Instytut Łącznośc Praca statutowa nr 11.30.004.5 Opracowane narzędz analtycznych do wspomagana decyzj dotyczących wysokośc opłat taryfkacyjnych stawek rozlczenowych na konkurencyjnym rynku telekomunkacyjnym Kontynuacja mgr nż. Sylwester Laskowsk Warszawa, grudzeń 2005.
Sps treśc 1 Jednokryteralne 2-osobowe gry o sume nezerowej na rynku telekomunkacyjnym 1 1.1 Wprowadzene..................................... 1 1.2 Gra o sume nezerowej na konkurencyjnym rynku usług telekomunkacyjnych.. 2 1.2.1 Gry na rynkach detalcznych hurtowych.................. 3 1.2.2 Sekwencje ruchów graczy........................... 4 1.2.3 Gra podwójna gra pojedyncza........................ 5 1.2.4 Kolejność ruchów................................ 6 1.2.5 Problem decyzyjny............................... 7 2 Analza ger pojedynczych 9 2.1 Gracz A rusza sę jako perwszy............................ 11 2.1.1 Wybór strateg gry.............................. 11 2.1.2 Nejednoznaczność odpowedz gracza B................... 20 2.1.3 Neefektywny wynk gry............................ 26 2.1.4 Stratege kooperacyjne............................. 57 2.1.5 Wybór strateg gry w sytuacj stnena rekomendowanych stawek rozlczenowych na rynku hurtowym różnej sle negocjacyjnej graczy..... 61 2.2 Gracz A rusza sę jako drug.............................. 80 2.3 Gracze ruszają sę równocześne............................ 81 2.4 Optymalna kolejność ruchów............................. 83 2.5 Rola nformacj na temat macerzy wypłat...................... 86 2.5.1 Wpływ nformacj posadanej przez gracza B na optymalną kolejność ruchów gracza A..................................... 86 2.5.2 Wpływ nformacj posadanej przez gracza B na optymalną kolejność ruchów gracza B.................................... 90
2.5.3 Wpływ nformacj posadanej przez gracza B na wartość wypłaty gracza A..................................... 91 2.5.4 Wpływ nformacj posadanej przez gracza B na wartość wypłaty gracza B.................................... 93 2.5.5 Sprzedaż nformacj o macerzy wypłat gracza A.............. 94 Zakończene 97 Bblografa 101 v
Sps tabel 1.1 Ilustracja pojęć stratega wypłata.......................... 2 1.2 Ilustracja przypadku, gdy graczow A opłaca sę ruszyć jako drug......... 6 1.3 Ilustracja przypadku, gdy graczow A opłaca sę ruszyć jako perwszy....... 7 1.4 Ilustracja przypadku, gdy kolejność ruchów ne wpływa na wartość wypłaty gracza A............................................. 7 1.5 Ilustracja przypadku, gdy kolejność ruchów ne wpływa na wartość wypłaty żadnego z graczy...................................... 7 2.1 Macerz wypłat operatorów A B........................... 14 2.2 Zestawene najlepszej z punktu wdzena gracza B odpowedz oraz wartośc wypłat obu graczy dla każdej strateg gracza A................... 14 2.3 Macerz wypłat dla graczy A B........................... 16 2.4 Przekształcona macerz wypłat gracza A w grze przecwko naturze........ 17 2.5 Macerz wypłat graczy A B............................. 18 2.6 Orygnalna macerz wypłat gracza A, defnująca grę przecwko naturze, jeśl ne uwzględna on potencjalnych odpowedz gracza B.................. 19 2.7 Macerz wypłat gracza A, defnująca grę przecwko naturze, reprezentujacej możlwe wartośc stablzacj................................. 20 2.8 Macerz wypłat graczy A B. Problem nejednoznacznośc odpowedz gracza B. 21 2.9 Zestawene najlepszej, z punktu wdzena gracza B odpowedz oraz wartośc wypłat obu graczy dla każdej strateg gracza A................... 21 2.10 Macerz wypłat graczy A B. Ilustracja problemu nejednoznacznośc odpowedz gracza B w sytuacj neznajomośc charakteru jego kryterum........... 24 2.11 Macerz wypłat gracza A w grze przecwko naturze, reprezentującej możlwe wartośc stablzacj................................... 25 2.12 Macerz wypłat gracza A w grze przecwko naturze, reprezentującej możlwe wartośc stablzacj, po założenu fukcj agregacj postac (2.13).......... 26 v
2.13 Macerz wypłat gracza A w grze przecwko naturze, reprezentującej możlwe wartośc stablzacj, po założenu fukcj agregacj postac (2.14).......... 26 2.14 Macerz wypłat gracza A w grze przecwko naturze, reprezentującej możlwe wartośc stablzacj, po założenu fukcj agregacj postac (2.14).......... 27 2.15 Jeden efektywny wynk gry............................... 27 2.16 Każde rozwązane gry jest wynkem efektywnym.................. 27 2.17 Dylemat węźna. Ilustracja sytuacj, w której neefektywność wynka z samej konstrukcj macerzy wypłat.............................. 28 2.18 Neefektywny ruch gracza A. Koszt neefektywnośc ponos gracz B........ 29 2.19 Neefektywny ruch gracza A wynkający z neznajomośc macerzy wypłat gracza B............................................. 29 2.20 Neefektywny ruch gracza A. Koszt neefektywnośc ponoszą obaj gracze..... 30 2.21 Macerz sprzyjająca neefektywnemu ruchow gracza A w sytuacj antagonstycznych stosunków pomędzy graczam......................... 30 2.22 Macerz zachęcająca gracza A do wybrana strateg, prowadzącej do neefektywnego wynku w sytuacj antagonstycznych stosunków pomędzy graczam.... 31 2.23 Neefektywna (wynkająca z nejednoznacznośc) odpowedź gracza B. Koszt neefektywnośc ponos wyłaczne gracz A.......................... 31 2.24 Przykład macerzy wypłat, w której gracz B może odczuwać pokusę wyboru neefektywnej odpowedz b 2 (a 2 )............................ 32 2.25 Przykład gry, w której przekazane graczow A nformacj o macerzy wypłat gracza B jest dla gracza B nekorzystne. Korzystne jest natomast wyelmnowane strateg gracza B prowadzącej do neefektywnego wynku............. 34 2.26 Przykład gry, w której wyelmnowane strateg gracza A prowadzącej do neefektywnego wynku jest dla gracza B nekorzystne. Korzystne jest natomast przekazane nformacj o macerzy wypłat gracza B........................ 34 2.27 Przykład gry, w której ngerencja regulatora przynos obu graczom korzyść.... 35 2.28 Przykład gry, w której wyelmnowane strateg gracza AB prowadzącej do neefektywnego wynku jest nekorzystne dla gracza A................... 36 2.29 Przykład gry, w której ngerencja regulatora przynos obu graczom korzyść.... 37 2.30 Przykład gry, w której równoczesna elmanacja strateg gracza A gracza B przynos obu graczom korzyść............................. 38 v
