Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość funkcji, własności funkcji ciągłych. Pochodna funkcji w punkcie i w przedziale, pochodne wyższych rzędów. Różniczka funkcji i jej zastosowanie. Monotoniczność funkcji, wypukłość funkcji, twierdzenie Taylora. Ekstrema lokalne funkcji, warunki konieczne i dostateczne istnienia ekstremum, ekstrema globalne. Twierdzenie de l Hospitala. K. Trąbka-Więcław Matematyka 1 / 36 K. Trąbka-Więcław Matematyka 2 / 36 Efekty kształcenia Funkcja pierwotna, całka nieoznaczona - definicja, własności. Całkowanie przez części, całkowanie przez podstawienie. Całkowanie ułamków prostych oraz funkcji wymiernych. Całka oznaczona - definicja, własności, wzór Newtona-Leibniza, Całka oznaczona i jej zastosowania. Student zna podstawowe pojęcia algebry liniowej i potrafi przeprowadzać działania na macierzach. Student zna podstawowe pojęcia i fakty z zakresu rachunku różniczkowego funkcji jednej zmiennej. Student potrafi analizować własności funkcji na podstawie badania jej pierwszej i drugiej pochodnej. Student zna podstawowe pojęcia i fakty z zakresu rachunku całkowego funkcji jednej zmiennej. Student potrafi stosować podstawowe metody całkowania do obliczania całek nieoznaczonych i oznaczonych. K. Trąbka-Więcław Matematyka 3 / 36 K. Trąbka-Więcław Matematyka 4 / 36 Literatura Terminy wykładów i ćwiczeń Jurlewicz T., Skoczylas Z.: Algebra liniowa 1. Oficyna Wydawnicza GiS, Wrocław 2007. Krysicki W., Włodarski L.: Analiza matematyczna w zadaniach. PWN 2006. Gewert M., Skoczylas Z.: Analiza matematyczna. Oficyna Wydawnicza GiS, Wrocław 2004. Leitner R.: Zarys matematyki wyższej dla studentów. WNT 2001. Leitner R. et al: Zadania z matematyki wyższej. WNT 2006. 1 9.10 2 16.10 + ćwiczenia 3 23.10 4 6.11 + ćwiczenia 5 20.11 6 4.12 + ćwiczenia 7 11.12 8 15.01 + ćwiczenia 9 22.01 10 29.01 + ćwiczenia K. Trąbka-Więcław Matematyka 5 / 36 K. Trąbka-Więcław Matematyka 6 / 36 Warunki zaliczenia 1. DWA KOLOKWIA (zadania rachunkowe) skala ocen: od 50% - ocena 3 od 60% - ocena 3,5 od 70% - ocena 4 od 80% - ocena 4,5 od 90% - ocena 5 2. AKTYWNOŚĆ konsultacje (s. 733 Wydz. Mechaniczny): niedziela 12.10-12.55 (w terminach zjazdów) adres mailowy: k.trabka@pollub.pl materiały do wykładów: www.pollub.pl Wydział Mechaniczny Instytut Technologicznych Systemów Informacyjnych Pracownicy lub tnij.org/ktrabka K. Trąbka-Więcław Matematyka 7 / 36 K. Trąbka-Więcław Matematyka 8 / 36
Macierze Definicja 1 Macierzą wymiaru m n, gdzie m, n N nazywamy prostokątną tablicę złożoną z mn liczb ustawionych w m wierszach i n kolumnach. a 11 a 12... a 1j... a 1n a 21 a 22... a 2j... a 2n A =.................. a i1 a i2... a ij... a in.................. a m1 a m2... a mj... a mn macierze oznaczamy dużymi literami a ij - element macierzy A stojący w i-tym wierszu i j-tej kolumnie [a ij ] m n lub A m n - macierz A wymiaru m n, o elementach a ij M[m, n] - zbiór wszystkich macierzy wymiaru m n K. Trąbka-Więcław Matematyka 9 / 36 K. Trąbka-Więcław Matematyka 10 / 36 Macierze A i B są równe, gdy mają te same wymiary m n oraz a ij = b ij dla każdego 1 i m oraz 1 j n. Rodzaje macierzy: jeżeli wszystkie elementy macierzy są równe 0, to macierz nazywamy zerową i oznaczamy O lub O m n jeżeli liczba wierszy jest równa liczbie kolumn, to macierz nazywamy kwadratową; liczbę wierszy (kolumn) nazywamy stopniem macierzy kwadratowej; elementy które mają ten sam numer wiersza co kolumny tworzą główną przekątną macierzy a 21 a 22... a 2n a n1 a n2... a nn K. Trąbka-Więcław Matematyka 11 / 36 K. Trąbka-Więcław Matematyka 12 / 36 jeżeli w macierzy kwadratowej wszystkie elementy stojące nad główną przekątną są równe 0, to macierz nazywamy macierzą trójkątną dolną macierz trójkątna górna a 11 0... 