Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 1 0 a 1 0 ϑ 1 0 1 2 0 a 2 0 ϑ 2 0 1 3 0 a 3 0 ϑ 3 0 1 c 123 s 123 0 a 1 c 1 + a 2 c 12 + a 3 c 123 T 0 s 123 c 123 0 a 1 s 1 + a 2 s 12 + a 3 s 123 3 = (67) 0 0 1 0
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 2 Notacja ZDH y x 4 p y y 1 p y 4 y 0 y 2 y 3 a 3 a 2 x 3 q 3 q 2 x 2 a 1 x 1 q 1 x 0 p x x Rys. 29 Tablica 2 Parametry ZDH Nr ogniwa α i 1 a i 1 d i θ i = q i σ i σ i 1 0 0 0 q 1 0 1 2 0 a 1 0 q 2 0 1 3 0 a 2 0 q 3 0 1 T 0 3 = c 123 s 123 0 a 1 c 1 + a 2 c 12 s 123 c 123 0 a 1 s 1 + a 2 s 12 0 0 1 0 (68)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 3 2.9.2. Manipulator o strukturze równoległej Rys. 30 Tablica 3 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 1 0 a 1 0 ϑ 1 0 1 2 0 a 2 0 ϑ 2 0 1 3 0 a 3 0 ϑ 3 0 1 1 0 a 1 0 ϑ 1 0 1 4 0 a 4 T 0 3 (q ) = c 1 2 3 s 1 2 3 0 a 1 c 1 + a 2 c 1 2 + a 3 c 1 2 3 s 1 2 3 c 1 2 3 0 a 1 s 1 + a 2 s 1 2 + a 3 s 1 2 3 0 0 1 0
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 4 T 0 1 (q ) = T 3 4 = c 1 s 1 0 a 1 c 1 s 1 c 1 0 a 1 s 1 0 0 1 0 1 0 0 a 4 0 1 0 0 0 0 1 0 R 3 0 (o 0 3 o0 1 ) = 0 a 1 (c 1 + c 1 2 3 ) + a 1 (c 1 2 c 1 ) = 0 a 1 (s 1 + s 1 2 3 ) + a 1 (s 1 2 s 1 ) = 0 ϑ 2 = ϑ 1 ϑ 1 ϑ 3 = π ϑ 2 = π ϑ 1 + ϑ 1 c 1 s 1 0 a 1 c 1 a 4c 1 T 0 s 1 c 1 0 a 4(q) = 1 s 1 a 4s 1 0 0 1 0 (69)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 5 2.9.3. Manipulator sferyczny Rys. 31 Tablica 4 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 1 π/2 0 0 ϑ 1 0 1 2 π/2 0 d 2 ϑ 2 0 1 3 0 0 d 3 0 1 0 T 0 1(ϑ 1 ) = c 1 0 s 1 0 s 1 0 c 1 0 0 1 0 0
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 6 c 2 0 s 2 0 T 1 s 2 0 c 2 0 2(ϑ 2 ) = 0 1 0 d 2 1 0 0 0 T 2 0 1 0 0 3(d 3 ) = 0 0 1 d 3 c 1 c 2 s 1 c 1 s 2 c 1 s 2 d 3 s 1 d 2 T 0 s 1 c 2 c 1 s 1 s 2 s 1 s 2 d 3 + c 1 d 2 3(q) = s 2 0 c 2 c 2 d 3 (70)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 7 2.9.4. Manipulator antropomorficzny 3R - notacja DH Rys. 32 Tablica 5 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 1 π/2 0 0 ϑ 1 0 1 2 0 a 2 0 ϑ 2 0 1 3 0 a 3 0 ϑ 3 0 1 T 0 1 = c 1 0 s 1 0 s 1 0 c 1 0 0 1 0 0 (71)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 8 dla i = 2, 3 T 0 3 = T i 1 i = c i s i 0 a i c i s i c i 0 a i s i 0 0 1 0 c 1 c 23 c 1 s 23 s 1 c 1 (a 2 c 2 + a 3 c 23 ) s 1 c 23 s 1 s 23 c 1 s 1 (a 2 c 2 + a 3 c 23 ) s 23 c 23 0 a 2 s 2 + a 3 s 23 (72) (73)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 9 2.9.5. Nadgarstek sferyczny 3R - notacja DH Rys. 