2.31 Macerz sprzyjająca neefektywnemu ruchow gracza A w sytuacj antagonstycznych stosunków pomędzy graczam. Wybór strateg a 2 motywowany może być zarówno chęcą pogorszena wypłaty gracza B, jak chęcą zapewnena sobe wypłaty mnmalnej równej 9............................. 39 2.32 Macerz sprzyjająca neefektywnemu ruchow gracza A w sytuacj antagonstycznych stosunków pomędzy graczam. Gracz B może składać obetncę wybrana strateg b 1 w odpowedz na strategę a 1 groźbę wyboru strateg b 2 w odpowedz na strategę a 2...................................... 40 2.33 Macerz wypłat ze zmodyfkowanym wypłatam gracza B uwarygodnajacym składaną obetncę groźbę............................... 40 2.34 Macerz wypłat..................................... 41 2.35 Przykład macerzy wypłat, w której współczynnk zachęty dla strateg najbardzej antagonstycznej ne przyjmuje wartośc najwększej.............. 46 2.36 Macerz wypłat graczy A B w grze, w której gracza A podejrzewa, ż gracz B zagra w sposób antagonstyczny............................ 48 2.37 Macerz wypłat gracza A w grze przecwko naturze reprezentującej antagonstyczne stratege gracza B................................. 50 2.38 Macerz żalu gracza A w grze przecwko naturze reprezentującej antagonstyczne stratege gracza B.................................... 51 2.39 Macerz sprzyjająca neefektywnemu ruchow gracza A w sytuacj antagonstycznych stosunków pomędzy graczam......................... 53 2.40 Przykład gry, w której zastosowane przez gracza A strateg antagonstycznej, prowadz do wynku nnego nż oczekwano...................... 56 2.41 Trudność z ustalenem wynku nekooperacyjnego.................. 60 2.42 Przykład pozytywnego wpływu ntegracj BATNA na proces negocjacj...... 69 2.43 Przykład wpływu stawek rekomendowanych na słę negocjacyjną graczy..... 70 2.44 Ustalane wartośc strateg h l przez gracza A gracza B.............. 75 2.45 Trudność z odczytanem ntencj gracza B...................... 76 2.46 Ilustracja przypadku, gdy graczow A opłaca sę ruszyć jako drug, gdy gracz B zna jego macerz wypłat jako perwszy, gdy gracz B ne zna jego macerzy wypłat. 87 2.47 Ilustracja przypadku, gdy graczow A opłaca sę ruszyć jako perwszy, gdy gracz B zna jego macerz wypłat jako drug, gdy gracz B ne zna jego macerzy wypłat. 89 2.48 Ilustracja przypadku, gdy gracz A ruszając sę jako drug korzysta na newedzy gracza B......................................... 92 v
v
Rozdzał 1 Jednokryteralne 2-osobowe gry o sume nezerowej na rynku telekomunkacyjnym 1.1 Wprowadzene Jednokryteralna 2-osobowa gra o sume nezerowej to gra, w której: Udzał berze 2-graczy: A B. Każdy z graczy ocena swoją decyzję (wybraną strategę) z punku wdzena jednego, znanego dla sebe kryterum (funkcja wypłaty). Każdy z graczy zna swój własny zbór potencjalnych strateg gry, jak równeż zbór potencjalnych strateg gry drugego gracza. Przynajmnej jeden z graczy zna funkcję wypłaty drugego gracza. Wartośc wypłat jednego z graczy ne da sę wyrazć jako przekształcene lnowe wypłat drugego gracza dla wszystkch kombnacj wybranych par strateg 1. Macerz wypłat jest uporządkowaną postacą reprezentacj wartośc wypłat (wartośc funkcj wypłaty) gracza dla wszystkch kombnacj wybranych strateg każdego z graczy [16, 23]. Powemy, ż gracz zna własną macerz wypłat, jeśl zna własną funkcję wypłaty oraz potencjalne stratege gry obu graczy oraz, ż gracz zna macerz wypłat nnego gracza, jeśl zna jego funkcję 1 Ten warunek jest stotny wyłączne z punku wdzena ścsłej defncj gry o sume nezerowej. W naszych rozważanach ne jest on jednak stotny. 1
2 ROZDZIAŁ 1. JEDNOKRYTERIALNE 2-OSOBOWE GRY O SUMIE NIEZEROWEJ NA RYNKU TELEKOMUNIKACYJNYM wypłaty oraz potencjalne stratege gry obu graczy. Tabela 1.1 lustruje macerz wypłat dla graczy A B. Gracze mają tu do wyboru po cztery stratege gracz A stratege a 1, a 2, a 3 a 4, gracz B natomast stratege b 1, b 2, b 3 b 4. Jeśl gracz A wyberze strategę a, a gracz B strategę b j, to otrzymają on w ten sposób wypłaty odpowedno V A j (a ) V B (b j ). Tabela 1.1: Ilustracja pojęć stratega wypłata. b 1 b 2 b 3 b 4 a 1. a 2............ [V A 3 (a 2), V B 2 (b 3)]...... a 3. a 4. Jeśl każdy z graczy zna zarówno swoją macerz wypłat, jak macerz wypłat drugego gracza, wówczas obaj grają 2 w jednokryteralną 2-osobową grę o sume nezerowej (krócej w grę o sume nezerowej). Jeśl jeden z nch ne zna macerzy wypłat drugego gracza, zna zaś swoją własną, wówczas gra on w grę przecwko naturze. Z punktu wdzena gracza A grającego w grę o sume nezerowej zachodzć mogą dwa przypadk: Obaj gracze A B grają w grę o sume nezerowej. Gracz A gra w grę u sume nezerowej, gracz B w grę przecwko naturze. 1.2 Gra o sume nezerowej na konkurencyjnym rynku usług telekomunkacyjnych Operając sę na założenach pracy [5], na konkurencyjnym rynku usług telekomunkacyjnych znajomość macerzy wypłat graczy konkurencyjnych w wyróżnonych grach na rynku telekomunkacyjnym oznacza w praktyce: znajomość modelu popytu, znajomość modelu kosztów śwadczena usług we własnej sec, 2 Mówmy, że gracz gra w daną grę jeśl jest zanteresowany wartoścą wypłaty z tej gry. Gracze mogą brać udzał w welu grach w tym sense, że wybrane przez nch stratege gry w danej grze mogą wpływać na wartośc funkcj wypłaty w nnych grach, którym on mogą już ne być zanteresowan [5, 7].
1.2. GRA O SUMIE NIEZEROWEJ NA KONKURENCYJNYM RYNKU USŁUG TELEKOMUNIKACYJNYCH 3 znajomość modelu kosztów śwadczena usług w secach nnych graczy, znajomość zboru potencjalnych strateg gry (zbórów jednostek usługowych odpowadających m dopuszczalnych pozomów cen), znajomość realzowanego przez nnych graczy strategcznego celu (optymalzowanej funkcj wypłaty). Elementem odróżnającym ten rodzaj ger od ger przecwko naturze jest tu fakt znajomośc modelu kosztów śwadczena usług w secach (sec) nnych graczy (drugego gracza) oraz znajomość ch strategcznego celu określającego funkcję wypłaty z gry, w którą grają [4]. W szczególnośc gram o sume nezerowej będą: Gry o zysk Gry o koszt na poszczególnych rynkach detalcznych hurtowych [5, 7]. Paradoksalne poszerzane obszaru wedzy na temat sytuacj graczy konkurencyjnych (poznawane ch model kosztów), pozwalając z jednej strony grać mądrzej, utrudna z drugej w sposób zdecydowany samą analzę sytuacj. Pokusa upraszczana problemu, poprzez gnorowane nformacj, sprowadzana go do prostego modelu gry przecwko naturze, może być w tej sytuacj znaczna, jednakże koszt takej gnorancj bywa ze wszech mar stotny [6]. 1.2.1 Gry na rynkach detalcznych hurtowych Gry na rynkach detalcznych hurtowych są ze sobą ścśle powązane [5, 7]. Welkość ruchu 3 generowanego w ramach sec jak równeż przenoszonego pomędzy secam zależy zarówno od wysokośc cen na rynkach detalcznych (ceny dla użytkownka końcowego) jak cen na rynkach hurtowych (stawk rozlczenowe). Analogczne węc jak w przypadku gry przecwko naturze, na wynk dowolnej 2-osobowej gry rynkowej wpływ zatem mają trzy procesy: A - proces ustalana cen na rynku detalcznym przez gracza A, B - proces ustalana cen na rynku detalcznym przez gracza B, H - proces negocjacj stawek rozlczenowych na rynku hurtowym mędzy graczam A B (ruch hpotetycznego gracza H). 3 Welkość generowanego ruchu (popyt na usług) wpływa bezpośredno na welkość ponoszonych kosztów jak na zysk ze sprzedaży usług.
