UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH"

Transkrypt

1 Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

2 Uwagi wstępne Układ liniowych równań algebraicznych można zapisać w postaci: a 11 x 1 + a 12 x 2 + a 13 x a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x a 2n x n = b a n1 x 1 + a n2 x 2 + a n3 x a nn x n = b n n a ij x j = b j, dla i = 1, 2,..., n. j=1 A X = B. gdzie A jest nieosobliwą, kwadratową macierzą o wymiarze n n, B jest wektorem o n współrzędnych, X jest wektorem poszukiwanym o n współrzędnych.

3 Uwagi wstępne Metody służące do rozwiązania układu równań AX = B można podzielić na: 1 metody dokładne, 2 metody iteracyjne (przybliżone). Decyzja wyboru odpowiedniej metody zależy od postaci macierzy A, specyfiki zagadnienia, które prezentuje układ. Układy równań liniowych mogą mieć: 1 jedno rozwiązanie 2 nieskończenie wiele rozwiązań 3 brak rozwiązań (układy sprzeczne)

4 Metody dokładne Przez metodę dokładną rozwiązywania układu równań liniowych rozumiemy metodę, która (przy braku błędów zaokrągleń) daje dokładne rozwiązanie po skończonej liczbie kroków. Metody dokładne, które będą omówione to: 1 podstawianie w przód i podstawianie wstecz dla układów trójkątnych 2 metoda eliminacji Gaussa 3 metoda Gaussa-Jordana 4 metoda Choleskiego-Banachiewicza

5 Układy trójkątne Układy trójkątne Macierz trójkątna górna Układ AX = B z macierzą A U trójkątną górną ma postać: u 11 x 1 + u 12 x u 1n 1 x n 1 + u 1n x n = b 1 u 22 x u 2n 1 x n 1 + u 2n x n = b u n 1n 1 x n 1 + u n 1n x n = b n 1 u nn x n = b n Jeżeli założymy, że u ii 0 (i = 1, 2,..., n), to niewiadome można obliczyć w kolejności x n, x n 1, x n 2,..., x 1, z wzorów: x n = b n u nn, x n 1 = b n 1 u n 1n x n u n 1 n 1,..., x 1 = b 1 u 1n x n u 1n 1 x n 1... u 12 x 2 u 11.

6 Układy trójkątne Układy trójkątne Macierz trójkątna górna Wzory te można napisać w zwartej postaci: x i = b i n j=i+1 u ij x j u ii dla i = n, n 1,..., 1. Ponieważ niewiadome wyznacza się w kolejności od ostatniej do pierwszej, ten algorytm nazywa się podstawianiem wstecz.

7 Układy trójkątne Układy trójkątne Macierz trójkątna dolna Układ równań AX = B z macierzą A L trójkątną dolną można rozwiązać podobnie. Przyjmując, że l ii 0 (i = 1, 2,..., n), można wyznaczać niewiadome za pomocą podstawiania w przód: x i = i 1 b i l ij x j j=1 l ii dla i = 1, 2,..., n.

8 Układy trójkątne Układy trójkątne Przykład Rozwiązać układ liniowych równań AX = B, gdzie: A = 0 4 8, B = Rozwiązanie: X = [ 1, 2, 1 ] T

9 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Podstawową metodą dokładną rozwiązywania dowolnych układów równań liniowych jest metoda eliminacji Gaussa. Pomysł polega na eliminacji niewiadomych w pewien systematyczny sposób doprowadzając macierz do postaci trójkątnej. Taki układ trójkątny już potrafimy rozwiązać. 1 Efektywna metoda rozwiązywania układów równań liniowych. 2 Wymaga w przybliżeniu n 3 /3 mnożeń, np. dla n = 10 daje to n = 333 mnożeń. 3 Dla porównania: metoda Cramera wymaga około 2(n + 1)! mnożeń, dla n = 10 daje to mnożeń.

