Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja 1: Pojęcie ruchu Pod pojęciem ruchu rozumiemy zmiany wzajemnego położenia jednych ciał względem drugich wraz z upływem czasu. Położenie określamy względem układu odniesienia, tzn. wybranego ciała lub układu ciał. Zwróćmy uwagę na to, że ruch tego samego ciała widziany z różnych układów odniesienia może być różny. W szczególności można wybrać taki układ odniesienia, w którym ciało nie porusza się. Oznacza to, że ruch jest pojęciem względnym. Ponadto, w naszych rozważaniach będziemy posługiwać się pojęciem punktu materialnego. Definicja : Punkt materialny Punkty materialne to obiekty obdarzone masą, których rozmiary (objętość) możemy zaniedbać. Rzeczywiste ciała mają zawsze skończoną objętość, ale dopóki rozpatrujemy ich ruch postępowy (ciała nie obracają się, ani nie wykonują drgań) to z dobrym przybliżeniem możemy je traktować jako punkty materialne. To przybliżenie może być z powodzeniem stosowane do opisu ruchu obiektów o różnej wielkości, zarówno "małych" cząsteczek, jak i "dużych" planet. Prędkość Definicja 3: Prędkość Prędkość definiujemy jako zmianę położenia ciała w jednostce czasu. Prędkość stała Jeżeli wskazania prędkościomierza samochodu nie zmieniają się, oznacza to, że samochód porusza się ze stałą prędkością v, i jeżeli w pewnej chwili t 0 znajdował się w położeniu x 0 to po czasie t znajdzie się w położeniu x x x 0 = v(t t 0 ) (1) skąd
v = x x 0 t t 0 () Zależność między położeniem x i czasem t pokazana jest na Rys. 1 dla dwóch ciał (np. pojazdów). Jak wynika ze wzoru ( 1 ) nachylenie wykresu x(t) przedstawia prędkość danego ciała. Różne nachylenia wykresów x(t) odpowiadają więc różnym prędkościom. Prędkość v (wektor) może być dodatnia albo ujemna; jej znak wskazuje kierunek ruchu. Wektor v dodatni - ruch w kierunku rosnących x, ujemny to ruch w kierunku malejących x. Rysunek 1: Zależność położenia od czasu dla ciała poruszającego się ze stałą prędkością ZADANIE Zadanie 1: Położenie początkowe i prędkość ciał Treść zadania: Odczytaj z wykresu i zanotuj w tabeli poniżej położenia początkowe x 0 obu ciał oraz ich prędkości. ciało 1 [m] x 0 Tabela 1 v[m/s] Rozwiązanie: ciało [m] x 0 1-1 1.5 0 0.67 Tabela v[m/s] Prędkość chwilowa Gdy samochód przyspiesza lub hamuje to wskazania prędkościomierza zmieniają się i nie możemy mówić o jednej stałej prędkości. Prędkość zmienia się i w każdej chwili jest inna. Nie można wtedy stosować wzoru ( 1 ) chyba, że ograniczymy się do bardzo małych wartości x x 0 ( Δx) czyli również bardzo małego przedziału czasu Δt = t t 0 (chwili). Prędkość chwilową w punkcie x otrzymamy, gdy Δt dąży do zera. Δx Δt 0 Δt v = lim (3)
Tak definiuje się pierwszą pochodną więc Definicja 4: Prędkość chwilowa Prędkość chwilowa jest pochodną drogi względem czasu. v = d x d t (4) Nachylenie krzywej x(t) ponownie przedstawia prędkość v, a znajdujemy je (zgodnie z definicją pochodnej) jako nachylenie stycznej do wykresu x(t), w danym punkcie tj. dla danej chwili t (Rys. ). Rysunek : Nachylenie krzywej x(t) jest prędkością chwilową Prędkość średnia Często określenie zależności x(t) nie jest możliwe, np. przy oszacowaniu czasu dojazdu do wybranej miejscowości nie jesteśmy w stanie przewidzieć wszystkich parametrów podróży wpływających na prędkość takich, jak natężenie ruchu, konieczność ograniczenia prędkości w terenie zabudowanym, itp. Posługujemy się wtedy pojęciem prędkości średniej. Prędkość średnia ciała w przedziale czasu t jest zdefiniowana jako Definicja 5: Prędkość średnia gdzie x x 0 jest odległością przebytą w czasie t v = x x 0 t (5)
ZADANIE Zadanie : Prędkość średnia samochodu Treść zadania: Oblicz prędkość średnią samochodu, który przejeżdża odcinek x 1 = 0 km z prędkością v 1 = 40 km/h, a potem, przez następne x = 0 km, jedzie z prędkością v = 80 km/h. Wykonaj obliczenia. Wskazówka: Oblicz całkowitą drogę przejechaną przez samochód i całkowity czas jazdy samochodu. Skorzystaj z równania ( 5 ) Rozwiązanie: Całkowita droga przejechana przez samochód: x 1 + x = 0 km + 0 km = 40 km Całkowity czas jazdy samochodu: t 1 = x 1 /v 1 = (0km)/(40 km/h) = 0.5 h t = x / v = (0km)/(80 km/h) = 0.5 h. t = t 1 + t = 0.75 h. Prędkość średnia (równanie.4): (40 km)/(0.75 h) = 53.33 km/h Otrzymany wynik: 53.33 km/h jest różny od średniej arytmetycznej z prędkości v 1 i v, która wynosi 60 km/h. Powodem jest to, że poszczególne wartości wchodzą w skład średniej matematycznej z różnymi czynnikami wagowymi. W naszym przykładzie obliczamy średnią względem czasu, więc skoro przedziały czasu, w których samochód jedzie z prędkościami v 1 i v są różne to i udziały tych prędkości w średniej są też różne. O średniej ważonej możesz przeczytać w module Średnia ważona. Wartość średnia daje praktyczne wyniki. Zilustrujmy to jeszcze jednym ćwiczeniem. ZADANIE Zadanie 3: Droga hamowania Treść zadania: Obliczmy drogę hamowania samochodu, który jedzie z prędkością 0 m/s (7 km/h). Czas hamowania wynosi 5 sekund, a prędkość samochodu maleje jednostajnie (stała siła hamowania). Wykonaj samodzielnie obliczenia, korzystając z równania ( 5 ). Wskazówka: Oblicz prędkość średnią, i następnie ze wzoru ( 5 ) drogę hamowania. Droga hamowania: Rozwiązanie: Prędkość średnia wynosi 10 m/s. Korzystając z równania ( 5 ): x x 0 = 10 m/s 5 s = 50 m.to najkrótsza droga hamowania. Przyspieszenie Definicja 6: Przyspieszenie Przyspieszeniem nazywamy tempo zmian prędkości.
Przyspieszenie jednostajne Jeżeli ciało przyspiesza lub hamuje i jego prędkość zmienia się jednostajnie z czasem to przyspieszenie a tego ciała jest stałe a = v v 0 t (6) Gdy prędkość rośnie ( a > 0 to ruch nazywamy jednostajnie przyspieszonym, a gdy prędkość maleje ( a < 0) to ruch określamy jako jednostajnie opóźniony. Przyspieszenie chwilowe Jeżeli przyspieszenie nie jest stałe, zmienia się z czasem, musimy wtedy ograniczyć się do pomiaru zmian prędkości Δv w bardzo krótkim czasie Δt (podobnie jak dla prędkości chwilowej). Wówczas przyspieszenie chwilowe definiujemy jako pierwszą pochodną v względem t. Definicja 7: Przyspieszenie a = dv dt (7) Ruch jednostajnie zmienny Z ruchem jednostajnie zmiennym spotykamy się na co dzień, np. gdy obserwujemy swobodny spadek ciał w pobliżu powierzchni Ziemi. Jeżeli możemy zaniedbać opór powietrza (w porównaniu z ciężarem ciała) to każde ciało upuszczone swobodnie porusza się ruchem jednostajnie przyspieszonym z przyspieszeniem równym 9.81 m/s. Wyrażenie na prędkość ciała poruszającego się ze stałym przyspieszeniem możemy otrzymać wprost ze wzoru ( 6 ) v = v 0 + at (8) Natomiast do policzenia położenia korzystamy ze wzoru ( 6 ) na prędkość średnią przekształconego do postaci x = x 0 + vt (9) Ponieważ w ruchu jednostajnie przyspieszonym prędkość rośnie jednostajnie od v 0 do v więc prędkość średnia wynosi v = ( v 0 +v) (10) Łącząc powyższe trzy równania otrzymujemy at x = x 0 + v 0 t + (11) Jako podsumowanie, pokazane jest graficzne przedstawienie ruchu prostoliniowego jednostajnego i jednostajnie zmiennego w postaci wykresów x(t), v(t) oraz a(t).
Rysunek 3: Graficzna prezentacja ruchu prostoliniowego jednostajnego (wiersz górny) i jednostajnie zmiennego (wiersz dolny) Rozważając ruch po linii prostej możemy operować liczbami, a nie wektorami bo mamy do czynienia z wektorami równoległymi. Jednak trzeba sobie przy opisie zjawisk (rozwiązywaniu zadań) uświadamiać, że w równaniach ruchu mamy do czynienia z wektorami. Prześledzimy to wykonując następujące ćwiczenie: ZADANIE Zadanie 4: Rzut w górę Treść zadania: Dwa identyczne ciała rzucono pionowo do góry z prędkością początkową v 0 w odstępie czasu Δt jedno po drugim. Na jakiej wysokości spotkają się te ciała? Wskazówka: Do opisu położenia ciała (np. wysokość na jakiej się znajduje w danej chwili) posłuż się równaniem ( 11 ). Zauważ, że w rzucie pionowym ciało przebywa na tej samej wysokości dwa razy w dwóch różnych chwilach (pierwszy raz przy wznoszeniu, drugi przy opadaniu) więc trójmian kwadratowy ( 11 ) ma dwa rozwiązania {OPENAGHMATHJAX ( type= Rozwiązanie: gt Dane: v 0 Δt, g - przyspieszenie ziemskie. Korzystając z równania ( 11 ) otrzymujemy: y = v t 0 Wektor położenia y (opisujący wysokość ponad poziom y = 0) jest w dowolnej chwili sumą dwóch wektorów v 0 t oraz g t /. Powyższe równanie opisuje więc zarówno ruch ciał w górę jak i w dół. Oczywiście opis matematyczny musi odzwierciedlać sytuację fizyczną. W rzucie pionowym ciało przebywa na tej samej wysokości ( y = h) dwa razy w dwóch różnych chwilach (pierwszy raz przy wznoszeniu, drugi przy opadaniu). Trójmian kwadratowy gt h v t + (1) 0 = 0 ma dwa rozwiązania t 1 i t. Z treści zadania wynika, że t 1 t = Δt. Z tego warunku otrzymujemy rozwiązanie: {OPENAGHMATHJAX( type= \begin{h=\frac{v_{{0}}^{{}}}{g}-\frac{(\mathit{\delta t})^{{}}g}{8}}\end{openaghmathjax} "} Pamiętanie o tym, że liczymy na wektorach jest bardzo istotne przy rozpatrywaniu ruchu w dwóch lub trzech wymiarach, np. w ruchu na płaszczyźnie.
http://epodreczniki.open.agh.edu.pl/openagh-simulation.php?fileid=1167 Publikacja udostępniona jest na licencji Creative Commons Uznanie autorstwa - Na tych samych warunkach 3.0 Polska. Pewne prawa zastrzeżone na rzecz autorów i Akademii Górniczo-Hutniczej. Zezwala się na dowolne wykorzystanie treści publikacji pod warunkiem wskazania autorów i Akademii Górniczo-Hutniczej jako autorów oraz podania informacji o licencji tak długo, jak tylko na utwory zależne będzie udzielana taka sama licencja. Pełny tekst licencji dostępny na stronie http://creativecommons.org/licenses/by-sa/3.0/pl/. Data generacji dokumentu: 017-07-4 19:38:58 Oryginalny dokument dostępny pod adresem: http://epodreczniki.open.agh.edu.pl/openagh-permalink.php? link=d3d9344adf0e5534d45ad89ec5eac Autor: Zbigniew Kąkol, Kamil Kutorasiński