4 ROZDZIAŁ 1. JEDNOKRYTERIALNE 2-OSOBOWE GRY O SUMIE NIEZEROWEJ NA RYNKU TELEKOMUNIKACYJNYM 1.2.2 Sekwencje ruchów graczy W przypadku ger przecwko naturze uzasadnonym było założene rozłącznośc w czase każdego z procesów: A, B, H [9, 7]. Z racj na fakt, ż gracze ne znal nawzajem swoch macerzy wypłat, z punktu wdzena gracza A sytuacja jednoczesnego wyboru strateg w ramach dowolnej gry tożsama była z sytuacją, gdy gracz ten ruszał sę jako perwszy 4. W przypadku gry o sume nezerowej, założene to w ogólnośc ne jest słuszne. Rozpatrzena wymaga zatem sześć warantów sekwencj ruchów z rozłącznym procesam ustalana cen na poszczególnych rynkach: ABH, BAH, HAB, HBA, AHB BHA oraz sześć sekwencj ruchów z dwoma równoczesnym procesam ustalana cen: (AB)H, A(BH), (HA)B, H(AB), (BH)A B(HA). Procesy, których akronmy zostały ujęte w nawas przebegają tu równocześne, stąd (AB)H = (BA)H, A(BH) = A(HB), B(HA) = B(AH) td. Sytuacja, którą oznaczyć moglbyśmy jako (ABH) odzwercedla przypadek, gdy wszystke decyzje cenowe (dotyczące zarówno rynków detalcznych jak hurtowych) zapadają równocześne, co w praktyce oznacza: w trakce procesu negocjacj. Przypadek ten zakłada węc, że zarówno ceny na rynkach detalcznych poszczególnych graczy, jak ceny za połączena mędzysecowe stanową przedmot negocjacj. Ne jest to węc przypadek gry, a jedyne przypadek grupowego podejmowana decyzj [11, 21]. Sytuacje, w których równocześne zachodzą dwa procesy, a jednym z nch jest proces negocjacj stawek rozlczenowych H zachowują podobną właścwość: w trakce negocjacj, prócz ustalana cen hurtowych gracze negocjują równeż wysokość cen detalcznych jednego z graczy. Stąd też z punktu wdzena ogólnej klasyfkacj modelu gry przyjąć można następującą równoważność poszczególnych sekwencj: A(BH) = AH (HA)B = HB (BH)A = HA B(HA) = BH z załozenem, ż w sekwencjach z prawej strony powyższych zależnośc lczba strateg hpotetyczny gracz H I H, reprezentującego możlwe wynk negocjacj jest względem jego lczby strateg w sekwencjach z lewej strony I A lub I B razy wększa, w zależnośc od tego, czy równocześne z negocjacjam odbywa sę proces ustalana cen detalcznych na rynku gracza A czy B. Uzyskamy w ten sposób sytuacje growe z dwoma procesam ustalana cen. 4 Neznajomość macerzy wypłat gracza konkurencyjnego ne daje żadnych podstaw do przewdywana jego decyzj zarówno w sytuacj ruszana sę jako perwszy, jak w sytuacj, gdy gracze ruszają sę równocześne.
1.2. GRA O SUMIE NIEZEROWEJ NA KONKURENCYJNYM RYNKU USŁUG TELEKOMUNIKACYJNYCH 5 1.2.3 Gra podwójna gra pojedyncza Wprowadźmy następującą klasyfkację ger: Defncja 1.2.1 Gra podwójna to sytuacja growa, w której żaden z procesów ustalana cen ne został zakończony. W grze tej udzał berze trzech graczy A, B H. Defncja 1.2.2 Gra pojedyncza to sytuacja growa, w której dokładne jeden proces ustalana cen został zakończony dokładne jeden gracz wykonał ruch. W grze tej berze udzał dwóch graczy. Sytuacja growa składa sę zatem z dwóch faz. W faze perwszej rozgrywana jest gra podwójna. W wynku jej rozegrana jeden z graczy: A, B lub H ustala ceny na odpowadającym sobe rynku (wybera strategę). W faze drugej rozgrywana jest gra pojedyncza pomędzy graczam, którzy w faze perwszej ne ustall cen. Wobec powyższej klasyfkacj, z punktu wdzena kształtowana metod analzy poszczególnych ger sekwencje: A(BH) = AH (HA)B = HB (BH)A = HA B(HA) = BH uznać można za gry, rozgrywane w drugej faze (gra pojedyncza) sytuacj growej, reprezentowanej przez odpowene sekwencje ruchów z rozłącznym procesam ustalana cen na poszczególnych rynkach. Stąd: A(BH) = AH jest grą z drugej fazy sytuacj growej reprezentowanej przez seksencję BAH (HA)B = HB jest grą z drugej fazy sytuacj growej reprezentowanej przez seksencję AHB (BH)A = HA jest grą z drugej fazy sytuacj growej reprezentowanej przez seksencję BHA B(HA) = BH jest grą z drugej fazy sytuacj growej reprezentowanej przez seksencję ABH Stąd też z sekwencj z dwoma równoczesnym procesam ustalana cen do osobnego rozpatrzena zostaną tylko (AB)H H(AB).
6 ROZDZIAŁ 1. JEDNOKRYTERIALNE 2-OSOBOWE GRY O SUMIE NIEZEROWEJ NA RYNKU TELEKOMUNIKACYJNYM 1.2.4 Kolejność ruchów Kolejność ruchów poszczególnych graczy wpływa na wynk gry, na możlwość oddzaływana na jego wartość, jak równeż na sprawność procesu negocjacj [9, 7]. W przypadku modelu gry przecwko naturze z punktu wdzena wynku gry jak równeż możlwośc oddzaływana na jego wartość optymalną dla gracza A była sekwencja ruchów: BHA. Przystępując do negocjacj cen na rynku hurtowym (H), ceny na rynku detalcznym gracza B były już ustalone (B). Znając ch wartość gracz A przed przystąpenem do negocjacj dokonać mógł szeregu analz w celu wyłonena najkorzystnejszych warantów cen na rynku hurtowym obu graczy oraz odpowadających m cen na własnym rynku detalcznym. Posadane welu warantów cen na rynku hurtowym, które zaproponować mógł graczow B wzmacnało jego pozycję w negocjacjach [3, 13, 14, 17, 18, 19]. Po zakończenu negocjacj w zależnośc od przyjętego warantu cen na rynku hurtowym gracz A mał możlwość wybrana najkorzystnejszych dla sebe w tym przypadku cen na rynku detalcznym A. W przypadku gry przecwko naturze, gracz A neznajdował podstaw do tego, by uprzedzać decyzję gracza B 5, korzystnej było ruszać sę jako drug. W przypadku modelu gry o sume nezerowej, kedy to gracz A zna macerz wypłat gracza B taka sytuacja zachodzć może ale ne mus. Zlustrujemy to na przykładach. Dla uproszczena załóżmy, ż obaj gracze A B dążą do maksymalzacj własnej funkcj wypłaty. Dla macerzy wypłat jak w tabel 1.2 graczow A opłaca sę ruszać jako drug. Nezależne od decyzj gracza B może wówczas wybrać strategę, która zapewn mu wypłatę równą Vj A(a ) = 4 (a 1 jeśl B wybrał b 1 lub a 2 jeśl B wybrał b 2 ). Gdyby ruszył sę jako perwszy w wynku odpowedz gracza B, maksymalzujacego wypłatę V B (b j ) = 4 (b 2 jeśl A wybrał a 1 lub b 1 jeśl A wybrał a 2 ), otrzymałby wypłatę Vj A(a ) = 2. Tabela 1.2: Ilustracja przypadku, gdy graczow A opłaca sę ruszyć jako drug. b 1 b 2 a 1 [4,2] [2,4] a 2 [2,4] [4,2] Jeśl jednak macerz wypłat graczy będze jak w tabel 1.3, to graczow A opłaca sę ruszyć jako perwszy wybrać strategę a 2. Wówczas w wynku odpowedz gracza B, maksymalzujacego wypłatę V B (b j ) (B wyberze b 1 ), otrzyma najwększą z możlwych do osągnęca wypłatę 5 Jest to stwerdzene słuszne wyłączne w przypadku, gdy gracz A ne ponosł żadnych kosztów zwązanych z samych faktem zwlekana z podjęcem decyzj. Innym słowy, czas zwlekana z decyzją ne generował kosztów.
1.2. GRA O SUMIE NIEZEROWEJ NA KONKURENCYJNYM RYNKU USŁUG TELEKOMUNIKACYJNYCH 7 V A 1 (a 2) = 4. Tabela 1.3: Ilustracja przypadku, gdy graczow A opłaca sę ruszyć jako perwszy. b 1 b 2 a 1 [3,3] [2,4] a 2 [4,2] [1,1] Zachodzć może równeż sytuacja, kedy dla jednego lub dla obu graczy kolejność ruchów ne ma znaczena. Jest to sytuacja, kedy to nezależne od tego, czy gracz ruszyłby sę jako perwszy, czy też jako drug otrzyma tę samą wartość wypłaty. W przypadku gry z macerzą wypłat jak w tabel 1.4, dla gracza A kolejność ruchów ne ma znaczena. Ma ona jednakże dla gracza B gracz B wolałby ruszyć sę jako drug. W przypadku gry z macerzą wypłat jak w tabel 1.5, Tabela 1.4: Ilustracja przypadku, gdy kolejność ruchów ne wpływa na wartość wypłaty gracza A. b 1 b 2 a 1 [3,2] [3,4] a 2 [3,3] [3,1] zarówno dla gracza A jak dla gracza B kolejność ruchów ne ma znaczena. Tabela 1.5: Ilustracja przypadku, gdy kolejność ruchów ne wpływa na wartość wypłaty żadnego z graczy. b 1 b 2 a 1 [3,2] [3,2] a 2 [3,2] [3,2] 1.2.5 Problem decyzyjny Z punktu wdzena gracza A, decyzja odnośne sposobu rozegrana gry dotyczy dwóch kwest: wyboru odpowenej kolejnośc ruchów graczy,
8 ROZDZIAŁ 1. JEDNOKRYTERIALNE 2-OSOBOWE GRY O SUMIE NIEZEROWEJ NA RYNKU TELEKOMUNIKACYJNYM wyboru odpowenej strateg (ustalene cen) w ramach ustalonej kolejnośc ruchów. Wybór kolejnośc ruchów uzależnony jest od decyzj gracza B to tak zarówno w kwest momentu ustalena cen na jego rynku detalcznym (proces B) jak w kwest zakończena negocjacj cen na rynku hurtowym (proces H). Z decyzją gracza B, gracz A lczyć sę równeż mus w kwest cen na rynku hurtowym (wybor odpowednej strateg gracza H). Całkowtą swobodę gracz A zachowuje w kwest ustalena cen na własnym rynku detalcznym (proces A). W nenejszej pracy uwaga skupona zostane na analze ger pojedynczych.
Rozdzał 2 Analza ger pojedynczych W przypadku gry pojedynczej mamy do czynena z sytuacją, gdy w wynku rozegrana gry podwójnej jeden z graczy: A, B lub H ustalł już swoje ceny. Rozgrywana jest teraz gra z udzałem wyłączne dwóch graczy. Do rozpatrzena mamy sedem różnych przypadków: 1. Przypadek AB odpowadający sytuacj, gdy w wynku rozegrana gry podwójnej ustalono ceny na rynku hurtowym (ustalono strategę gracza H), a w grze pojedynczej perwszy ustala ceny na rynku detalcznym gracz A. 2. Przypadek HB odpowadający sytuacjom: W wynku rozegrana gry podwójnej ustalone zostały ceny na rynku detalcznym gracza A. Analzowany jest przypadek (HA)B = (AH)B = HB. a w grze pojedynczej perwszym jest proces negocjacj stawek rozlczenowych na rynku hurtowym (ruch gracza H). 3. Przypadek AH odpowadający sytuacjom: W wynku rozegrana gry podwójnej ustalone zostały ceny na rynku detalcznym gracza B. Analzowany jest przypadek A(HB) = A(BH) = AH. a w grze pojedynczej perwszy ustala ceny na rynku detalcznym gracz A. 4. Przypadek BA odpowadający sytuacj, gdy wynku rozegrana gry podwójnej ustalono ceny na rynku hurtowym (ustalono strategę gracza H), a w grze pojedynczej perwszy ustala ceny na rynku detalcznym gracz B. 9
10 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH 5. Przypadek BH odpowadający sytuacjom: W wynku rozegrana gry podwójnej ustalone zostały ceny na rynku detalcznym gracza A. Analzowany jest przypadek B(HA) = B(AH) = BH. a w grze pojedynczej perwszy ustala ceny na rynku detalcznym gracz B. 6. Przypadek HA odpowadający sytuacjom: W wynku rozegrana gry podwójnej ustalone zostały ceny na rynku detalcznym gracza B. Analzowany jest przypadek (HB)A = (BH)A = HA. a w grze pojedynczej perwszym jest proces negocjacj stawek rozlczenowych na rynku hurtowym (ruch gracza H). 7. Przypadek (AB) odpowadający sytuacj, gdy w wynku rozegrana gry podwójnej ustalono ceny na rynku hurtowym (ustalono strategę gracza H), a w grze pojedynczej gracze A B ruszają sę równocześne. Powyższe przypadk ogólne ująć można jako sytuacje, w których zachodz jedna z trzech możlwośc: Gracz A rusza sę jako perwszy. Odpowada to przypadkom AB, AH HB 1. Gracz A rusza sę jako drug. Odpowada to przypadkom BA, HA 2 BH. Gracze ruszają sę równocześne. Odpowada to przypadkow (AB). W dalszej częśc tekstu rozpatrzymy oddzelne powyższe przypadk. Uzględnmy równeż fakt, ż gracze mogą zabegać o zmanę kolejnośc ruchów. Rozpatrzymy także wpływ nformacj posadanej przez gracza B na optymalną kolejność ruchów uzyskwane wypłaty. 1 Przyjmujemy tu, że proces negocjacj H, jako element pozostający pod częścową kontrolą gracza A uznany jest za jego ruch. 2 Przyjmujemy tu, że proces negocjacj H, jako element pozostający pod częścową kontrolą gracza B uznany jest za jego ruch.
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 11 2.1 Gracz A rusza sę jako perwszy Rozpatrujemy sytuację, w której rozegrano już grę podwójną (na jednym z rynków detalcznych albo na rynku hurtowym ustalono już ceny), zaś kolejność ruchów w grze pojedynczej jest zdetermnowana gracz A mus sę ruszyć jako perwszy. Mamy do rozpatrzena trzy przypadk: 1. Przypadek AB odpowadający sytuacj, gdy wynku rozegrana gry podwójnej ustalono ceny na rynku hurtowym (ustalono strategę gracza H). 2. Przypadek HB odpowadający sytuacjom: W wynku rozegrana gry podwójnej ustalone zostały ceny na rynku detalcznym gracza A. Analzowany jest przypadek (HA)B = (AH)B = HB. 3. Przypadek AH odpowadający sytuacjom: W wynku rozegrana gry podwójnej ustalone zostały ceny na rynku detalcznym gracza B. Analzowany jest przypadek A(HB) = A(BH) = AH. 2.1.1 Wybór strateg gry Funkcja wypłaty danego gracza jest określonym kryterum oceny podjętej przez nego decyzj. W szczególnym przypadku kryterum to może być maksymalzowane, mnmalzowane, lub stablzowane. Maksymalzacja, mnmalzacja stablzacja wyznaczają swosty kerunek optymalzacj kryterum, który nazwemy charakterem kryterum. Gracz A może lecz ne mus wedzeć a pror jak charakter ma dane kryterum dla gracza B. Innym słowy znajomość macerzy wypłat gracza B, a co za tym dze znajomość jego funkcj wypłaty ne wystarcza do precyzyjnego określena celu, jak on sobe wyznacza. Ne wystarczy zatem wedzeć, ż B np. gra o zysk, trzeba jeszcze wedzeć, czy ów zysk gracz B chce maksymalzować 3. Mamy tu zatem dwa przypadk: 3 Znajomość charakteru kryterum ne mus być wcale tak oczywsta, jak to sę z pozoru może wydawać. Powszechne przyjmuje sę, że gracze rynkow maksymalzują zysk udzał w rynku, mnmalzują zaś koszty. Reala rynków poddanych kontrol mogą być jednakże nne. I tak dla przykładu przedsęborstwo, które zblża sę do grancy, po przekroczenu której zostane uznane za posadające znaczącą pozycję rynkową na danym rynku może dążyć do ustablzowana swojej aktualnej pozycj (udzału w rynku, zysku). Przedsęborstwo, na które nałożono obowązek ustalana cen za usług w oparcu o ponoszone koszty może dążyć do (choćby w sposób sztuczny) zwększana (maksymalzowana) tychże kosztów. Ponadto, z racj na fakt, ż dany gracz rozpatruje ne tylko własne wartośc kryterów ale równeż wartośc kryterów konkurentów, może te ostatne traktować w sposób przecwny względem własnych dążąc do pogorszena sytuacj konkurenta.
12 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH 1. Gracz A we jak charakter ma kryterum gracza B. 2. Gracz A ne we jak charakter ma kryterum gracza B. W przypadku perwszym problem jest prosty, jeśl kryterum gracza B jest maksymalzowane, lub mnmalzowane. W przypadku stablzacj kryterum problem jest o tyle skomplkowany, że gracz A ne mus wedzeć wokół jakej wartośc dokonuje sę ta stablzacja. Z punktu wdzena analzy tego typu ger dogodne jest zatem dokonać nnego podzału sytuacj decyzyjnej: 1. Gracz A we jak charakter ma kryterum gracza B jest to kryterum maksymalzowane, mnmalzowane albo stablzowane ze znaną dla A wartoścą, wokół której dokonuje sę stablzacja. 2. Gracz A ne we jak ma charakter kryterum gracza B, bądź we jest to kryterum stablzowane z tym, że A ne we wokół jakej wartośc. Przypadk powyższe określmy odpowedno jako: 1. Znany charakter kryterum konkurenta. 2. Neznany charakter kryterum konkurenta. Ponżej lustrujemy racjonalne sposoby rozgrywana tego typu ger przez gracza A w obu sytuacjach. Znany charakter kryterum konkurenta W sytuacj, gdy gracz A zna charakter kryterum 4 (funkcj wypłaty) gracza konkurencyjnego B, możlwym jest wyznaczene dla każdej potencjalne wybranej przez A strateg a najlepszej z punktu wdzena gracza B odpowedz ˆb(a ). I tak dla kryterów V B (b j ) maksymalzowanych otrzymamy: dla kryterów mnmalzowanych zaś dla kryterów stablzowanych ˆb(a ) = arg max V B (b j ) :, (2.1) j ˆb(a ) = arg mn V B (b j ) :, (2.2) j ˆb(a ) = arg max j 1 ˆV B V B (b j ) + 1 4 I rzecz jasna zna analtyczną postać tego kryterum, co jest tu domnemywane. :, (2.3)
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 13 gdze ˆV B jest pożądaną przez gracza B wartoścą jego funkcj wypłaty V B (b j ). Oznaczmy ndeks strateg ˆb(a ) przez ĵ. Wartość wypłaty gracza A w sytuacj, gdy wybrał on swoją strategę a, zaś gracz B w odpowedz wybrał najlepszą dla sebe strategę ˆb(a ), oznaczymy przez V A ĵ (a ) Zakładając, że kryterum gracza A jest maksymalzowane lub sprowadzone do takej postac, najlepszą strategę gry â gracz A otrzymuje w wynku rozwązana ponższego zadana optymalzacj: Przykład 2.1 â = arg max V A ĵ (a ). (2.4) Po lberalzacj rynku połączeń mędzynarodowych, dawny monopolsta operator A spodzewa sę w najblższym czase wejśca na rynek nowego operatora B. Operator A rozważa możlwość zmany struktury taryfowej za połączena mędzynarodowe jeszcze zanm operator B zaczne faktyczne funkcjonować tak, aby w etape przejścowym zatrzymać możlwe najwększą lczbę klentów (gra o lczbę użytkownków [5, 7]). Operator A rozważa cztery stratege gry: a 1 zachować aktualną strukturę taryfową. a 2 obnżyć o 5% ceny połączeń mędzynarodowych. a 3 obnżyć o 10% ceny połączeń mędzynarodowych. a 4 obnżyć o 15% ceny połączeń mędzynarodowych. Budowa nfrastruktury secowej zmusła operatora B do ponesena znacznych nakładów fnansowych zacągnęca dużych kredytów. Operator A przewduje, że z tego powodu podstawowym celem najblższej dzałalnośc operatora B będze szybk zwrot ponesonych kosztów spłata zacągnętych kredytów (gra o zysk maksymalzacja zysku). Operator A dobrze zna technologę wykorzystaną do budowy sec przez operatora B, a względne mała lczba punktów połączenowych z operatoram sec lokalnych oraz newelka lczba łączy wychodzących do sec krajów sąsadujących pozwala operatorow A dość dobrze określć strukturę kosztów operatora B. Operator A przypuszcza, że operator B rozważał będze cztery stratege cenowe: b 1 - zachować aktualną strukturę taryfową operatora A. b 2 - obnżyć o 5% ceny połączeń mędzynarodowych względem aktualnych cen operatora A. b 3 - obnżyć o 10% ceny połączeń mędzynarodowych względem aktualnych cen operatora A. b 4 - obnżyć o 15% ceny połączeń mędzynarodowych względem aktualnych cen operatora A.
14 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH W oparcu o model popytu oraz model kosztów sec operatora B operator A przeprowadzł oblczena dla każdej kombnacj dopuszczalnych strateg gry obu graczy, wyznaczając odpowedno lczby użytkownków operatora A (w setkach tysęcy) oraz szacowaną welkość zysku operatora B (w mlonach złotych). Macerze wypłat operatorów A B zlustrowano w tabel 2.1. Tabela 2.1: Macerz wypłat operatorów A B. b 1 b 2 b 3 b 4 a 1 [6,6] [5,8] [4,7] [7,5] a 2 [8,5] [4,4] [3,5] [5,6] a 3 [7,4] [6,3] [3,3] [6,6] a 4 [5,6] [6,5] [6,6] [7,7] Aby wskazać najlepszą własną strategę gry, operator A określa dla każdej strateg a, najlepszą z punktu wdzena operatora B odpowedź ˆb(a ) (strategę b j dającą najwększą wartość wypłaty V B (b j )). Na tej podstawe dla każdej strateg a operator A określa wartość wypłaty, jaką otrzyma V A ĵ (a ) wybera strategę, która tę wypłatę maksymalzuje. W tabel 2.2 dokonano zestawena odpowednch wartośc dla poszczególnych strateg a. Którą strategę pownen wybrać operator A? Zgodne z zależnoścą (2.4) tę, która daje naj- Tabela 2.2: Zestawene najlepszej z punktu wdzena gracza B odpowedz oraz wartośc wypłat obu graczy dla każdej strateg gracza A. a ˆb(a ) V B (ˆb(a )) V A ĵ (a ) a 1 b 2 8 5 a 2 b 4 6 5 a 3 b 4 6 6 a 4 b 4 7 7 wększą wartość wypłaty V A ĵ (a ). Najwększą wypłatę V A 4 (a 4) = 7 zapewna operatoratorow A stratega a 4. Ona zatem pownna zostać wybrana.
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 15 Neznany charakter kryterum konkurenta Sytuacja neznajomośc charakteru kryterum konkurenta zdefnowana została jako zajśce jednego z dwóch przypadków: gracz A ne we jak ma charakter kryterum gracza B, gracza A we jak charakter ma kryterum gracza B jest to kryterum stablzowane z tym, że A ne we wokół jakej wartośc. Oba przypadk sprowadzć można do wspólnej, ogólnej postac zakładając, ż kryterum gracza B jest stablzowane wokół wartośc neznanej graczow A. Wynka to z faktu, ż krytera maksymalzowane traktować można jako krytera stablzowane względem najwększej z możlwych wartośc, zaś krytera mnmalzowane względem wartośc najmnejszej. Wspomagane gracza A w wyborze najkorzystnejszej strateg w tym przypadku oprzeć można na metodze opsanej w ponższych punktach. 1. Określamy zbór możlwych wartośc wokół których dokonywać sę będze stablzacja (np. zbór wszystkch wartośc lczbowych z macerzy wypłat) ˆV s B której dokonuje sę stablzacja). (s - ndeks wartośc wokół 2. Tworzymy nową macerz wypłat gracza A, w której strategam ˆb s gracza B będą wyżej opsane, możlwe wartośc stablzowane ˆV s B, zaś elementam macerzy Vŝ A(a ) wartośc wypłat Vj A(a ) gracza A jake otrzyma w sytuacj, gdy w odpowedz na jego strategę a gracz B wybera strategę b s (a ), dla której wartość V B (b j ) jest najblższa względem aktualne rozpatrywanej wartośc stablzowanej ˆV s B. Odległość defnować można jako wartość bezwględną z różncy pomędzy wartoścam ˆV s B V B (b j ). Im moduł różncy jest mnejszy, tym wartośc są sobe blższe. Innym słowy wyberana jest stratega dla której: b s (a ) = arg mn ˆV s B j V B (b j ) :. 3. Otrzymaną macerz traktujemy jako model gry przecwko naturze do jej analzy stosujemy właścwe dla tego typu ger metody [1, 4, 7, 8, 10, 12, 16, 23]. Przykład 2.2 Załóżmy, że macerz wypłat dla obu graczy przedstawa sę jak w tabel 2.3. Gracz A dąży do maksymalzacj swojej wypłaty, jednakże ne zna charakteru kryterum gracza B. Przyjmuje węc, ż gracz B stablzuje swoją wartość wypłaty wokół neznanej dla A wartośc.