33 Tablica 6 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 4 π/2 0 0 ϑ 4 0 1 5 π/2 0 0 ϑ 5 0 1 6 0 0 d 6 ϑ 6 0 1 c 4 0 s 4 0 T 3 s 4 0 c 4 0 4 = 0 1 0 0 c 5 0 s 5 0 T 4 s 5 0 c 5 0 5 = 0 1 0 0 (74) (75)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 10 T 3 6 = T 5 6 = c 6 s 6 0 0 s 6 c 6 0 0 0 0 1 d 6 c 4 c 5 c 6 s 4 s 6 c 4 c 5 c 6 s 4 c 6 c 4 s 5 c 4 s 5 d 6 s 4 c 5 c 6 c 4 s 6 s 4 c 5 s 6 + c 4 c 6 s 4 s 5 s 4 s 5 d 6 s 5 c 6 s 5 s 6 c 5 c 5 d 6 (76) (77)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 11 2.9.6. Manipulator Stanford Rys. 34 Tablica 7 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 1 π/2 0 0 ϑ 1 0 1 2 π/2 0 d 2 ϑ 2 0 1 3 0 0 d 3 0 1 0 4 π/2 0 0 ϑ 4 0 1 5 π/2 0 0 ϑ 5 0 1 6 0 0 d 6 ϑ 6 0 1
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 12 T 0 6 = T 0 3T 3 6 = n0 s 0 a 0 p 0 = r 11 r 12 r 13 p x r 21 r 22 r 23 p y r 31 r 32 r 33 p z r 11 = c 1 (c 2 (c 4 c 5 c 6 s 4 s 6 ) s 2 s 5 c 6 ) s 1 (s 4 c 5 c 6 + c 4 s 6 ), r 21 = s 1 (c 2 (c 4 c 5 c 6 s 4 s 6 ) s 2 s 5 c 6 ) + c 1 (s 4 c 5 c 6 + c 4 s 6 ), r 31 = s 2 (c 4 c 5 c 6 s 4 s 6 ) c 2 s 5 c 6, r 12 = c 1 ( c 2 (c 4 c 5 s 6 + s 4 c 6 ) + s 2 s 5 s 6 ) s 1 ( s 4 c 5 s 6 + c 4 c 6 ), r 22 = s 1 ( c 2 (c 4 c 5 s 6 + s 4 c 6 ) + s 2 s 5 s 6 ) + c 1 ( s 4 c 5 s 6 + c 4 c 6 ), r 32 = s 2 (c 4 c 5 s 6 + s 4 c 6 ) + c 2 s 5 s 6, r 13 = c 1 (c 2 c 4 s 5 + s 2 c 5 ) s 1 s 4 s 5, r 23 = s 1 (c 2 c 4 s 5 + s 2 c 5 ) + c 1 s 4 s 5, r 33 = s 2 c 4 s 5 + c 2 c 5, p x = c 1 s 2 d 3 + s 1 d 2 + (c 1 (c 2 c 4 s 5 + s 2 c 5 ) s 1 s 4 s 5 )d 6, p y = s 1 s 2 d 3 + c 1 d 2 + (s 1 (c 2 c 4 s 5 + s 2 c 5 ) + c 1 s 4 s 5 )d 6, p z = c 2 d 3 + ( s 2 c 4 s 5 + c 2 c 5 )d 6,. (78) (79)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 13 2.9.7. Manipulator antropomorficzny z nadgarstkiem sferycznym 6R Rys. 35 Tablica 8 Parametry DH Nr ogniwa α i a i d i θ i σ i σ i 1 π/2 0 0 ϑ 1 0 1 2 0 a 2 0 ϑ 2 0 1 3 π/2 0 0 ϑ 3 0 1 4 π/2 0 d 4 ϑ 4 0 1 5 π/2 0 0 ϑ 5 0 1 6 0 0 d 6 ϑ 6 0 1
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 14 T 2 3 = T 3 4 = c 3 0 s 3 0 s 3 0 c 3 0 0 1 0 0 c 4 0 s 4 0 s 4 0 c 4 0 0 1 0 d 4 (80) (81) T 0 6 = r 11 r 12 r 13 p x r 21 r 22 r 23 p y r 31 r 32 r 33 p z. (82)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 15 r 11 = c 1 (c 23 (c 4 c 5 c 6 s 4 s 6 ) s 23 s 5 c 6 ) + s 1 (s 4 c 5 c 6 + c 4 s 6 ), r 21 = s 1 (c 23 (c 4 c 5 c 6 s 4 s 6 ) s 23 s 5 c 6 ) c 1 (s 4 c 5 c 6 + c 4 s 6 ), r 31 = s 23 (c 4 c 5 c 6 s 4 s 6 ) + c 23 s 5 c 6, r 12 = c 1 ( c 23 (c 4 c 5 s 6 + s 4 c 6 ) + s 23 s 5 s 6 ) + s 1 ( s 4 c 5 s 6 + c 4 c 6 ), r 22 = s 1 ( c 23 (c 4 c 5 s 6 + s 4 c 6 ) + s 23 s 5 s 6 ) c 1 ( s 4 c 5 s 6 + c 4 c 6 ), r 32 = s 23 (c 4 c 5 s 6 + s 4 c 6 ) c 23 s 5 s 6, r 13 = c 1 (c 23 c 4 s 5 + s 23 c 5 ) + s 1 s 4 s 5, r 23 = s 1 (c 23 c 4 s 5 + s 23 c 5 ) c 1 s 4 s 5, r 33 = s 23 c 4 s 5 c 23 c 5, p x = a 2 c 1 c 2 + d 4 c 1 s 23 + d 6 (c 1 (c 23 c 4 s 5 + s 23 c 5 ) + s 1 s 4 s 5 ), p y = a 2 s 1 c 2 + d 4 s 1 s 23 + d 6 (s 1 (c 23 c 4 s 5 + s 23 c 5 ) c 1 s 4 s 5 ), p z = a 2 s 2 d 4 c 23 + d 6 (s 23 c 4 s 5 c 23 c 5 ), (83)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 16 2.10. Przestrzeń konfiguracyjna a przestrzeń operacyjna (zadania) Przestrzeń operacyjna to zbiór punktów określajacych położenie i orientację efektora manipulatora opisany m-elementowym wektorem x (m N): x = Ω p (84) gdzie Ω jest minimalna reprezentacja katow a (orientacji), zaś p jest wektorem położenia (pozwalaja opisywać zadanie wykonywane przez efektor robota). Przestrzeń konfiguracyjna opisana jest N-elementowym wektorem współrzędnych uogólnionych q = q 1.. (85) q N Zatem k jest nieliniowa funkcja wektorowa zależna od q x = k(q) (86)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 17 2.10.1. Przetrzeń robocza Przetrzeń robocza manipulatora jest całkowicie określona przez jego geometrię i zakres zmienności współrzędnych uogólnionych q im q i q im dla i = 1, 2,.., N spowodowany ograniczeniami mechanicznymi i określana jest wektorem p = p(q). Pojęcia: przestrzeń robocza osiagalna, przestrzeń robocza manipulacyjna, dokładność, powtarzalność Przykład: manipulator planarny 2R Rys. 36
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 18 Przetrzeń robocza obliczana jest z zadania prostego kinematyki na podstawie określonych ograniczeń Rys. 37 2.10.2. Redundancja kinematycza Manipulator nazywamy kinematycznie redundantnym, jeżeli liczba jego stopni swobody jest większa niż liczba zmiennych potrzebnych do opisu konkretnego zadania, czyli wymiar przestrzeni operacyjnej jest mniejszy niż wymiar przestrzeni złaczy tj. m < N. (Redundancja jest zatem pojęciem względnym zależnym od zadania.)
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 19 2.11. Kalibracja kinematyki Niech x = k(a, α, d, ϑ) (87) x = k k k k a + α + d + ϑ (88) a α d ϑ γ = [ a T α T d T ϑ T] T [ Φ = k a k α k d k ϑ ] γ = γ m γ n Zatem x = Φ(γ n ) γ Dla l położeń (pomiary) x = x 1.. = Φ 1.. γ = Φ(γ) γ (89) x l Φ l γ = (Φ T Φ) 1 Φ T x (90) γ = γ n + γ