10 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Rozważmy układ równań: lub A X = B a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x a (1) 1n x n = b (1) 1 a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x a (1) 2n x n = b (1) a (1) n1 x 1 + a (1) n2 x 2 + a (1) n3 x a nn (1) x n = b n (1) Górny indeks (1) oznacza dany układ równań wyjściowy do obliczeń. Metoda eliminacji Gaussa polega na wykonaniu dwóch etapów obliczeń: I. eliminacji w przód II. podstawianiu wstecz

11 Metoda eliminacji Gaussa Etap I {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 / ( a21 a 11 ) + {2r} {2r} a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x 3 = b (1) 2 {3r} a (1) 31 x 1 + a (1) 32 x 2 + a (1) 33 x 3 = b (1) 3 Załóżmy teraz, że a Wówczas z ostatnich 2 równań możemy wyeliminować x 1 odejmując od i tego równania pierwsze pomnożone przez: m i1 = a i1 a 11 dla i = 2 Przekształcone równania przybierają postać: {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 23 x 3 = b (2) 2 {3r} a (1) 31 x 1 + a (1) 32 x 2 + a (1) 33 x 3 = b (1) 3

12 Metoda eliminacji Gaussa Etap I {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 / ( a31 a 11 ) + {3r} {2r} a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x 3 = b (1) 2 {3r} a (1) 31 x 1 + a (1) 32 x 2 + a (1) 33 x 3 = b (1) 3 Załóżmy teraz, że a Wówczas z ostatnich 2 równań możemy wyeliminować x 1 odejmując od i tego równania pierwsze pomnożone przez: m i1 = a i1 a 11 dla i = 3 Przekształcone równania przybierają postać: {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 32 x 3 = b (2) 2 {3r} a (2) 23 x 3 + a (2) 33 x 3 = b (2) 3

13 Metoda eliminacji Gaussa Etap I {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 23 x 3 = b (2) 2 / ( a32 a 22 ) + {3r} {3r} a (2) 32 x 2 + a (2) 33 x 3 = b (2) 3 Ostatecznie przekształcony układ równań ma postać: {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 23 x 3 = b (2) 2 {3r} a (3) 33 x 3 = b (3) 3 a więc układ trójkątny, który rozwiązujemy w Etapie II stosując podstawianie wstecz.

14 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Eliminację wykonuje się w n 1 krokach o numerach k = 1, 2, 3,..., n 1. W k tym kroku elementy a (k) ij dla j, j > k przekształca się wg wzorów: a (k+1) ij = a (k) ij m ik a (k) kj b (k+1) i = b (k) i m ik b (k) k gdzie m ik = a(k) ik a (k) kk dla: i = k + 1, k + 2,..., n; j = k + 1, k + 2,..., n.

15 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = 2 8 2, B = Etap I : A = B = Etap II (podstawianie wstecz) przykład dla układów trójkątnych.

16 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Układ równań o postaci: a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x a (1) 1n x n = b (1) 1 a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x a (1) 2n x n = b (1) a (1) n1 x 1 + a (1) n2 x 2 + a (1) n3 x a nn (1) x n = b n (1) Przekształcamy następująco: Pierwsze równanie dzielimy przez a (1) 11, a następnie od i tego wiersza, i = 2, 3,..., n, odejmujemy wiersz pierwszy pomnożony przez a (1) i1, otrzymując: x 1 + a (2) 12 x 2 + a (2) 13 x a (2) 1n x n = b (2) 1 a (2) 22 x 2 + a (2) 23 x a (2) 2n x n = b (2) a (2) n2 x 2 + a (2) n3 x a nn (2) x n = b n (2)

17 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Następnie drugie równanie dzielimy obustronnie przez a (2) 22 i od i tego wiersza, i = 1, 3,..., n, odejmujemy wiersz drugi pomnożony przez a (2) i2. x 1 + a (3) 13 x a (3) 1n x n = b (3) 1 x 2 + a (3) 23 x a (3) 2n x n = b (3) a (3) n3 x a nn (3) x n = b n (3) Po n 1 eliminacjach otrzymujemy układ postaci: czyli gotowe rozwiązanie. x 1 = b (n) 1 x 2 = b (n) 2 x n = b n (n)

18 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = 2 8 2, B = Po 3. eliminacji: wektor B stanowi rozwiązanie A = B =

19 Triangularyzacja metoda Choleskiego-Banachiewicza Rozkład LU W wielu zagadnieniach numerycznych celowym jest przedstawienie danej macierzy A w postaci iloczynu dwóch macierzy trójkątnych takich, aby A = L U. Procedura wyznaczenia tych macierzy nosi nazwę rozkładu LU. A = L U = l 11 l 21 l 22 l 31 l 32 l l n1 l n2 l n3... l nn u 11 u 12 u u 1n u 22 u u 2n u u 3n.... u nn Wtedy układ A X = B jest równoważny układowi L U X = B. Etapy rozwiązywania układu równań A X = B: I. Rozkład A = L U II. Rozwiązanie układu z macierzą dolnotrójkątną L Y = B Y (stosując podstawianie w przód) III. Rozwiązanie układu z macierzą górnotrójkątną U X = Y X (stosując podstawianie wstecz)

20 Triangularyzacja metoda Choleskiego-Banachiewicza Metody rozkładu trójkątnego Rozkład trójkątny nie jest jednoznaczny i można go realizować w różny sposób: 1 gdy l ii = 1 metodą Doolittle a, 2 gdy u ii = 1 metodą Crouta, 3 gdy u ii = l ii metodą Choleskiego-Banachiewicza. Rozkład L U można zrealizować: traktując równość A = L U jako układ n 2 równań z n 2 niewiadomymi l ij dla i > j i niewiadomymi u ij dla i j. Równania te wygodnie rozwiązywać na przemian wierszami i kolumnami zgodnie z rysunkiem.

21 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Dla macierzy symetrycznych dodatnio określonych schematy zwarte są szczególnie atrakcyjne, gdyż wybór elementów głównych nie jest potrzebny. Zwykle przyjmuje się, że elementy przekątniowe w L są rzeczywiste i U = L T. A = L L T = l 11 l 21 l 22 l 31 l 32 l l n1 l n2 l n3... l nn l kk = (a kk k 1 lkp 2 ) l ik = p=1 gdzie: k = 1, 2,..., n; i = k + 1, k + 2,..., n. l 11 l 21 l l n1 l 22 l l n2 l l n3... l nn k 1 a ik Jeżeli macierz kwadratowa A o wyrazach rzeczywistych jest ściśle dominująca na przekątnej głównej i ma dodatnie wyrazy na przekątnej głównej to A jest dodatnio określona p=1 l kk l ip l kp

22 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = , B = I. Wykonujemy rozkład A = L L T : l l 21 l 22 0 l 11 l 21 l 31 0 l 22 l 32 l 31 l 32 l l 33 =

23 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Przykład L = II. L Y = B Y (podstawianie w przód) Y = III. U X = Y X (podstawianie wstecz) X = 2 0 1

24 Metody przybliżone Rozważane dotąd metody rozwiązywania układów równań liniowych są metodami bezpośrednimi, wymagającymi wykonania skończenie określonych działań. Metody iteracyjne w przeciwieństwie do tamtych startują z przybliżenia początkowego, które stopniowo się ulepsza (zmierza) aż do otrzymania dostatecznie dokładnego rozwiązania. Metody iteracyjne (przybliżone), które będą omówione to: 1 metoda Jacobiego 2 metoda Gaussa-Seidla 3 metoda gradientów sprzężonych

25 Metoda Jacobiego Metoda Jacobiego W metodzie Jacobiego (metoda iteracji prostej) tworzy się ciąg przybliżeń x (1), x (2),... według wzoru: x (k+1) i = n j=1,j i a ij x (k) j + b i a ii i = 1, 2,..., n. 1. Zbieżność procesu iteracyjnego zależy jedynie od właściwości macierzy A. 2. Metoda jest zbieżna gdy macierz A jest dodatnio określona (warunek wystarczający zbieżności) tzn. gdy zachodzą nierówności: i 1 a ii > a ij, i = 1, 2,..., n, j i tj. gdy A jest diagonalnie dominująca. 3. Jako początkowe przybliżenie wybiera się często wektor x (0) = 0.