0 a 21 a 22... 0............ a n1 a n2... a nn 0 a 22... a 2n............ 0 0... a nn jeżeli w macierzy kwadratowej wszystkie elementy nie stojące na głównej przekątnej są równe 0, to macierz nazywamy diagonalną a 11 0... 0 0 a 22... 0 0 0... a nn K. Trąbka-Więcław Matematyka 13 / 36 K. Trąbka-Więcław Matematyka 14 / 36 Działania na macierzach jeżeli w macierzy diagonalnej wszystkie elementy głównej przekątnej są równe 1, to macierz nazywamy jednostkową i oznaczamy I lub I n 1 0... 0 0 1... 0 I = 0 0... 1 A, B M[m, n], A = [a ij ], B = [b ij ], i = 1, 2,..., m, j = 1, 2,... n Definicja 2 Sumą (różnicą) macierzy A i B nazywamy macierz C = [c ij ] M[m, n], której elementy określone są wzorem c ij = a ij ± b ij Piszemy wtedy C = A ± B. dodawanie i odejmowanie macierzy jest wykonalne tylko, gdy macierze mają ten sam wymiar K. Trąbka-Więcław Matematyka 15 / 36 K. Trąbka-Więcław Matematyka 16 / 36
Definicja 3 Iloczynem macierzy A = [a ij ] M[m, n] przez liczbę rzeczywistą α nazywamy macierz B = [b ij ] M[m, n], której elementy określone są wzorem Własności działań na macierzach Dla dowolnych A, B, C M[m, n] oraz dowolnych liczb α, β R zachodzi: Piszemy wtedy B = αa. b ij = αa ij 1) A + B = B + A - przemienność dodawania macierzy 2) (A + B) + C = A + (B + C) - łączność dodawania macierzy 3) A + O = O + A = A K. Trąbka-Więcław Matematyka 17 / 36 K. Trąbka-Więcław Matematyka 18 / 36 4) α(a + B) = αa + αb - rozdzielność mnożenia macierzy przez liczbę względem dodawania macierzy 5) (α + β)a = αa + βa - rozdzielność mnożenia macierzy przez liczbę względem dodawania liczb 6) α(βa) = (αβ)a Definicja 4 Jeżeli A = [a ij ] M[m, n] oraz B = [b ij ] M[n, k], to iloczynem macierzy A i B nazywamy macierz C = [c ij ] M[m, k], której elementy określone są wzorem c ij = a i1 b 1j + a i2 b 2j + a i3 b 3j + + a in b nj Piszemy wtedy C = AB. K. Trąbka-Więcław Matematyka 19 / 36 K. Trąbka-Więcław Matematyka 20 / 36 mnożenie macierzy jest wykonalne tylko, gdy ilość kolumn macierzy pierwszej równa jest ilości wierszy macierzy drugiej element c ij uzyskujemy sumując iloczyny odpowiadających sobie elementów i-tego wiersza macierzy A i j-tej kolumny macierzy B mnożenie macierzy nie jest przemienne (nawet w przypadku macierzy kwadratowych) AB BA zamiast pisać AA... A (n czynników) będziemy pisali A n Własności iloczynu macierzy Dla macierzy A, B, C o wymiarach zezwalających na wykonanie niżej opisanych operacji zachodzi: 1) A(BC) = (AB)C - łączność mnożenia 2) A(B + C) = AB + AC - rozdzielność dodawania względem mnożenia 3) (A + B)C = AC + BC - rozdzielność dodawania względem mnożenia K. Trąbka-Więcław Matematyka 21 / 36 K. Trąbka-Więcław Matematyka 22 / 36 4) A I = I A = A 5) A O = O A = O 6) A(αB) = (αa)b = α(ab) dla α R Definicja 5 Macierzą transponowaną do macierzy A = [a ij ] M[m, n] nazywamy macierz B = [b ij ] M[n, m], której elementy określone są wzorem b ij = a ji Macierz transponowaną do macierzy A oznaczamy A T. transpozycja macierzy oznacza zamianę w niej wierszy na kolumny (kolejne wiersze macierzy wyjściowej stają się kolejnymi kolumnami macierzy transponowanej) K. Trąbka-Więcław Matematyka 23 / 36 K. Trąbka-Więcław Matematyka 24 / 36