16 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH Tabela 2.3: Macerz wypłat dla graczy A B. b 1 b 2 b 3 b 4 a 1 [6,6] [5,8] [4,7] [7,5] a 2 [8,7] [4,4] [3,5] [5,6] a 3 [7,5] [6,4] [3,3] [6,6] a 4 [5,5] [6,4] [6,6] [7,7] Wartośc w macerzy wypłat gracza B zmenają sę od ˆV B = 3 do ˆV B = 8. Przekształcając z punktu wdzena problem do gry przecwko naturze uzyskamy grę, w której gracz B będze mał sześć strateg ˆb s : ˆb1 statega, odpowadająca stablzacj wokół wartośc ˆV 1 B = 3 ˆb2 statega, odpowadająca stablzacj wokół wartośc ˆV 2 B = 4 ˆb3 statega, odpowadająca stablzacj wokół wartośc ˆV 3 B = 5 ˆb4 statega, odpowadająca stablzacj wokół wartośc ˆV 4 B = 6 ˆb5 statega, odpowadająca stablzacj wokół wartośc ˆV 5 B = 7 ˆb6 statega, odpowadająca stablzacj wokół wartośc ˆV 6 B = 8 Elementy macerzy wypłat gracza A V A ŝ (a ) w grze przecwko naturze znajdujemy zgodne z następującym rozumowanem: Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 1 = 3, to: Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze strategę b 4, dajacą mu najblższą wartośc ˆV B 1 = 3 wypłatę V1 B(b 4) = 5. Gracz A otrzyma wówczas wypłatę V4 A(a 1) = Vˆ1 A(a 1) = 7 Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze strategę b 2, dajacą mu najblższą wartośc ˆV B 1 = 3 wypłatę V2 B(b 2) = 4. Gracz A otrzyma wówczas wypłatę V2 A(a 2) = Vˆ1 A(a 2) = 4 Jeśl gracz A wyberze strategę a 3, gracz B w odpowedz wyberze strategę b 3, dajacą mu najblższą wartośc ˆV B 1 = 3 wypłatę V3 B(b 3) = 3. Gracz A otrzyma wówczas wypłatę V3 A(a 3) = Vˆ1 A(a 3) = 3 Jeśl gracz A wyberze strategę a 4, gracz B w odpowedz wyberze strategę b 2, dajacą mu najblższą wartośc ˆV B 1 = 3 wypłatę V4 B(b 2) = 4. Gracz A otrzyma wówczas wypłatę V2 A(a 4) = Vˆ1 A(a 4) = 6
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 17 Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 2 = 4, to: Itd. Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze strategę b 4, dajacą mu najblższą wartośc ˆV B 1 = 4 wypłatę V1 B(b 4) = 5. Gracz A otrzyma wówczas wypłatę V4 A(a 1) = Vˆ1 A(a 1) = 7 Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze strategę b 2, dajacą mu najblższą wartośc ˆV B 1 = 4 wypłatę V2 B(b 2) = 4. Gracz A otrzyma wówczas wypłatę V2 A(a 2) = Vˆ1 A(a 2) = 4 Jeśl gracz A wyberze strategę a 3, gracz B w odpowedz wyberze strategę b 2, dajacą mu najblższą wartośc ˆV B 1 = 4 wypłatę V3 B(b 2) = 4. Gracz A otrzyma wówczas wypłatę V2 A(a 3) = Vˆ1 A(a 3) = 6 Jeśl gracz A wyberze strategę a 4, gracz B w odpowedz wyberze strategę b 2, dajacą mu najblższą wartośc ˆV B 1 = 4 wypłatę V4 B(b 2) = 4. Gracz A otrzyma wówczas wypłatę V2 A(a 4) = Vˆ1 A(a 4) = 6 W efekce przeprowadzonych przekszatałceń otrzymamy macerz wypłat dla gracza A w grze przecwko naturze postac 2.4. Tabela 2.4: Przekształcona macerz wypłat gracza A w grze przecwko naturze. ˆb1 ˆb2 ˆb3 ˆb4 ˆb5 ˆb6 a 1 7 7 7 6 4 5 a 2 4 4 3 5 8 8 a 3 3 6 7 6 6 6 a 4 6 6 5 6 7 7 Decyzję odnośne wyboru strateg gracz A może teraz oprzeć na którymś kryterów wyboru strateg w grach przecwko naturze [7, 8]. Jeśl dla przykładu kerował sę będze kryterum Walda postac: max{mn Vŝ A (a ) : I A }. (2.5) ŝ to pownen wybrać strategę a 4 dającą mu mnmalną wartość wypłaty równą V A ˆ3 (a 4) = 5. Na dentyczną strategę wskazuje kryterum Laplace a postac: max{ ŝ V A ŝ (a ) : I A }. (2.6)
18 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH Jeśl jednak kerował sę będze kryterum optymstycznym postac: max{max Vŝ A (a ) : I A }. (2.7) ŝ to pownen wybrać strategę a 2, dla której nawększa wypłata wynos V A ˆ5 (a 2) = V A ˆ6 (a 2) = 8. Uprawnone jest równeż stosowane kryterów operujących na macerzy strat typu: Savage a, LNW tp [7, 8]. Należy wyraźne podkreślć, ż macerz wypłat gracza A w grze przecwko naturze, reprezentującej prawdopodobne punkty stablzacj ne posada tych samych właścwośc, co orygnalna macerz wypłat gracza A, tzn. orygnalna macerz wypłat gracza A (bez uwzględnana macerzy wypłat gracza B) defnuje nną grę przecwko naturze nż macerz, w której natura reprezentuje możlwe punkty stablzacj wartośc wypłaty gracza B. Rozważmy to na przykładze. Przykład 2.3 Macerz wypłat graczy: A B przedstawa sę jak w tabel 2.5. Zakładając, że gracz A ne uwzględna potencjalnych odpowedz gracza A, jego macerz wypłat (w tak powstałej grze przecwko naturze) przedstawa sę jak w tabel 2.6. Wdać, że stratega a 1 domnuje tu strategę a 2, a węc każde racjonalne kryterum wyboru strateg w grach przecwko naturze wskaże właśne na tę strategę. Co sę stane, jeśl uwzględnać będzemy potencjalne odpowedz gracza B, przy założenu neznajomośc charakteru kryterum defnującego jego funkcję wypłaty? Tabela 2.5: Macerz wypłat graczy A B. b 1 b 2 b 3 a 1 [2,1] [1,3] [2,1] a 2 [1,1] [1,1] [2,4] Zgodne z założenam zaprezentowanej metody neznajomość charakteru kryterum gracza B wyrazmy za pomocą stablzacj funkcj wypłaty wokół wszystkch wartośc z jego macerzy wypłat. Stąd otrzymamy: ˆb1 stratega odpowadająca stablzacj wokół wartośc ˆV 1 B = 1 ˆb2 stratega odpowadająca stablzacj wokół wartośc ˆV 2 B = 3 ˆb3 stratega odpowadająca stablzacj wokół wartośc ˆV 3 B = 4
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 19 Tabela 2.6: Orygnalna macerz wypłat gracza A, defnująca grę przecwko naturze, jeśl ne uwzględna on potencjalnych odpowedz gracza B. b 1 b 2 b 3 a 1 2 1 2 a 2 1 1 2 Prześledźmy jak kształtowały sę będą odpowedz gracza B na poszczególne stratege gracza A przy różnych wartoścach punktu stablzacj. Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 1 = 1, to: Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze albo strategę b 1 albo b 3 dajacą mu w obu przypadkach najblższą wartośc ˆV B 1 = 1 wypłatę V1 B(b 1) = V1 B(b 3) = 1. W obu przypadkach gracz A otrzyma wówczas wypłatę V1 A(a 1) = V3 A(a 1) = Vˆ1 A(a 1) = 2. Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze albo strategę b 1 albo b 2 dajacą mu w obu przypadkach najblższą wartośc ˆV B 1 = 1 wypłatę V2 B(b 1) = V2 B(b 2) = 1. W obu przypadkach gracz A otrzyma wówczas wypłatę V1 A(a 2) = V2 A(a 2) = Vˆ1 A(a 2) = 1. Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 2 = 3, to: Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze strategę b 2 dajacą mu najblższą wartośc ˆV B 2 = 3 wypłatę V1 B(b 2) = 3. Gracz A otrzyma wówczas wypłatę V2 A(a 1) = Vˆ2 A(a 1) = 1. Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze strategę b 3 dajacą mu najblższą wartośc ˆV B 2 = 3 wypłatę V2 B(b 3) = 4. Gracz A otrzyma wówczas wypłatę V3 A(a 2) = Vˆ2 A(a 2) = 2. Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 3 = 4, to: Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze strategę b 2 dajacą mu najblższą wartośc ˆV B 2 = 4 wypłatę V1 B(b 2) = 3. Gracz A otrzyma wówczas wypłatę V2 A(a 1) = Vˆ3 A(a 1) = 1.
20 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze strategę b 3 dajacą mu najblższą wartośc ˆV B 2 = 4 wypłatę V2 B(b 3) = 4. Gracz A otrzyma wówczas wypłatę V3 A(a 2) = Vˆ3 A(a 2) = 2. Stąd macerz wypłat w grze przecwko naturze reprezentującej możlwe wartośc stablzacj, przedstawała sę będze jak w tabel 2.7. W macerzy tej tym razem to stratega a 2 (z dokładnoścą do uporządkowana wartośc) domnuję strategę a 1, a węc ona będze preferowana. Tabela 2.7: Macerz wypłat gracza A, defnująca grę przecwko naturze, reprezentujacej możlwe wartośc stablzacj. ˆb1 ˆb2 ˆb3 a 1 2 1 1 a 2 1 2 2 W zaprezentowanej metodze ne bez znaczena jest dobór potencjalnych punktów, wokół których dokonuje sę stablzacja. Dla przykładu powększane lczby punktów stablzacj powyżej najwększej wartośc w macerzy wypłat gracza B sztuczne zawyża wartość w sense kryterum Laplace a tych strateg gracza A, dla których w przekształconej macerzy wypłat znajduje sę wartość najwększa. W analogczny sposób zwększane lczby punktów stablzacj ponżej wartośc najmnejszej wartość owych kryterów w sense kryterum Laplace a zanża. Ogólne rzecz ujmując zmana lczby punktów stablzacj modyfkuje wartość strateg w sense kryterów nespełnających aksjomatu newrażlwośc na duplkację kolumny [16]. Rozsądnym zatem wydaje sę być założene, ż gracz B dokonuje stablzacj wyłączne wokół wartośc, które w jego macerzy wypłat sę znajdują. 2.1.2 Nejednoznaczność odpowedz gracza B W przykładze 2.3 dwukrotne zetknęlśmy sę z sytuacją nejednoznacznej odpowedz gracza B. W sytuacj gdy zakładalśmy, że dąży on do stablzacj wartośc funkcj wypłaty wokół ˆV B 1 = 1, na strategę a 1 gracz B mógł wybrać strategę b 1 lub b 3, a w odpowedz na strategę a 2 b 1 lub b 2. W obu przypadkach każda z odpowedz dawała graczow B taką samą wypłatę równą 1. Nejednoznaczność odpowedz gracza B ne mała tam jednakże wpływu na wartość wypłaty gracza A. W przypadku, gdy wybrał on strategę a 1 nezależne od tego, czy gracz B wybrał b 1 czy b 3 gracz A otrzymywał wypłatę równą V A 1 (a 1) = V A 3 (a 1) = 2. W przypadku wyboru
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 21 strateg a 2 nezależne od tego, czy gracz B wybrał b 1 czy b 2 gracz A otrzymywał wypłatę równą V A 1 (a 2) = V A 2 (a 2) = 1. W ogólnośc jednakże tak być ne mus stratege b j (a ), które graczow B dają jednakowe wartośc funkcj wypłaty, dla gracza A mogą meć różną wartość. Rozważmy to na przykładze. Przykład 2.4 Rozważmy grę z macerzą wypłat jak w tabel 2.8. Tabela 2.8: Macerz wypłat graczy A B. Problem nejednoznacznośc odpowedz gracza B. b 1 b 2 a 1 [2,1] [2,2] a 2 [1,2] [3,2] Załóżmy, ż gracz A zna charakter kryterum gracza B jest to kryterum maksymalzowane. Gracz A rusza sę jako perwszy. Aby wskazać najlepszą własną strategę gry, gracz A określa dla każdej strateg a, najlepszą z punktu wdzena gracza B odpowedź ˆb(a ) 5. Na tej podstawe dla każdej strateg a gracz A określa wartość wypłaty, jaką otrzyma V A ĵ (a ) wybera strategę, która tę wypłatę maksymalzuje. W tabel 2.9 dokonano zestawena odpowednch wartośc dla poszczególnych strateg a. Którą strategę pownen wybrać gracz A? Zgodne z zależnoścą (2.4) tę, która daje najwększą Tabela 2.9: Zestawene najlepszej, z punktu wdzena gracza B odpowedz oraz wartośc wypłat obu graczy dla każdej strateg gracza A. ˆb(a ) V B (ˆb(a )) V A ĵ (a ) a 1 b 2 2 2 a 2 b 1 lub b 2 2 1 lub 3 wartość wypłaty V A ĵ (a ). Nestety z tabel 2.9 ne można odczytać w sposób jednoznaczny, która to będze stratega. Wynka to z nejednoznacznośc odpowedz gracza B na strategę a 2. Jeśl gracz A będze mał pewność, ż jeśl wyberze strategę a 2, to w odpowedz gracz B wyberze 5 Strategę b j, dającą najwększą wartość wypłaty V B (b j).
22 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH strategę b 1, wówczas najkorzystnej dla gracza A jest wybrać strategę a 1, co da mu wypłatę równą V A 2 (a 1) = 2 (wybrane strateg a 2 dałoby mu wypłatę równą V A 1 (a 2) = 1). Jeśl zaś gracz B będze mał pewność, że w odpowedz na strategę a 2 gracz B wyberze strategę b 2, wówczas najlepszą strategą gracza A jest stratega a 2, zapewnająca mu wypłatę równą V A 2 (a 2) = 3. Nejednoznaczność odpowedz gracza B jest źródłem nepewnośc dla gracza A. I w tym wąskm zakrese nejednoznacznośc odpowedz gracza B, gracz A może ( pownen) traktować decyzje gracza B jako stratege natury, której ruchów ne jest w stane przewdzeć. Wobec tego rozsądnym jest aby gracz A przy wyborze odpowednej strateg a ne kerował sę porównywanem odpowednch wypłat V A j (a ), zwązanych z potencjalnym odpowedzam gracza B b j (a ). Gracz A wnen porównywać odpowedne agregaty z wszelkch możlwych wartośc V A j (a ) jake może otrzymać w wynku wyboru strateg a. Rozważmy ponowne przypadk znanego neznanego charakteru kryterum gracza B. Znany charakter kryterum gracza B W przypadku, gdy znany jest charakter kryterum gracza B dla odpowednch strateg gracza A, gracz ten może odpowedzeć w sposób nejednoznaczny, procedura wyboru strateg realzowana przez gracza A przebegać może w sposób następujący: 1. Ustalene zboru ndeksów optymalnych strateg gracza B Dla każdej strateg a gracza A określ zbór ndeksów I ˆB optymalnych w sense charakteru jego kryterum 6 odpowedz gracza B ˆb j (a ). 2. Agregacja wartośc wypłat gracza A Dla każdej strateg a określ wartość funkcj agregującej wypłaty V A ĵ (a ) gracza A Υ(V A ĵ (a )) po zborze optymalnych odpowedz gracza B I ˆB. Funkcja agregacj odzwercedla subektywny stosunek gracza A do zwązanej z nejednoznacznoścą odpowedz gracza B nepewnoścą. W szczególnośc funkcja agregująca może przybrać postać: Jeśl zakładamy pesymzm odnośne odpowedz gracza B (kryterum Walda): Υ(V A ĵ (a )) = mn V A j I ĵ (a ) (2.8) ˆB Jeśl zakładamy optymzm odnośne odpowedz gracza B (kryterum optymstyczne): Υ(V A ĵ (a )) = max V A j I ĵ (a ) (2.9) ˆB 6 Maksymalzujacych, mnmalzujących lub stablzujących względem określonej wartośc.
