Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik z położeniem rmion prboli Wierzchołek, oś symetrii prboli, zbiór wrtości Przedziły monotoniczności Znk Przesunięcie wykresu f()= 2 wzdłuż osi Postć knoniczn i postć ogóln kwdrtowej Równni kwdrtowe (1) Równni kwdrtowe (2) Postć iloczynow kwdrtowej Nierówności kwdrtowe Funkcj kwdrtow - zstosowni 3 Interpretcj wielkości p i q we wzorze f()=(-p) 2 +q Przesuwnie wykresu f()= 2 wzdłuż osi Rysownie wykresu f()=(-p) 2 +q Odczytywnie z wykresu włsności 4 5 Postć knoniczn trójminu kwdrtowego Wyróżnik trójminu kwdrtowego Współrzędne wierzchołk prboli Postć ogóln kwdrtowej 6 Miejsc zerowe kwdrtowej Rozkłd kwdrtowej n czynniki liniowe stosując wzory skróconego mnożeni lub wyłącznie wspólnego czynnik przed nwis 7 11 15 Liczb rozwiązń równni kwdrtowego w zleżności od wyróżnik Wzory n oblicznie pierwistków równni kwdrtowego Rozwiąznie równni kwdrtowego z zstosowniem wzorów n pierwistki Postć iloczynow kwdrtowej Metody rozkłdu trójminu kwdrtowego n czynniki liniowe Zmin postci iloczynowej n ogólną i knoniczną Odczytywnie wrtości pierwistków n podstwie postci iloczynowej Odczytywnie znku z wykresu Szkicownie prbol w oprciu o współczynnik, wyróżnik i pierwistki ( o ile istnieją ) Odczytywnie przedziłów, w których trójmin przyjmuje wrtości dodtnie, ujemne, niedodtnie, nieujemne Rysownie wykresów w oprciu o współrzędne wierzchołk, punkt przecięci z osią OY, miejsc zerowe ( o ile istnieją) Odczytywnie włsności z wykresu
Powtórzenie widomości o kwdrtowej. Prc klsow 16 17 1 1 Znjdownie njwiększej i njmniejszej wrtości w przedzile domkniętym Zdni prowdzące do równń kwdrtowych Zdni prowdzące do nierówności kwdrtowych II. Plnimetri Moduł - dził - temt Mir kątów w trójkącie Trójkąty przystjące L.p Zkres treści. 1 Mir stopniow kąt Kąty wewnętrzne i zewnętrzne w trójkącie Podził trójkątów ze względu n boki i kąty Sum kątów wewnętrznych w trójkącie Oblicznie kątów wewnętrznych i zewnętrznych w trójkącie 2 Definicj figur przystjących Definicj trójkątów przystjących Cechy przystwni trójkątów Uzsdninie przystwni trójkątów w oprciu o cechy przystwni trójkątów Nierówność trójkąt Trójkąty podobne 3 Definicj figur podobnych Definicj trójkątów podobnych Cechy podobieństw trójkątów Skl podobieństw trójkątów Uzsdninie podobieństw trójkątów w oprciu o cechy podobieństw trójkątów Wielokąty podobne Twierdzenie Tles Trójkąty prostokątne 4 Stosunek obwodów figur podobnych 5 Stosunek pól figur podobnych 6 Krótk informcj o Tlesie z Miletu Twierdzenie Tles Twierdzenie odwrotne do twierdzeni Tles Podził odcink n równe części Konstrukcj odcink o zdnej długości n podstwie twierdzeni Tles 7 Krótk informcj o Pitgorsie z Smos Twierdzenie Pitgors Twierdzenie odwrotne do twierdzeni Pitgors Zstosownie twierdzeni Pitgors i twierdzeni odwrotnego do twierdzeni Pitgors do rozwiązywni zdń, w tym konstrukcyjnych (np. wzór n długość przekątnej kwdrtu, wzór n długość wysokości trójkąt równobocznego)
Funkcje trygonometrycz ne kąt ostrego Trygonometri - zstosowni Rozwiązywnie trójkątów prostokątnych Związki między funkcjmi trygo nometrycznymi Prc klsow z 11 Definicje trygonometrycznych kąt ostrego Wrtości trygonometrycznych kątów 30 o, 45 o, 60 o Znjdownie wrtości trygonometrycznych w trójkącie prostokątnym o dnych długościch boków Odczytywnie z tblic mtemtycz- nych przybliżonych wrtości trygonometrycznych kąt ostrego Znjdownie przybliżonych wrtości trygonometrycznych kąt ostrego przy zstosowniu klkultor Rozwiązywnie zdń prktycznych z zstosowniem trygonometrycznych kąt ostrego Pojęcie Rozwiązywnie trójkątów prostokątnych Mniejsze jednostki miry stopniowej kąt: minut i sekund Pojęcie środkowej trójkąt 15 trygonometrycz Pole trójkąt 16 17 Pole czworokąt 1 1 Długość okręgu i pole koł Cztery podstwowe tożsmości trygonometryczne Tożsmości trygonometryczne dl kątów typu 0 o -α Pole trójkąt o dnej wysokości i podstwie Pole trójkąt równobocznego Pole trójkąt z wykorzystniem miry kąt ostrego Pol wielokątów foremnych Pole kwdrtu Pole trpezu Pole równoległoboku Pole rombu 20 Określenie okręgu (koł) Cięciw, średnic, promień okręgu(koł), wycinek koł Pole koł, pole wycink koł Długość okręu, długość łuku okręgu Wzjemne położenie okręgu i prostej Powtórzenie widomości z plnimetrii Prc klsow 21 22 23 24 III. Wielominy Moduł - dził -temt L.p. Zkres treści Stopień i współczynniki wielominu. 1 2 Definicj jednominu, dwuminu, wielominu. Pojęcie stopni jednominu i stopni wielominu. Pojęcie współczynników wielominu
i wyrzu wolnego. Pojęcie wielominu zerowego. Dodwnie wielominów 3 Dodwnie wielominów. Odejmownie wielominów. Stopień sumy i różnicy wielominów. Mnożenie wielominów 4 Iloczyn wielominu przez dwumin Iloczyn wielominów Stopień iloczynu wielominów Wzory skróconego mnożeni. 5 Wzory skróconego mnożeni: kwdrt sumy i różnicy, różnic kwdrtów, sześcin sumy i różnicy, sum n i różnic sześcinów, wzór 1. Postć iloczynow trójminu kwdrtowego Rozkłd wielominu n czynniki 6 7 Równni wielominowe. Powtórzenie widomości 11 Prc klsow i jej omówienie IV. Funkcje wymierne i wrunki jej istnieni powtórzenie. Wielomin jko iloczyn czynników stopni co njwyżej drugiego Rozkłd wielominu n czynniki metodmi: - wyłącznie wspólnego czynnik przed nwis - rozkłd trójminu kwdrtowego n czynniki, - wzory skróconego mnożeni, - metod grupowni wyrzów. Pierwistek wielominu Rozwiązywnie równń wielominowych z zstosowniem metod: wyłącznie wspólnego czynnik przed nwis rozkłd trójminu kwdrtowego n czynniki, odpowiednie podstwienie (równni dwukwdrtowe) wzory skróconego mnożeni, metod grupowni wyrzów. Pierwistek k-krotny. Moduł - dził -temt L.p. Zkres treści Proporcjonlność odwrotn 1 Pojęcie proporcjonlności odwrotnej. Przykłdy proporcjonlności odwrotnej. Wykres ( ) f = 2 Wykres f ( ) 1 =
Przesunięcie wykresu f ( ) = wzdłuż osi. 3 4 Wyrżeni wymierne 5 6 Osie symetrii hiperboli. Środek symetrii hiperboli. Przedziły monotoniczności. Asymptoty Włsności dl >0. Włsności dl <0. Przypomnienie przesuwni wykresu wzdłuż osi. Przesunięcie wykresu ( ) wzdłuż osi. Włsności ( ) f = po f = przeksztłceniu. Pojęcie wyrżeni wymiernego. Dziedzin wyrżeni wymiernego. Mnożenie i dzielenie wyrżeń Dodwnie i odejmownie wyrżeń 7 Równni wymierne. 11 Wyrżeni wymierne zstosowni. 15 Powtórzenie widomości 16 Prc klsow 17 1 1 V. Funkcje wykłdnicze i logrytmy Moduł - dził - temt Potęg o wykłdniku wymiernym Potęg o wykłdniku rzeczywistym. Funkcje wykłdnicze. L.p. 1 2 Mnożenie i dzielenie wyrżeń Dziedzin iloczynu i ilorzu wyrżeń Dodwnie i odejmownie wyrżeń Dziedzin sumy i różnicy wyrżeń Równni wymierne. Wykorzystnie widomości o homogrficznej, równnich do rozwiązywni zdń tekstowych. Zkres treści Definicj pierwistk n-tego stopni z liczby nieujemnej. Definicj potęgi o wykłdniku wymiernym liczby dodtniej. Prw dziłń n potęgch o wykłdnikch 3 Określenie potęgi o wykłdniku. rzeczywistym liczby dodtniej Prw dziłń n potęgch. 4 5 Definicj wykłdniczej i jej wykres. Włsności wykłdniczej. Przeksztłceni wykresu wykłdniczej. 6 Metody szkicowni wykresów wykłdniczych w różnych przeksztłcenich. Logrytm liczby 7 Definicj logrytmu liczby dodtniej.
dodtniej. Równości: log log b =, = b, gdzie > 0 i 1, b > 0. Definicj logrytmu dziesiętnego Zstosowni logrytmu dziesiętnego Włsności logrytmów. Twierdzeni o logrytmie iloczynu, ilorzu. Twierdzeni o logrytmie potęgi. Zstosowni Zstosowni wykłdniczej i logrytmicznej. logrytmów. Powtórzenie 11 widomości Prc klsow