz obliczyć Zx,y używając formuły zbliżonej do: ADR.POSR( ZNAK( 65 + x + u, & y + v ) Wartości u i v są różne w zależności od miejsca umieszczenia tabeli D. Następnie tworzymy komórkę C o wartości takiej jak prawa dolna komórka tabeli T (czyli T6,3). Parametry dla Solvera: komórka celu C, komórki decyzyjne tabela P, metoda: ewolucyjna, ograniczenia: tabela P ma wartości całkowitoliczbowe (relacja "bin"), wartości w tabeli P są różne (relacja "dif" lub "alldifferent"), A = 1, gdzie A to komórka zawierająca minimum dla tabeli P, B = 6, gdzie B to komórka zawierająca maksimum dla tabeli P.

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

Zadanie niezbilansowane. Gliwice 1

Zadanie niezbilansowane. Gliwice 1 Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane

Bardziej szczegółowo

Analiza danych przy uz yciu Solvera

Analiza danych przy uz yciu Solvera Analiza danych przy uz yciu Solvera Spis treści Aktywacja polecenia Solver... 1 Do jakich zadań wykorzystujemy Solvera?... 1 Zadanie 1 prosty przykład Solvera... 2 Zadanie 2 - Optymalizacja programu produkcji

Bardziej szczegółowo

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład: Programowanie liniowe. 1. Aktywacja polecenia Solver. Do narzędzia Solver można uzyskać dostęp za pomocą polecenia Dane/Analiza/Solver, bądź Narzędzia/Solver (dla Ex 2003). Jeżeli nie można go znaleźć,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący

EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 3: Macierze i wykresy Cel: wykonywanie obliczeń na wektorach i macierzach, wykonywanie wykresów Czas wprowadzenia 25 minut,

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 6 (Materiały)

Badania Operacyjne Ćwiczenia nr 6 (Materiały) Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty

Bardziej szczegółowo

Geomatyka02 Wczytanie danych, obliczenie długości, azymutu i kąta ze współrzędnych. Przygotowanie do pracy

Geomatyka02 Wczytanie danych, obliczenie długości, azymutu i kąta ze współrzędnych. Przygotowanie do pracy Przygotowanie do pracy 1. Utwórz nowy dokument Excela. 2. Plik zapisz pod nazwą N-C1-Geom02-NazwiskoImię.xls (zmieniając N na S w przypadku studiów stacjonarnych, C1 na odpowiedni numer grupy, NazwiskoImię

Bardziej szczegółowo

łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.)

łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.) 14. Zadanie przydziału z ustalonym poziomem produkcji i limitowanym czasem pracy planowanie wielkości produkcji (wersja uproszczona) Producent może wytwarzać n rodzajów wyrobów. Każdy z wyrobów można być

Bardziej szczegółowo

Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010

Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010 Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010 Czym jest Excel 2010 Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM GOSPODARKI ELEKTROENERGETYCZNEJ INSTRUKCJA DO ĆWICZENIA 5 Planowanie

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 Warianty W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się A co by

Bardziej szczegółowo

Wprowadzenie do MS Excel

Wprowadzenie do MS Excel Wprowadzenie do MS Excel Czym jest Excel? Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu programów nazywanych arkuszami kalkulacyjnymi. W

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

dolar tylko przed numerem wiersza, a następnie tylko przed literą kolumny.

dolar tylko przed numerem wiersza, a następnie tylko przed literą kolumny. Wskazówki do wykonania Ćwiczenia 0, przypomnienie (Excel 2007) Autor: dr Mariusz Giero 1. Pobieramy plik z linku przypomnienie. Należy obliczyć wartości w komórkach zaznaczonych żółtym kolorem. 2. Obliczenie

Bardziej szczegółowo

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie

Bardziej szczegółowo

Podręczna pomoc Microsoft Excel 2007

Podręczna pomoc Microsoft Excel 2007 Podręczna pomoc Microsoft Excel 2007 Klawisze skrótów... 1 Podstawowe funkcje... 2 Narzędzie Szukaj wyniku... 3 Aktywowanie dodatków... 4 Narzędzie Solver (dodatek)... 6 Narzędzie Tabela przestawna...

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Jak korzystać z Excela?

Jak korzystać z Excela? 1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli

Bardziej szczegółowo

OBLICZENIA I STATYSTYKA FORMUŁY I FUNKCJE

OBLICZENIA I STATYSTYKA FORMUŁY I FUNKCJE Formuły Do komórek arkusza możemy wprowadzi formuły określające jakie działania i na jakich obiektach mają być wykonywane. Formuły definiujemy podobnie jak na lekcjach matematyki, używając znaków: + (dodawanie),

Bardziej szczegółowo

Symulacja w przedsiębiorstwie

Symulacja w przedsiębiorstwie Symulacja w przedsiębiorstwie Generowanie liczb losowych Cel Celem laboratorium jest zapoznanie się z funkcjami generowania liczb pseudolosowych w środowisku Ms Excel. Funkcje te są podstawą modeli symulacyjnych

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Przykład 4. (Tabela z Danymi Arkusz: Tabele Przestawne 1 ) (Przykład 2 wykonany Arkusz: Tabele Przestawne 5 )

Przykład 4. (Tabela z Danymi Arkusz: Tabele Przestawne 1 ) (Przykład 2 wykonany Arkusz: Tabele Przestawne 5 ) Przykład 4. (Tabela z Danymi Arkusz: Tabele Przestawne 1 ) (Przykład 2 wykonany Arkusz: Tabele Przestawne 5 ) W tym przykładzie będziemy kontynuować pracę na tabeli przestawnej utworzonej w przykładzie

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 4

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 4 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 4 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia Temat 23 : Poznajemy podstawy pracy w programie Excel. 1. Arkusz kalkulacyjny to: program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników, utworzony (w

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s]. Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s

Bardziej szczegółowo

Informatyka KONSPEKT LEKCJI W SZKOLE PONADGIMNAZJALNEJ

Informatyka KONSPEKT LEKCJI W SZKOLE PONADGIMNAZJALNEJ Typ lekcji: lekcja utrwalająca Temat: Przypomnienie formuł matematycznych w Excelu. Czas trwania: dwie jednostki lekcyjne. 1. Cel ogólny: - Rozumienie istoty arkusza kalkulacyjnego i sposobów jego wykorzystania

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Dział Zagadnienia Wymagania podstawowe Wymagania ponadpodstawowe Arkusz kalkulacyjny (Microsoft Excel i OpenOffice) Uruchomienie

Bardziej szczegółowo

24 cel bdb db dst dop

24 cel bdb db dst dop 24 cel 23-21 bdb 20-18 db 17-14 dst 13-11 dop Rozwiązanie LPG Zadanie to należy do typowych zadań symulacyjnych. Najtrudniejszą częścią takich zadań jest prawidłowe zasymulowanie powtarzających się zdarzeń,

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

EXCEL wprowadzenie Ćwiczenia

EXCEL wprowadzenie Ćwiczenia EXCEL wprowadzenie Ćwiczenia 1. Nadaj nazwę arkuszowi Ćwiczenie 1 W lewej, dolnej części okna programu znajdują się nazwy otwartych arkuszy programu (Arkusz 1..). Zmiana nazwy, w tym celu należy kliknąć

Bardziej szczegółowo

Excel formuły i funkcje

Excel formuły i funkcje Excel formuły i funkcje Tworzenie prostych formuł w Excelu Aby przeprowadzić obliczenia w Excelu, tworzymy formuły. Każda formuła rozpoczyna się znakiem równości =, a w formułach zwykle używamy odwołania

Bardziej szczegółowo

Bazy danych kwerendy (moduł 5) 1. Przekopiuj na dysk F:\ bazę M5KW.mdb z dysku wskazanego przez prowadzącego

Bazy danych kwerendy (moduł 5) 1. Przekopiuj na dysk F:\ bazę M5KW.mdb z dysku wskazanego przez prowadzącego Bazy danych kwerendy (moduł 5) 1. Przekopiuj na dysk F:\ bazę M5KW.mdb z dysku wskazanego przez prowadzącego 2. Otwórz bazę (F:\M5KW) 3. Zapoznaj się ze strukturą bazy (tabele, relacje) 4. Wykorzystując

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Slajd 1 Excel Slajd 2 Adresy względne i bezwzględne Jedną z najważniejszych spraw jest tzw. adresacja. Mówiliśmy

Bardziej szczegółowo

2. Metody adresowania w arkuszu kalkulacyjnym

2. Metody adresowania w arkuszu kalkulacyjnym 1. Uczeń: Uczeń: 2. Metody adresowania w arkuszu kalkulacyjnym a. 1. Cele lekcji i. a) Wiadomości Zna zastosowanie arkusza kalkulacyjnego, zna sposoby adresowania w arkuszu kalkulacyjnym, zna podstawowe

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

TEMAT : Przykłady innych funkcji i ich wykresy.

TEMAT : Przykłady innych funkcji i ich wykresy. Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji

Bardziej szczegółowo

Podprogramy. Procedury

Podprogramy. Procedury Podprogramy Turbo Pascal oferuje metody ułatwiające tworzenie struktury programu, szczególnie dotyczy to większych programów. Przy tworzeniu większego programu stosuje się jego podział na kilka mniejszych

Bardziej szczegółowo

Wykład 2: Arkusz danych w programie STATISTICA

Wykład 2: Arkusz danych w programie STATISTICA Wykład 2: Arkusz danych w programie STATISTICA Nazwy przypadków Numer i nazwa zmiennej Elementy arkusza danych Cechy statystyczne Zmienne (kolumny) Jednostki statystyczne Przypadki (wiersze) Tworzenie

Bardziej szczegółowo

Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego

Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego 10.02.2005 r. Optymalizacja lokalizacji i rejonizacji w sieciach dystrybucji. cz. 2. Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego dla wielu uczestników Przyczyn rozwizywania problemu wielu

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

opracował: Patryk Besler

opracował: Patryk Besler opracował: Patryk Besler Aby poprawnie uzupełnić szachownicę potrzebna nam będzie do tego funkcja Złącz teksty. Pamiętaj o zaznaczeniu odpowiedniej komórki Aby ją wybrać należy przejść do zakładki Formuły.

Bardziej szczegółowo

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego. Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy

Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Arkusz kalkulacyjny to program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników.

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Elektroenergetyki Technologie informatyczne

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Elektroenergetyki Technologie informatyczne Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Elektroenergetyki Technologie informatyczne Microsoft Excel Ćw. 4 1. Bazy danych w programie Excel - wprowadzenie Program MS Excel umożliwia

Bardziej szczegółowo

Opracował: mgr inż. Marcin Olech 2010-10-04

Opracował: mgr inż. Marcin Olech 2010-10-04 Laboratorium 4 Strona 1 z 17 Spis treści: 1. Wielowymiarowa analiza danych w arkusza kalkulacyjnych z wykorzystaniem MS Excel: a. tworzenie tabel przestawnych, b. tworzenie wykresów przestawnych. 2. Praca

Bardziej szczegółowo

FORMUŁY AUTOSUMOWANIE SUMA

FORMUŁY AUTOSUMOWANIE SUMA Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

2. Tworzenie tabeli przestawnej. W pierwszym oknie dialogowym kreatora określamy źródło danych, które mamy zamiar analizować.

2. Tworzenie tabeli przestawnej. W pierwszym oknie dialogowym kreatora określamy źródło danych, które mamy zamiar analizować. 1. Tabele przestawne Tabele przestawne pozwalają zestawiać dane zawarte w bazach danych przechowywanych w skoroszytach lub plikach zewnętrznych. Tabela przestawna jest dynamicznym zestawieniem danych zawartych

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

Ćw. IV. Tabele przestawne

Ćw. IV. Tabele przestawne Ćw. IV. Tabele przestawne Przykład 1. Dysponujemy raportem w formacie tabeli (Arkusz: Tabele Przestawne ) o trzech kolumnach zawierających: nazwę produktu, kategorie, do której produkt ten należy, oraz

Bardziej szczegółowo