Twierdzenie spektralne



Podobne dokumenty
1 Przestrzenie Hilberta

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

2. Definicja pochodnej w R n

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

Rozdział 6. Ciągłość. 6.1 Granica funkcji

7 Twierdzenie Fubiniego

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Analiza Funkcjonalna - Zadania

1 Ciągłe operatory liniowe

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Dystrybucje, wiadomości wstępne (I)

Zadania z Analizy Funkcjonalnej I* - 1

Informacja o przestrzeniach Sobolewa

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Informacja o przestrzeniach Hilberta

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Algebry skończonego typu i formy kwadratowe

jest ciągiem elementów z przestrzeni B(R, R)

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

F t+ := s>t. F s = F t.

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Rozkład figury symetrycznej na dwie przystające

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

2.7 Przestrzenie unormowane skończenie wymiarowe

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

ciałem F i oznaczamy [L : F ].

Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

Matematyka dyskretna. 1. Relacje

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

1 Relacje i odwzorowania

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Analiza funkcjonalna II Ryszard Szwarc

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Zadania do Rozdziału X

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Podstawowe struktury algebraiczne

Zadania z Algebry liniowej 4 Semestr letni 2009

R k v = 0}. k N. V 0 = ker R k 0

Analiza funkcjonalna I. Ryszard Szwarc

Analiza funkcjonalna Wykłady

1 Elementy analizy funkcjonalnej

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

8 Całka stochastyczna względem semimartyngałów

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Analiza funkcjonalna 1.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

LX Olimpiada Matematyczna

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Indukcja matematyczna

f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Twierdzenie spektralne

Teoria miary i całki

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

1. Wykład NWD, NWW i algorytm Euklidesa.

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

Analiza matematyczna. 1. Ciągi

O pewnych związkach teorii modeli z teorią reprezentacji

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

1 Działania na zbiorach

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

III. Funkcje rzeczywiste

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

Działanie grupy na zbiorze

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

Ciągłość funkcji f : R R

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k [a n,b n ] kn =(a 1 b 1 a 1

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Całki powierzchniowe w R n

Transkrypt:

Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi borelowskiemu M R przyporządkowuje projektor ortogonalny E(M) w H, w taki sposób że a) E( ) = 0, E(R) = I, b) E(M N) = E(M)E(N) dla borelowskich M, N R, c) E( M k ) = E(M k ) w mocno, jeśli M k są borelowskie i parami rozłączne. Zwróćmy uwagę, że warunek c) równoważny jest następującemu: d) Jeśli M k, to E(M k ) 0 w mocnym sensie. Zbiór supp E = M E(M)=I nazywamy nośnikiem rozkładu spektralnego. Projektory E(M) będziemy też nazywali projektorami spektralnymi. Niech E będzie spektralnym rozkładem jedności w przestrzeni Hilberta H o ograniczonym nośniku. Wtedy dla każdych x, y H (1) µ x,y (M) =< E(M)x, y > jest spektralną miarą znakowaną o normie x y. Jeśli µ x = µ x,x, to µ x = x 2. Z nierówności Schwarza wynika, że więc supp E = µ x,y (M) y (µ x (M) 1/2, x,y H supp µ x,y = x H 2. Dla każdego zbioru borelowskiego M i każdych x, y H Dla x, y H definiujemy dµ E(M)x,y = χ M dµ x,y. < Ax, y >= λµ x,y. supp µ x. Jak widać, tak określony A B(H) jest hermitowski. Wzór < F (A)x, y >= F (λ) µ x,y (dλ), definiuje liniowy operator ograniczony dla F B (R), który będziemy oznaczać przez F (A) = F (λ) E(dλ). Mówimy, że ciąg F n B (R) jest zbieżny w sposób ograniczony, jeśli F n F punktowo i wszystkie funkcje F n są wspólnie ograniczone. 1

2 3. Jeśli ciąg funkcji F n B (R) jest zbieżny w sposób ograniczony, to ciąg operatorów F n (A) jest zbieżny słabo operatorowo. Ten wynik zostanie za chwilę wzmocniony (patrz Wniosek 5). Lemat 4. Niech F, G C(R) będą borelowskie i ograniczone. Wtedy (F G)(A) = F (A)G(A). Dowód. Przyjmijmy najpierw, że F = χ M, gdzie M R jest zbiorem borelowskim. Wtedy < F (A)F (G)x, y > =< E(M)G(A)x, y >=< G(A)x, E(M)y > = G(λ)µ x,e(m)y (dλ) = (χ M G)(λ)µ x,y (dλ) =< (F G)(A)x, y >, bo µ x,e(m)y = χ M µ x,y. Stąd natychmiast wynika, że wzór obowiązuje dla funkcji prostych F, a przez przejście graniczne dla dowolnych F B (K). Wniosek 5. Niech ciąg F n B (R) będzie zbieżny w sposób ograniczony do funkcji F. Wtedy F n (A)x F (A)x, x H. Dowód. Możemy przyjąć, że F = 0. Wtedy F n (A)x 2 =< F n 2 (A)x, x >= F n 2 (λ)µ x (dλ) 0 na mocy twierdzenia Lebesgue a. Tak więc dany spektralny rozkład jedności o ograniczonym nośniku definiuje operator hermitowski, a nawet całą przemienną algebrę operatorów postaci F (A), gdzie F B (R). Twierdzenie spektralne mówi, że jest to ogólna postać operatora hermitowskiego w przestrzeni Hilberta. Twierdzenie 6 (Twierdzenie spektralne). Niech A = A B(H). Istnieje dokładnie jeden spektralny rozkład jedności na H o nośniku ograniczonym, taki że A = λe(dλ). Ponadto supp E = σ(a). Dowód. Przypomnijmy, że dla każdego wielomianu P mamy P (A) = sup P (λ), λ σ(a) co pozwala łatwo określić -homomorfizm algebr C(σ(A)) f f(a) B(H), który jest izometrią na pewną domkniętą podalgebrę B(H). Zauważmy następnie, że dla każdych x, y H funkcjonał liniowy C(σ(A)) f < f(a)x, y > jest ciągły, więc istnieje miara znakowana µ x,y o normie x y, taka że (7) < f(a)x, y >= f(λ)µ x,y (dλ).

Dla każdych x, y H jest supp µ x,y σ(a), a z drugiej strony dla każdego λ 0 σ(a) istnieje x H, taki że λ 0 supp µ x. Stąd (8) σ(a) = supp µ x. x H Możemy już zdefiniować projektory spektralne. Dla ustalonego zbioru borelowskiego M R niech E(M) = χ M (A). Widać, że E(M) jest projektorem ortogonalnym. Warunki 1) i 2) są łatwe do sprawdzenia. Pokażemy, że również 4) zachodzi. Niech więc M k i niech F k = χ Mk. Wtedy E(M k )x 2 =< E(M k )x, x >= dµ x 0, M k bo µ x = µ x,x jest miarą. Zauważmy teraz, że < E(M)x, y >= µ x,y (dλ), a więc oznaczenie µ x,y nieprzypadkowo zgadza się z (1). Kojarząc to z (7), otrzymujemy A = λe(dλ). Wreszcie z (8) wynika, że supp E = σ(a). Pozostaje dowieść jedyności spektralnego rozkładu jedności. Niech E 1 będzie rozkładem jedności o ograniczonym nośniku, takim że A = λe 1 (dλ). (Zauważmy, że tylko z powodu ograniczoności nośnika możemy funkcję f(λ) = λ uważać za ograniczoną.) Stosując Lemat 4, przez indukcję otrzymujemy < P (A)x, y >= P (λ) < E 1 (dλ)x, y > dla każdego wielomianu P, a więc i dla każdej funkcji ciągłej. To zaś oznacza, że M < E 1 (M)x, y >=< E(M)x, y > dla każdego borelowskiego M, a więc E 1 = E. Wniosek 9. Istnieje wzajemnie jednoznaczna odpowiedniość pomiędzy spektralnymi rozkladami jedności o ograniczonym nośniku w przestrzeni Hilberta H a ograniczonymi operatorami hermitowskimi na tejże przestrzeni. Wniosek 10. Liczba λ 0 leży w spektrum operatora A, wtedy i tylko wtedy gdy dla każdego ε > 0 projektor spektralny E(λ 0 ε, λ 0 + ε) jest niezerowy. Dowód. Wszystko wynika z faktu, że supp E = σ(a). Niech λ 0 / σ(a) i niech ε > 0 będzie takie, że M ε = (λ 0 ε, λ 0 + ε) jest rozłączne z σ(a) =. Wtedy < E(M ε )x, x >= µ x (dλ) = 0, x H, M ε bo supp µ x σ(a). Wobec tego E(M ε ) = 0. 3

4 Przypuśćmy teraz, że E(M ε ) = 0 dla pewnego ε > 0. Wówczas M ε jako zbiór otwarty jest rozłączny z σ(a), więc λ 0 / σ(a). Wniosek 11. Liczba λ 0 leży w spektrum operatora hermitowskiego A, wtedy i tylko wtedy gdy E({λ 0 }) 0. 12 (Kryterium Weyla). Liczba λ 0 leży w spektrum operatora A, wtedy i tylko wtedy gdy istnieje ciąg unormowanych wektorów x n H, taki że (13) lim n λ 0 x n Ax n = 0. Dowód. Jeśli λ 0 nie leży w spektrum A, to dla każdego ciągu (x n ) spełniającego (13) x n = (λ 0 I A) 1 (λ 0 I A)x n C (λ 0 I A)x n 0, co przeczy x n = 1. Niech teraz λ 0 σ(a). Zgodnie z poprzednim wynikiem dla każdego n istnieje wektor x n długości 1, taki że E(M n )x n = x n, gdzie M n = (λ 0 1/n, λ 0 + 1/n). Wtedy λ 0 x n Ax n = (λ 0 λ)e(dλ)x n = (λ 0 λ)e(dλ)x n, M n skąd tak jak chcieliśmy. λ 0 x n Ax n 1 n E(M n) = 1 n, Wniosek 14. Jeśli operator hermitowski A B(H) ma wektor cykliczny x 0 H, to istnieje izometria U : L 2 (σ(a), µ) H, gdzie µ = µ x0, taka że U 1 AUf(λ) = λf(λ), f L 2 (σ(a), µ). Dowód. Definiujemy U na gęstej podprzestrzeni B (σ(a)) wzorem Uf = f(a)x 0. Obraz U jest gęsty. Mamy też < Uf, Ug >=< f(a)x 0, g(a)x 0 >= f(λ)g(λ)dµ(λ) =< f, g >, co pokazuje, że U jest odwzorowaniem unitarnym na H. Ponadto, < U 1 AUf, g >=< AUf, Ug >=< Af(A)x 0, g(a)x 0 >= λf(λ)g(λ)µ(dλ), skąd wynika reszta tezy. Mówimy, że operator symetryczny ma spektrum proste, jeśli jest unitarnie równoważny operatorowi Bf(λ) = λf(λ) na pewnej przestrzeni L 2 (K, µ), gdzie K jest zwartym podzbiorem R, a µ miarą skończoną. Jest oczywiste, że wtedy wektor f(λ) = 1 jest cykliczny. W takim razie ostatni wniosek można też wysłowić tak: 15. Operator hermitowski ma proste spektrum, wtedy i tylko wtedy gdy ma wektor cykliczny.

5 Rozważmy jeszcze przykład. Przykład. Niech H = l 2 (Z) i niech x(n 1) + x(n + 1) Ax(n) =, n Z. 2 Zauważmy, że A jest unitarnie równoważny operatorowi A f(t) = cos t f(t), f L 2 ( 1, 1), a więc σ(a) = [ π, π]. A nie ma wektora cyklicznego. Przypuśćmy bowiem nie wprost, że f jest takim wektorem. Oczywiście f(t) 0 p.w. Niech g(t) = f(t) dla x (0, π] i g(t) = f( t) dla x [ π, 0]. Jeśli P n jest takim ciągiem wielomianów, że ϕ n f g, gdzie ϕ n (t) = P n (cos t), to istnieje podciąg ϕ nk zbieżny p.w. do 1, skąd wynika, że f jest funkcją parzystą i nie może być wektorem cyklicznym. Jeśli ustalimy izomorfizm unitarny L 2 ( π, π) f (f 1, f 2 ) L 2 (0, π) L 2 (0, π) wzorem f 1 (t) = f( t), f 2 (t) = f(t), to otrzymamy unitarnie równoważny operator A (f 1, f 2 ) = (cos t f 1 (t), cos t f 2 (t)), A na każdym ze składników L 2 (0, π) ma proste spektrum. (f 1, f 2 ) L 2 (0, π) L 2 (0, π).