Wyznacznik macierzy Definicja 6 Wyznacznikiem macierzy nazywamy funkcję, która każdej macierzy kwadratowej A = [a ij ] M[n, n] przypisuje liczbę det A. Funkcja ta określona jest w następujący sposób: 1) gdy n = 1, czyli A = [a 11 ], to det A = a 11 2) gdy n > 1, to det A = ( 1) 1+1 a 11 det M 11 + ( 1) 1+2 a 12 det M 12 +... +( 1) 1+n a 1n det M 1n gdzie M ij oznacza macierz stopnia n 1 otrzymaną z macierzy A przez skreślenie i-tego wiersza i j-tej kolumny. Inne oznaczenia wyznacznika: A lub a 21 a 22... a 2n............ a n1 a n2... a nn K. Trąbka-Więcław Matematyka 25 / 36 K. Trąbka-Więcław Matematyka 26 / 36 Reguła obliczania wyznaczników stopnia drugiego [ ] a11 a 12 det A = det = a 11 a 22 a 12 a 21 a 21 a 22 Reguła Sarrusa obliczania wyznaczników stopnia trzeciego a 11 a 12 a 13 a 11 a 12 a 13 a 11 a 12 det A = det a 21 a 22 a 23 = a 21 a 22 a 23 a 21 a 22 = a 31 a 32 a 33 a 31 a 32 a 33 a 31 a 32 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 + (a 13 a 22 a 31 + a 11 a 23 a 32 + a 12 a 21 a 33 ) metoda Sarusa polega na dopisaniu do wyznacznika po prawej stronie dwóch pierwszych kolumn, a następnie dodaniu iloczynów elementów stojących na liniach równoległych do przekątnych wyznacznika z uwzględnieniem odpowiedniego znaku K. Trąbka-Więcław Matematyka 27 / 36 K. Trąbka-Więcław Matematyka 28 / 36 metoda Sarusa nie przenosi się na wyznaczniki wyższych stopni dla wyznaczników stopnia n > 3 korzystamy wprost z definicji lub z Twierdzenia Laplace a Twierdzenie 1 (Twierdzenie Laplace a) Niech A = [a ij ] będzie macierzą kwadratową stopnia n, n 2 oraz niech liczby i oraz j będą ustalone (i, j = 1, 2,..., n). Wtedy wyznacznik macierzy A można obliczyć ze wzorów: 1) det A = a i1 D i1 + a i2 D i2 + + a in D in 2) det A = a 1j D 1j + a 2j D 2j + + a nj D nj gdzie D ij = ( 1) i+j det M ij nazywamy dopełnieniem algebraicznym elementu a ij macierzy A, M ij oznacza macierz stopnia n 1 otrzymaną z macierzy A przez skreślenie i-tego wiersza i j-tej kolumny. K. Trąbka-Więcław Matematyka 29 / 36 K. Trąbka-Więcław Matematyka 30 / 36 Macierz odwrotna 1) rozwinięcie Laplace a względem i-tego wiersza wyznacznik macierzy jest równy sumie iloczynów elementów i-tego wiersza i ich dopełnień algebraicznych 2) rozwinięcie Laplace a względem j-tej kolumny wyznacznik macierzy jest równy sumie iloczynów elementów j-tej kolumny i ich dopełnień algebraicznych Definicja 7 Macierzą odwrotną do macierzy kwadratowej A stopnia n nazywamy macierz oznaczoną przez A 1, która spełnia warunek A A 1 = A 1 A = I n K. Trąbka-Więcław Matematyka 31 / 36 K. Trąbka-Więcław Matematyka 32 / 36
nie każda macierz kwadratowa posiada macierz odwrotną jeżeli macierz A ma macierz odwrotną, to nazywamy ją odwracalną i wówczas det A 0 macierz kwadratową o wyznaczniku różnym od zera nazywamy macierzą nieosobliwą macierz kwadratową o wyznaczniku równym zero nazywamy macierzą osobliwą Twierdzenie 2 1) Macierz kwadratowa A jest odwracalna wtedy i tylko wtedy, gdy jest nieosobliwa (tzn. det A 0). 2) Jeżeli macierz kwadratowa A stopnia n jest nieosobliwa, to T D A 1 = 1 11 D 12... A 1n D 21 D 22... D 2n det A D n1 D n2... D nn gdzie D ij oznacza dopełnienie algebraiczne elementu a ij macierzy A. K. Trąbka-Więcław Matematyka 33 / 36 K. Trąbka-Więcław Matematyka 34 / 36 Aby wyznaczyć macierz odwrotną do macierzy A należy: macierz [D ij ] nazywamy macierzą dopełnień algebraicznych i oznaczamy A D A 1 = 1 (A D) T det A 1) sprawdzić czy macierz A jest nieosobliwa (jeśli jest osobliwa, to A 1 nie istnieje) 2) wyznaczyć dopełnienia algebraiczne D ij wszystkich elementów macierzy A i utworzyć macierz A D dopełnień algebraicznych 3) transponować macierz A D 1 i pomnożyć przez det A K. Trąbka-Więcław Matematyka 35 / 36 K. Trąbka-Więcław Matematyka 36 / 36