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 23 Jeśl zakładamy względny optymzm odnośne odpowedz gracza B (kryterum Hurwcza): Υ(V A ĵ (a )) = α max V A j I ĵ (a ) + (1 α) mn V A ˆB j I ĵ (a ) (2.10) ˆB Jeśl ocenamy wartość średną (kryterum Laplace a): Υ(V A ĵ (a )) = 1 L ˆB gdze: L ˆB oznacza lczność zboru I ˆB. j I ˆB V A ĵ (a ) (2.11) Ne uprawnone wydaje sę odwoływane sę do agregacj bazujących na funkcj żalu (np. kryterum Savage a, LNW tp) [7, 8, 12, 16]. Wynka to z faktu, ż krytera te zakładają porównana różnych strateg gracza A przy ustalonej odpowedz gracza B, podczas gdy tu w ogólnośc mamy do czynena z sytuacją, gdy dla różnych strateg gracza A odpowedź gracza B może być różna. 3. Wybór strateg, dla której wartość funkcj agregującej jest najwększa Z uwględnenem stosunku do nepewnośc poprzez zastosowane odpowednej funkcj agregującej gracz A wybera strategę, która daje mu najwększą wartość fukcj agregującej: â = arg max Υ(V A ĵ (a )). (2.12) Stosując powyższe podejśce do przykładu 2.4 otrzymujemy następujące zbory ndeksów optymalnych strateg gracza B: I ˆB1 = {2}, I ˆB2 = {1, 2}. Przyjmmy, że gracz A wykazuje pesymzm odnośne odpowedz gracza B stąd jego fukcja agregacj przyjme postać (2.8). Stąd dla strateg a 1 funkcja agregacj przyjmuje wartość: a dla strateg a 2 Υ(V A ĵ (a 1)) = mn V A j I ĵ (a 1) = V2 A (a 1 ) = 2, ˆB1 Υ(V A ĵ (a 2)) = mn V A j I ĵ (a 2) = mn(v1 A (a 2 ), V2 A (a 2 )) = V1 A (a 2 ) = 1. ˆB2 Wykazując pesymzm odnośne odpowedz gracza B gracz A pownen wybrać strategę a 1 co zapewn mu wypłatę równą V A 2 (a 1) = 2. Gdyby gracz A wykazywał dla odmany optymzm odnośne odpowedz gracza B to sytuacja sę już radykalne zmen. Funkcja agregująca przyjme postać (2.9). Stąd dla strateg a 1 funkcja agregacj przyjmuje wartość: Υ(V A ĵ (a 1)) = max j I ˆB1 V A ĵ (a 1) = V A 2 (a 1 ) = 2,
24 ROZDZIAŁ 2. ANALIZA GIER POJEDYNCZYCH a dla strateg a 2 Υ(V A ĵ (a 2)) = max V A j I ĵ (a 2) = max(v1 A (a 2 ), V2 A (a 2 )) = V2 A (a 2 ) = 3. ˆB2 W tej sytuacj gracz A pownen wybrać strategę a 2, co w przypadku potwerdzena optymstycznych oczekwań da mu wypłatę równą V A 2 (a 2) = 3. Neznany charakter kryterum gracza B Problem nejednoznacznośc odpowedz gracza B w przypadku neznajomośc charakteru jego kryterum zlustrujemy na ponższym przykładze. Przykład 2.5 Macerz wypłat graczy przedstawa sę jak w tabel 2.10. Gracz A ne zna charakteru kryterum gracza B. Tabela 2.10: Macerz wypłat graczy A B. Ilustracja problemu nejednoznacznośc odpowedz gracza B w sytuacj neznajomośc charakteru jego kryterum. b 1 b 2 a 1 [2,1] [1,2] a 2 [1,1] [3,1] Zgodne z założenam zaprezentowanej uprzedno metody podejśca do ger z neznajomoścą charakteru kryterum gracza B, przyjmujemy: ˆb1 stratega odpowadająca stablzacj wokół wartośc ˆV 1 B = 1 ˆb2 stratega odpowadająca stablzacj wokół wartośc ˆV 2 B = 2 Prześledźmy jak kształtowały sę będą odpowedz gracza B na poszczególne stratege gracza A przy różnych wartoścach punktu stablzacj. Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 1 = 1, to: Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze strategę b 1 dajacą mu najblższą wartośc ˆV B 1 = 1 wypłatę V1 B(b 1) = 1. Gracz A otrzyma wówczas wypłatę V1 A(a 1) = Vˆ1 A(a 1) = 2.
2.1. GRACZ A RUSZA SIĘ JAKO PIERWSZY 25 Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze albo strategę b 1 albo b 2 dajacą mu w obu przypadkach najblższą wartośc ˆV 1 B = 1 wypłatę V2 B(b 1) = V2 B(b 2) = 1. W zależnośc od odpowedz gracza B, gracz A otrzyma wówczas wypłatę V1 A(a 2) = 1 lub V2 A(a 2) = 3. Jeśl gracz B dąży do stablzacj wypłaty wokół wartośc ˆV B 2 = 2, to: Jeśl gracz A wyberze strategę a 1, gracz B w odpowedz wyberze strategę b 2 dajacą mu najblższą wartośc ˆV B 2 = 2 wypłatę V B 1 (b 2) = 2. Gracz A otrzyma wówczas wypłatę V A 2 (a 1) = 1. Jeśl gracz A wyberze strategę a 2, gracz B w odpowedz wyberze albo strategę b 1 albo b 2 dajacą mu w obu przypadkach najblższą wartośc ˆV 2 B = 2 wypłatę V2 B(b 1) = V2 B(b 2) = 1. W zależnośc od odpowedz gracza B, gracz A otrzyma wówczas wypłatę V1 A(a 2) = 1 lub V2 A(a 2) = 3. Stąd macerz wypłat gracza A w grze przecwko naturze reprezentujacej możlwe wartośc stablzacj przedstawa sę jak w tabel 2.11. Tabela 2.11: Macerz wypłat gracza A w grze przecwko naturze, reprezentującej możlwe wartośc stablzacj. ˆb1 ˆb2 a 1 2 1 a 2 1 lub 3 1 lub 3 W przypadku strateg a 2 odpowedź gracza B ne jest jednoznaczna. Problem nejednoznacznośc odpowedz gracza B w przypadku neznajomośc charakteru jego kryterum rozwązać można w sposób analogczny, jak w przypadku znanego charakteru kryterum gracza B, dokonując odpowednej agregacj poszczególnych wartośc funkcj wypłaty. I tak jeśl w grze z przykładu 2.5 gracz A przyjme funkcję agregacj postac: Υ(V A ĵ (a )) = mn V A j I ĵ (a ), (2.13) ˆB to macerz wypłat w grze przecwko naturze reprezentującej możlwe wartośc stablzacj przyjme postać jak w tabel 2.12.