. Grafika Mathematica jest bardzo zaawansowanym narz dziem do tworzenia D and D grafiki. W pewnym sensie jest to najprostsza a w innym najbardziej skomplikowana cz tego skryptu. Jest ona prosta bo wszystkie instrukcje i cechy mo na znale w Documentation Center. Jednak e, dosy skomplikowanym zadaniem jest znalezienie potrzebnych cech w rod setek podobnych. Poni ej podajemy tyko przy ady najcz ciej u ywanych cech graficznych. Wszystkie poni sze ilustracje zosta y stworzone w Mathematice 7. We wcze niejszych wersji Mathematiki niektóre z nich nie b d dzia a lub b d dzia a inaczej. Wi kszo obrazków t umaczy si sama a z pytaniami o sposób u ywania ró nych funkcji graficznych odsy amy czytelnika do dokumentacji. PlotASinAx E, 8x,, <, PlotRange 8,.<E...8.6..
ParametricPlotD@8Sin@zD Sin@tD, Sin@zD Cos@tD, z<, 8z, - Π, Π<, 8t,, Π<, PlotRange 88, <, 8, <, 8, <<D...... PlotAx -. x +. x - 7, 8x, -, <, PlotRange AllE - - -
Graphics@Circle@8, <, D, PlotLabel "circle"d circle Graphics@Circle@8, <, D, AspectRatio, PlotLabel "ellipse"d ellipse
Graphics@Circle@8, <, D, Axes AutomaticD. -. -. - -. Π Π PlotBSin@xD, 8x,, Π<, Ticks ::,, Π,, Π>, Automatic>F. Π - -. Π Π Π
Plot@Sin@xD, 8x,, Π<, AxesStyle 8RGBColor@,, D, Thickness@.D<D. 6 6 - -. Plot@Sin@xD, 8x,, Π<, Frame TrueD.. - -. PlotBLog@xD + SinBx + Sin@xDF, 8x,, <, GridLines AutomaticF - 6 8
6 data = Table@Sin@xD + Random@Real, 8-.,.<D, 8x,, Π,.<D 8.876,.87,.6,.689, 6, 769,.6989, 6,.689,.77,.89788,.989,.98,.86898,.,.9796,.77,.79,.67,.996,.88,.8887,.87,.7899,.69, 778, 7,.986,.,.69,.8, -.776, -.976, -., -.6786, -.678, -.89867, -.6, -.69666, -.78, -.6686, -.8776, -.8888, -.8969, -.866, -.979, -.987, -.96, -.966, -.997, -.86, -.97, -.998, -.9887, -.78686, -.788, -.7, -.76, -.6668, -.97, -., -.76, - 787< ListPlot@dataD. 6 6 - -. ListLinePlot@dataD. - -.
Plot@8BesselJ@, zd, BesselJ@, zd, BesselJ@, zd<, 8z, -, 6<, PlotStyle 8Hue@D, Hue@.6D, Hue@.7D<D.. - - -. -. PlotD@Sin@x yd, 8x,, Π<, 8y,, Π<, PlotPoints D
PlotD@Sin@x yd, 8x,, Π<, 8y,, Π<, PlotPoints D
9 Show@%, ViewPoint -> 8.,.,.<D z - - - y x PlotDA ã-hx-l -Hy-L, 8x, -, <, 8y, -, <, PlotRange -> All, AxesLabel -> 8"x", "y", "z"<e z - - - x y
Show@%, ViewVertical 8,, <D y - x - - z Plot@Sin@xD, 8x,, Π<, Background GrayLevel@DD. 6 - -. Quit@D PolyhedronData@"Dodecahedron"D ListPlotD@Table@Mod@y, xd, 8x,, <, 8y,, <DD plot = Plot@Sin@xD, 8x, - Pi, Π<, PlotStyle RedD; plot = Plot@Sin@ xd, 8x, - Pi, Π<, PlotStyle GreenD; plot = Graphics@8Yellow, Circle@8, <, D<D;
Show@plot, plot, plot, AspectRatio AutomaticD vertices = 88, - <, 8, <, 8, <, 8-, <, 8, - <<; p = Graphics@8RGBColor@,, D, Polygon@verticesD<D; l = Graphics@8Thickness@.D, RGBColor@,, D, Line@verticesD<D; Show@p, ld p = Plot@Sin@xD, 8x,, Π<D p = Plot@Sin@ xd, 8x,, Π<D; GraphicsGrid@88p, p<<d GraphicsGrid@88p<, 8p<<D RandomReal@8, <, 8, <D Graphics@Line@RandomReal@8, <, 8, <DDD Graphics@ 8Hue@.77D, Rectangle@8, <, 8, <D, Hue@.7D, Rectangle@8, <, 8, <D<D GraphicsD@ 8Cuboid@8,, <D, Cuboid@8,, <D, Cuboid@8,, <D, Cuboid@8,, <D<D GraphicsB:Circle@8, <, D, Circle@8, <, 8, <D, CircleB:, - >,, :, >F>, AspectRatio -> Automatic, Axes -> AutomaticF InscribedCircleData@pA : 8_, _<, pb : 8_, _<, pc : 8_, _<D := ModuleB 8AB, BC, AC, a, b, c, s, pp, pq, AP, BQ, p, q, ps, qs, pqs, incenter, inradius<, AB = pb - pa; BC = pc - pb; AC = pc - pa; a = BC.BC ; b = AC.AC ; c = AB.AB ; AP.AB AP.AC AP = pb + p BC - pa; BQ = pa + q AC - pb; ps = SolveB ==, pf@@, DD; c b BQ.BC BQ.H- ABL qs = SolveB ==, qf@@, DD; pp = pb + p BC.ps; a c pq = pa + q AC.qs; pqs = Solve@pA + p HpP - pal == pb + q HpQ - pbl, 8p, q<d@@dd; incenter = pa + p HpP - pal.pqs; s = Ha + b + cl; inradius =, H shs - al Hs - bl Hs - cll; 8incenter, inradius<f InscribedCircle@pA : 8_, _<, pb : 8_, _<, pc : 8_, _<D := Graphics@ 8Line@8pA, pb, pc, pa<d, Circle@Sequence InscribedCircleData@pA, pb, pcdd<, AspectRatio -> Automatic, PlotRange -> All, Frame -> TrueD InscribedCircle@8.8, 6.8<, 8.,.<, 86.,.<D
Graphics@ 88RGBColor@,, D, Disk@8, <, 8, <D<, 8RGBColor@,, D, Disk@8, <, D<, 8RGBColor@,, D, Disk@8, <,, 8, <D<<, AspectRatio Automatic, Axes AutomaticD Graphics@8Text@"Left", 8-, <, 8-, <D, Text@"Right", 8, <, 8, <D, Text@"Above", 8, <, 8, - <D, Text@"Below", 8, - <, 8, <D, 8PointSize@.7D, RGBColor@,, D, Point@8, <D<<, PlotRange AllD ListPlot@Table@8x, EulerPhi@xD<, 8x, <D, PlotStyle PointSize@.DD Graphics@8Dashing@8,.<D, Circle@8, <, D<, AspectRatio AutomaticD PlayASinAt E, 8t,, <E Animate[Plot[Sin[n x], {x,, Pi}, Axes -> False], {n,,, }] g = ParametricPlotD[ {x, Cos[t] Sin[x], Sin[t] Sin[x]}, {x, -Pi, Pi}, {t,, Pi}, Axes -> False, Boxed -> False] Quit@D Graphics[{Arrow[{{, },{, }}], Hue[], Arrow[{{.7,.},{.,.7}}]}] Plot[Sin[x], {x,, Pi}, Epilog -> {Arrow[{{,.}, {Pi/, }}], Text["Here", {,.}, {, -}]} ] ContourPlot[x^ + y^ ==, {x, -, },{y,-,}] ContourPlot[{(x^ + y^)^ == (x^ - y^), (x^ + y^)^ == x y}, {x,-,},{y,-,} ] RegionPlotA Hx + yl + y, 8x, -, <, 8y, -, < E RegionPlotDB x + y + z í x + y z, 8x, -, <, 8y, -, <, 8z, -, <F VectorPlot@8Sin@xD, Cos@yD<, 8x,, Pi<, 8y,, Pi<D RevolutionPlotD[ Sin[x], {x,, Pi}] RevolutionPlotD[{. Sin[u], u^}, {u,, Pi/}, BoxRatios -> {,, }] RevolutionPlotD[x^, {x,, }, RevolutionAxis -> {,, }] FinancialData@"GE", "Price"D DateListLogPlot@FinancialData@"^DJI", AllD, Joined True, Filling BottomD Plot@Table@BesselJ@n, xd, 8n, <D, 8x,, <, Filling Axis, Evaluated -> TrueD
ContourPlot@Sin@ xd Cos@x + yd, 8x,, <, 8y,, <, ContourLabels Automatic, ColorFunction "Pastel"D ParametricPlotD@ 8Cos@vD +. Sin@ ud +. Sin@ vd, u, Sin@vD +. Cos@ ud +. Sin@ vd<, 8u, - Π, Π<, 8v, - Π, Π<, PlotPoints, PlotStyle 8Orange, Specularity@White, D<, Axes None, Mesh NoneD Graphics@8LightGray, Disk@D, Inset@Plot@Tan@xD, 8x, -, <DD<D Graphics@8Circle@D, Inset@X ^ + Y ^, 8, <D<D solution = NDSolve@8x ''@td + x@td ^ Sin@tD, x@d x '@D <, x, 8t,, <D ParametricPlot@8x@tD, x '@td<. solution, 8t,, <D Block@8f = Cos@x + I yd<, ParametricPlot@Evaluate@8Re@fD, Im@fD<D, 8x, - Pi, Pi<, 8y, -, <DD