26 Metoda Jacobiego Metoda Jacobiego Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = , B = Warunki zbieżności są spełnione 2. Przyjmujemy: a) początkowe przybliżenie: x (0) = 0 b) kryterium przerwania procesu iteracyjnego: tempo zbieżności: wielkość residuum: dla np. normy euklidesowej. ε 1 = x(k+1) x (k) x (k+1) ε 2 = A x(k+1) B A x (0) B ε 1 dop ε 2 dop.

27 Metoda Jacobiego Metoda Jacobiego Przykład x (k+1) i = n j=1,j i a ij x (k) j 1. iteracja k = 1 0 dla x (0) = 0 0 x (1) = 2. iteracja k = 2 + b i a ii i = 1, 2,..., n oraz ε 1 = 1.0, ε 2 = 0.36 x (1) = x (2) = oraz ε 1 = 0.59, ε 2 =

28 Metoda Jacobiego Metoda Jacobiego Przykład 3. iteracja k = x (9) = oraz ε 1 = 1.25e 3, ε 2 = 3.28e 4 4 iteracja k = x (16) = oraz ε 1 = 4.19e 7, ε 2 = 1.10e 7 Rozwiązanie: x = x (16)

29 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Metoda Gaussa-Seidla stanowi pewną modyfikację metody iteracji prostej. Polega ona na tym, że przy obliczaniu przybliżenia (k + 1) niewiadomej x i, bierze się pod uwagę obliczone poprzednio przybliżenia (k + 1) niewiadomych x 1, x 2,..., x i 1. Iteracja odbywa się wg wzoru: x (k+1) i = i 1 j=1 a ij x (k+1) j n j=i+1 a ij x (k) j + b i a ii i = 1, 2,..., n. Podane poprzednio twierdzenia o zbieżności procesu iteracyjnego pozostają w mocy.

30 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = , B = Warunki zbieżności są spełnione 2. Przyjmujemy: a) początkowe przybliżenie x (0) = 0 b) kryterium przerwania procesu iteracyjnego: tempo zbieżności: wielkość residuum: dla np. normy euklidesowej. ε 1 = x(k+1) x (k) x (k+1) ε 2 = A x(k+1) B A x (0) B ε 1 dop ε 2 dop.

31 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład x (k+1) i = i 1 1. iteracja k = 1, 2. iteracja k = 2 j=1 a ij x (k+1) j n dla x (0) = j=i+1 a ij x (k) j + b i a ii i = 1, 2,..., n x (1) = oraz ε 1 = 1.0, ε 2 = dla x (1) = x (2) = oraz ε 1 = 0.173, ε 2 = 2.096e

32 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład 3. iteracja k = x (5) = oraz ε 1 = 6.23e 7, ε 2 = 2.040e 8. Rozwiązanie x = x (5)

33 Metoda gradientów sprzężonych Metoda gradientów sprzężonych Wiele metod iteracyjnych służących do rozwiązywania układów równań liniowych można wyprowadzić z metod optymalizacji. Rozważmy problem poszukiwania wektora x, który minimalizuje funkcję skalarną: f (x) = 1 2 xt A x b T x gdzie macierz A jest symetrycza i dodatnio określona. Ponieważ f (x) osiąga minimum gdy jej gradient f = A x b = 0, to minimalizacja jest równoważna rozwiązaniu A x = b. (1)

34 Metoda gradientów sprzężonych Metoda gradientów sprzężonych W metodach gradientowych minimalizacja wykonywana jest iteracyjnie. W każdym kroku iteracyjnym k obliczane jest polepszone rozwiązanie: x (k+1) = x (k) + α (k) s (k), dla k = 0, 1,..., n (2) gdzie x (0) jest wektorem startowym. Wyznaczenie α (k) : Długość kroku α (k) jest dobierana tak aby x (k+1) minimalizował f (x (k+1) ) wzdłuż kierunku s (k). Tak więc s (k) musi spełniać równanie (1), czyli A x = b: A (x (k) + α (k) s (k) ) = b. (3) Po wprowadzeniu residuum r (k) = b A x (k), równanie (1) przyjmie postać: α (k) A s (k) = r (k). Po jego obustronnym pomnożeniu przez s (k) można wyznaczyć: st (k) r (k) α (k) = s T (k) A s. (4) (k)

35 Metoda gradientów sprzężonych Metoda gradientów sprzężonych Wyznaczenie wektora kierunku s (k) 1 s (k) można dobrać intuicyjnie s (k) = f = r (k), ponieważ jest to kierunek największej ujemnej zmiany f (x (k) ). Metoda opierająca się o ten algorytm to metoda największego spadku. 2 Bardziej efektywną metodą poszukiwania kierunku s (k) jest metoda gradientów sprzężonych: s (k+1) = r (k+1) + β (k) s (k). (5) Wartość parametru β (k) jest wyznaczana tak aby dwa kolejne kierunki poszukiwań były ze sobą sprzężone, co oznacza że, s (k+1) A s (k) = 0. Podstawiając za s (k+1) równanie (2) otrzymujemy (r T (k+1) + β (k) s T (k) ) A s (k) = 0 z którego wynika: β (k) = rt (k+1) A s (k) s T (k) A s. (6) (k)

36 Metoda gradientów sprzężonych Metoda gradientów sprzężonych -algorytm Dla k = 0, 1, 2,... oblicz: 1. x (k+1) = x (k) + α (k) s (k) 2. s (k+1) = r (k+1) + β (k) s (k) gdzie: st (k) r (k) α (k) = s T (k) As, β (k) = rt (k+1) As (k) (k) s T (k) As (k)

37 Metoda gradientów sprzężonych Przykład Rozwiązać układ liniowych równań A, x = b, gdzie: [ ] [ ] [ A =, B =, x (0) = 1 ].

38 Obliczanie macierzy odwrotnych Macierzą odwrotną macierzy kwadratowej A nazywamy macierz kwadratową A 1 spełniającą związek gdzie I jest macierzą jednostkową. Jeśli przyjmiemy, że X = A 1, to AX = I, czyli AA 1 = I, (7) Ax i = e i, i = 1, 2, n (8) gdzie x i i e i jest i tą kolumną odpowiednio w X i I. Tak więc kolumny macierzy A 1 są rozwiązaniami układów liniowych z prawymi stronami równymi kolumnom macierzy jednostkowej I.

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Wykład III Układy równań liniowych i dekompozycje macierzy

Wykład III Układy równań liniowych i dekompozycje macierzy Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne

Bardziej szczegółowo

Metody numeryczne II. Układy równań liniowych

Metody numeryczne II. Układy równań liniowych Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p.

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p. Metody numeryczne Układy równań liniowych, część I Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-7.tex Metody numeryczne Janusz Szwabiński //2002 2:45 p./83 Układy równań liniowych, część I. Pojęcia

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksacji 3. Zbieżność

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów. Metody dokładne rozwiązywania układów równań liniowych.. Układy równań o macierzach trójkątnych.. Metoda eliminacji Gaussa.3. Metoda Gaussa-Jordana.4.

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

Macierze. Układy równań.

Macierze. Układy równań. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Pendolinem z równaniami, nierównościami i układami

Pendolinem z równaniami, nierównościami i układami Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami

Bardziej szczegółowo

ALGEBRA LINIOWA. ĆWICZENIA Układy Równań Liniowych

ALGEBRA LINIOWA. ĆWICZENIA Układy Równań Liniowych ALGEBRA LINIOWA ĆWICZENIA Układy Równań Liniowych ALEXANDER DENISIUK Najnowsza wersja tego dokumentu dostępna jest pod adresem http://userspjwstkedupl/~denisjuk/ Proponowane zadania powinny zostać zrealizowane

Bardziej szczegółowo

Kubatury Gaussa (całka podwójna po trójkącie)

Kubatury Gaussa (całka podwójna po trójkącie) Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński. Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Wstęp do matematyki. Marcin Orchel

Wstęp do matematyki. Marcin Orchel Wstęp do matematyki Marcin Orchel Spis treści 1 Ogólne działy 4 1.1 Logika...................................... 4 2 Metody numeryczne 5 2.1 Wprowadzenie do metod numerycznych................... 5 2.1.1

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu: Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi

Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi Plan wykładu:. Definicje macierzy, norm etc.. Metoda eliminacji Gaussa, Jordana. Rozkład LU metodą Gaussa. Układy równań z macierzą

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo