O SPIRALI ARCHIMEDESA I JEJ INTERPRETACJI PRZYRODNICZEJ ILUSTRUJĄCEJ BUDOWĘ PAJĘCZYN
|
|
- Ludwik Kania
- 5 lat temu
- Przeglądów:
Transkrypt
1 Polska Problemy Nauk Stosowanych, 016, Tom 4, s Szczecin dr Grzegorz Paweł SKORNY, dr Andrzej Antoni CZAJKOWSKI, mgr Jakub ŚLEDZIOWSKI Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie, Wydział Transportu Samochodowego Higher School of Technology and Economics in Szczecin, Faculty of Motor Transport O SPIRALI ARCHIMEDESA I JEJ INTERPRETACJI PRZYRODNICZEJ ILUSTRUJĄCEJ BUDOWĘ PAJĘCZYN Streszczenie Wstęp i cel: W pracy przedstawiono różne określenia i wybrane własności spirali Archimedesa. Głównym celem pracy jest interpretacja przyrodnicza spirali Archimedesa, a w szczególności jej związek z budową pajęczyn. Materiał i metody: Materiałem teoretycznym są wybrane źródła z literatury. Materiałem przyrodniczym są zdjęcia pajęczyn wykonane w plenerze. W pracy zastosowano metodę analitycznonumeryczną z wykorzystaniem programu Mathematica. Wyniki: Z badań numerycznych wynika fakt, iż można w sposób przybliżony określić przeciętną długość spirali pajęczej oraz pole jakie ona zakreśla. Istnieje związek geometryczny między spiralą Archimedesa a budową pajęczyn. Wniosek: Znając własności spirali Archimedesa możliwe jest analityczne wyznaczenie przybliżonych wartości parametrów pajęczyny takich jak długość łuku, pole powierzchni, promień krzywizny oraz krzywiznę spirali pajęczej z wykorzystaniem programu Mathematica. Słowa kluczowe: Spirala Archimedesa, definicje i własności, interpretacja przyrodnicza, symulacja, Mathematica. (Otrzymano: ; Zrecenzowano: ; Zaakceptowano: ) ABOUT ARCHIMEDEAN SPIRAL AND ITS NATURE INTERPRETATION ILLUSTRATING COBWEBS CONSTRUCTION Abstract Introduction and aim: The paper presents various terms and selected properties of the spiral of Archimedes. The main aim of this paper is interpretation of the natural spiral of Archimedes, and in particular its relationship to the construction of cobwebs. Material and methods: Theoretical material are selected from literature sources. The natural material consists from photos, which were taken outdoors. The paper uses numerical and analytical method using Mathematica program. Results: The research shows that it is possible to approximately determine average length of spiral spider and a field which its outlines. There is some geometric relationship between spiral of Archimedes and the construction of cobwebs. Conclusion: Knowing the properties of Archimedean spiral is possible analytical determination of approximate values cobwebs such as arc length, surface area, radius of curvature and the curvature of the spiral spider using Mathematica. Keywords: Spiral of Archimedes, definitions and properties, natural interpretation, simulation, calculations, Mathematica. (Received: ; Revised: ; Accepted: ) G.P. Skorny, A.A. Czajkowski, J. Śledziowski 016 Matematyka w przyrodzie / Mathematics in nature
2 1. Określenia spirali Archimedesa 1.1. Współrzędne biegunowe G.P. Skorny, A.A. Czajkowski, J. Śledziowski Spirala Archimedesa to krzywa w R o równaniu we współrzędnych biegunowych o następującej postaci [1]-[3]: ρ( ϕ ) = a ϕ, (1) gdzie ρ to promień [m], φ bezwymiarowy kąt między półosią układu współrzędnych biegunowych a promieniem wodzącym punktu spirali, natomiast a parametr [m] określa wzór: gdzie ω to bezwymiarowa prędkość kątowa dla promienia ρ. ρ a =, () ω Wykres krzywej, określonej według wzoru (1), składa się z dwóch gałęzi, a m mianowicie linii odpowiadającej dodatnim wielkościom argumentu φ (Rys. 1) [1]-[3]. Program 1. Wykresy spiral Archimedesa we współrzędnych biegunowych w D PolarPlot[{ϕ,-ϕ},{ϕ,0,6Pi}, PolarGridLines Automatic, PolarAxes Automatic, PlotStyle {Black,Thickness[0.008]}, PolarTicks {"Degrees",Automatic}] Funkcja i zakres Siatka Osie współrzędnych Grubość krzywej Etykiety stopni (Rys. 1) 1.. Współrzędne parametryczne Spirala Archimedesa we współrzędnych parametrycznych ma następującą postać [1], [3]: x( t) = ρ(t) cos(t), (3) y( t) = ρ(t) sin(t), (4) gdzie t to bezwymiarowy kąt, a promień ρ określony wzorem () dla zmiennej t. Jeśli we wzorach (3) i (4) uwzględnimy zależność (1) dla zmiennej t, to wtedy układ współrzędnych parametrycznych przyjmuje następującą jeszcze inną znaną postać: gdzie t 0,+ ) lub t (,0. x( t) = at cos(t), (5) y( t) = at sin(t). (6) Wykres krzywej, określonej według wzorów (3) i (4) pokazano na rysunku []. Program. Wykresy spiral Archimedesa we współrzędnych parametrycznych ParametricPlot[{{t Cos[t],t Sin[t]}, {-t Cos[t],-t Sin[t]}},{t,0,6Pi}, Frame True, GridLines Automatic, PlotStyle {{Black,Thickness[0.004]}, {Black,Dashed,Thickness[0.006]}}] Funkcje i zakres Funkcje i zakres Ramka Siatka Kolor, grubość i styl obu krzywych (Rys. ) 0
3 O spirali Archimedesa i jej interpretacji przyrodniczej ilustrującej budowę pajęczyn Rys. 1. Spirala Archimedesa w postaci biegunowej dla kąta φ>0 (Mathematica ) Fig. 1. Archimedean spiral in polar presentation for angle φ>0 (Mathematica ) Rys.. Spirala Archimedesa w postaci parametrycznej dla kąta t>0 (Mathematica ) Fig. Archimedean spiral in parametric presentation for angle t>0 (Mathematica ) 1.3. Współrzędne kartezjańskie w przestrzeni D Zauważmy, że prawdziwe są następujące zależności (Rys. 3) [1], [3]: skąd otrzymujemy ρ = x + y, (7) ρ = x + y, (8) gdzie ρ - promień, x oraz y współrzędne punktu na krzywej. Ponadto mamy zależność: skąd dostajemy y tg ( ϕ ) =, (9) x y ϕ = arctg. (10) x Z równania (1) można otrzymać równanie ogólne spirali Archimedesa po podstawieniu zależności (8) i (10). Wtedy otrzymujemy równanie ogólne w następującej postaci [1], [3]: x y + y = a arctg. (11) x Program 3. Wykres spirali Archimedesa we współrzędnych biegunowych w D PolarPlot[ϕ,{ϕ,0,6Pi}, Ticks None,PlotStyle Red] Funkcja, zakres zmiennej ϕ Bez tiksów, kolor krzywej (Rys. 3) Program 4. Wykres spirali Archimedesa we współrzędnych parametrycznych w D (Rys 3) [1] ParametricPlot[t{Cos[t],Sin[t]},{t,0,6Pi}, Ticks None,PlotStyle Red,ImageSize 150] Funkcja, zakres zmiennej t bez tiksów, kolor, rozmiar (Rys. 3) 1
4 G.P. Skorny, A.A. Czajkowski, J. Śledziowski 1.4. Współrzędne kartezjańskie w przestrzeni 3D Biorąc pod uwagą zależność ogólną (11) możemy uzyskać przestrzenny obraz spirali Archimedesa (Rys. 4) [1], []. Program 5. Wykres spirali Archimedesa we współrzędnych przestrzennych 3D Plot3D[{ArcTan[y/x],x^+y^}, {x,0.0001,1.5},{y,0.0001,1.5}, Mesh None] Funkcje Zakres zmiennych x oraz y Wygładzenie powierzchni (Rys. 4) A ϕ O B ϕ 1 Rys. 3. Spirala Archimedesa w postaci ogólnej punkty A, B oraz kąty φ 1 i φ (Mathematica 7) Fig. 3. Archimedean spiral in general form points A, B and angles φ 1 i φ (Mathematica 7) Rys. 4. Spirala Archimedesa w postaci 3D Widok z góry (Mathematica 7) Fig. 4. Archimedean spiral in 3D form Top view (Mathematica 7). Własności spirali Archimedesa Każda półprosta przecina wykres spirali Archimedesa w punktach A 1, A,, A k spełniających warunek [1]: OA1 = A1A = AA3 =... = AiAi+ 1 =... = π = const. (1) Długość łuku OA wyraża się następująco [1], [3]: a L = ϕ ϕ ln( ϕ + ϕ + 1). (13) Pole wycinka AB spirali wyraża się wzorem [1], [3]: Promień krzywizny spirali określony jest wzorem [3]: P AB 1 = a ( ϕ ϕ1 ). (14) 6 ( ϕ + 1) R = a. ϕ + Znając promień krzywizny można określić również krzywiznę spirali [3]: (15) 1 κ =. (16) R
5 O spirali Archimedesa i jej interpretacji przyrodniczej ilustrującej budowę pajęczyn 3. Interpretacja przyrodnicza 3.1. Sieć pajęcza Nić pajęcza to wielofunkcyjna, długa i cienka nić, powstająca w efekcie zakrzepnięcia na powietrzu wydzieliny gruczołów przędnych niektórych stawonogów zbudowanej z włókien fibroinowych sklejonych serycyną. Nić pajęcza jest elastyczna, nie rozpuszcza się w wodzie, jest kilkadziesiąt razy cieńsza od ludzkiego włosa i ma bardzo dobre własności mechaniczne. Może zwiększyć swoją długość o 40% bez rozerwania się. Charakteryzuje się dużą wytrzymałością mechaniczną, najwyższą wśród naturalnych włókien. Nici przędne większości pająków cechuje wytrzymałość dwukrotnie wyższa niż wytrzymałość stali o tym samym przekroju. Naukowcy pokładają nadzieje na opracowanie wydajnych metod pozyskiwania nici przędnych (dorównujących parametrami niciom pajęczym) w manipulacjach genetycznych dokonanych na jedwabnikach (Rys. 5-10) [5]. Rys. 5. Pajęczyna, widok ogólny Fig. 5. Cobweb, general view Rys. 6. Pajęczyna, powiększenie Fig. 6. Cobweb, enlargement Rys. 7. Pajęczyna, widok z boku Fig. 7. Cobweb, lateral view Rys. 8. Pajęczyna, odstępy Fig. 8. Cobweb, intervals Rys. 9. Pajęczyna, widok na siatkę Fig. 9. Cobweb, net view Rys. 10. Pajęczyna, widok na odstępy Fig. 10. Cobweb, interval view Photo: G.P. Skorny, J. Śledziowski 3
6 G.P. Skorny, A.A. Czajkowski, J. Śledziowski 3.. Analiza numeryczna parametrów spirali pajęczej Przyjęte dane do analizy numerycznej parametry spirali pajęczej pokazano w tablicy 1. Tablica 1. Wybrane parametry spirali pajęczej / Selected parameters of cobwebs spiral Symbol: Objaśnienie: Wartość: Wymiar: a odstęp między ramionami spirali pajęczej 10 0,01 [mm] [m] n przybliżona liczba ramion spirali pajęczej 5 - ϕ kąt spirali pajęczej 0,9 πn [rad] ϕ 1, ϕ kąt początkowy i końcowy spirali pajęczej 0; 0,9 180 n 0; 0,9 π n [ ]; [rad] 0, =1305 0,9 π 5=,7765 Źródło: Opracowanie Autorów / Program 6. Obliczenie numeryczne parametrów pajęczyny (spierali Archimedesa) a:=0.01 n:=5 ϕ:=0.9*pi*n ϕ 1 :=0.001 ϕ :=0.9*Pi*n L=0.5*a*(f*Sqrt[f^+1]+Log[f+Sqrt[f^+1]]) P=a^*(f^3-f1^3)/6 R=a*(f^3+1)^1.5/(f^+) k=1/r Parametry pajęczyny (Tab. 1) Długość łuku pajęczyny Pole powierzchni pajęczyny Promień krzywizny pajęczyny Krzywizna pajęczyny Długość łuku L [m] spirali nici pajęczej, obliczona wg wzoru (13) jest równa: 0,01 L =,7765, ln,7765,7765 1, (17) Pole powierzchni P [m ] spirali nici pajęczej, obliczone wg wzoru (14) jest równe: 0,01 P = (,7765 0,001 ) 0, (18) 6 Promień krzywizny R [m] spirali nici pajęczej, obliczony wg wzoru (15) ma postać: (, ) R = 0,01 4,6663. (19), Krzywizna κ [m -1 ] spirali nici pajęczej, obliczona wg wzoru (16) ma postać: 4. Wniosek, κ = 0, (0) 0,01 (, ) Znając własności spirali Archimedesa możliwe jest analityczne wyznaczenie przybliżonych wartości parametrów spirali pajęczej takich jak długość łuku, pole powierzchni, promień krzywizny oraz krzywiznę stosując program numeryczny Mathematica. Literatura [1] Dziubiński I., Świątkowski T. (pod red.): Poradnik matematyczny. Warszawa: PWN, [] Lockwood E.H.: A Book of Curves. Cambridge University Press, Cambridge, England [3] Niczyporowicz E.: Krzywe płaskie. Wybrane zagadnienia z geometrii analitycznej i różniczkowej. Warszawa: PWN, [4] Wolfram S.: The Mathematica Book, 4 th edition. Wolfram Media and Cambridge University Press, [5] (dostęp ). 4
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
MODELOWANIE ANALITYCZNO-NUMERYCZNE PARAMETRÓW PRACY BELKI WSPORNIKOWEJ JEDNOSTRONNIE UTWIERDZONEJ Z ZASTOSOWANIEM PROGRAMU MATHEMATICA
Polska Problemy Nauk Stosowanych, 15, Tom, s. 4 48 Szczecin dr inż. Barbara MAZUR-CHRZANOWSKA a, Rafał CHRZANOWSKI b a Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie, Edukacja Techniczno-Informatyczna
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO
Paweł PŁUCIENNIK, Andrzej MACIEJCZYK TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO Streszczenie W artykule przedstawiono
Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN
Inżynieria Rolnicza 4(10)/008 ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN Yuri Chigarev, Rafał Nowowiejski, Jan B. Dawidowski Instytut
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert, Z. Skoczylas, Analiza Matematyczna 1. Przykłady i zadania, GiS 2008) 4 Pochodne
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Układ RLC z diodą. Zadanie: Nazwisko i imię: Nr. albumu: Grzegorz Graczyk. Nazwisko i imię: Nr. albumu:
Politechnika Łódzka TIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Zadanie: Układ z diodą Termin: 5 I 2010 Nr. albumu: 150875 Nazwisko i imię: Grzegorz Graczyk Nr. albumu: 151021
ver wektory
ver-12.10.11 wektory wektory (w przestrzeni trójwymiarowej) wektor: długość kierunek zwrot długość: a= a dodawanie: a b= c b a b a mnożenie mnożenie przez skalar: α a= b a α a wersor: e =1 a=a e e x, e
2 cos α 4. 2 h) g) tgx. i) ctgx
ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0
Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia
Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji
Teoretyczny model panewki poprzecznego łożyska ślizgowego. Wpływ wartości parametru zużycia na nośność łożyska
PŁUCIENNIK Paweł 1 MACIEJCZYK Andrzej 2 Teoretyczny model panewki poprzecznego łożyska ślizgowego. Wpływ wartości parametru zużycia na nośność łożyska WSTĘP Łożyska ślizgowe znajdują szerokie zastosowanie
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA CIEPŁA
39/19 ARCHIWUM ODLEWNICTWA Rok 006, Rocznik 6, Nr 19 Archives of Foundry Year 006, Volume 6, Book 19 PAN - Katowice PL ISSN 164-5308 WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.
37/44 Solidification of Metals and Alloys, Year 000, Volume, Book No. 44 Krzepnięcie Metali i Stopów, Rok 000, Rocznik, Nr 44 PAN Katowice PL ISSN 008-9386 OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO NA ROZCIĄGANIE
15/12 ARCHIWUM ODLEWNICTWA Rok 2004, Rocznik 4, Nr 12 Archives of Foundry Year 2004, Volume 4, Book 12 PAN Katowice PL ISSN 1642-5308 WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO
Rachunek ró»niczkowy funkcji jednej zmiennej
Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =
Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6
Informatyka I Lab 6, r.a. / prow. Sławomir Czarnecki Zadania na laboratorium nr. 6 Po utworzeniu nowego projektu, dołącz bibliotekę bibs.h.. Największy wspólny dzielnik liczb naturalnych a, b oznaczamy
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
DOBÓR PARAMETRÓW I SYMULACJA EFEKTÓW NAGNIATANIA IMPULSOWEGO
Mgr inż. Bartosz KRUCZEK Mgr Mateusz DRABCZYK Uniwersytet Rzeszowski Wydział Matematyczno-Przyrodniczy Katedra Mechaniki i Budowy Maszyn DOI: 10.17814/mechanik.2015.7.258 DOBÓR PARAMETRÓW I SYMULACJA EFEKTÓW
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Newton vs. Lagrange - kto lepszy?
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Numeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa
Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Funkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND
28/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Analiza naprężeń w przekrojach poprzecznych segmentowych kolan stopowych rurociągów stosowanych w technologiach górniczych
Analiza naprężeń w przekrojach poprzecznych segmentowych kolan stopowych rurociągów stosowanych w technologiach górniczych Stanisław Wolny, Filip Matachowski 1. Wprowadzenie W procesie projektowania kolan
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Optymalizacja konstrukcji wymiennika ciepła
BIULETYN WAT VOL. LVI, NUMER SPECJALNY, 2007 Optymalizacja konstrukcji wymiennika ciepła AGNIESZKA CHUDZIK Politechnika Łódzka, Katedra Dynamiki Maszyn, 90-524 Łódź, ul. Stefanowskiego 1/15 Streszczenie.
Funkcje wielu zmiennych
Funkcje wielu zmiennych oraz ich wykresy Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 WSTĘP Funkcje wielu zmiennych Dotychczas zajmowaliśmy się funkcjami rzeczywistymi: argumentem była jedna
R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 89195 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Punkty A = ( 6
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
Funkcje hiperboliczne
Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi
Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza
Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle
Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle na podstawie materiałów wolfram.com Równania różniczkowe: Równanie
Geometria Struny Kosmicznej
Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp
INSTRUKCJA DO ĆWICZENIA NR 2
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Tadeusz MARKOWSKI 1, Michał BATSCH 2 ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Metoda elementów brzegowych
Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja
Etap 1. Rysunek: Układy odniesienia
Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest