Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]"

Transkrypt

1 OBLICZENIA NUMERYCZNE, Karolina Mikulska-Ruminska Kurs komputerowy S - Mathematica - cz. Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]? *Sum* System` DivisorSum NSum NSumTerms ParallelSum RootSum SumConvergence Sum UniformSumDistribution NSum@1 x ^, x, 1, 0<D 1.00 NSum@1 x ^, x, 1, Infinity<D 1.9 Sum@1 x ^, x, 1, Infinity<D Π Pi ^ Options@NSumD AccuracyGoal, Compiled Automatic, EvaluationMonitor None, Method Automatic, NSumTerms 1, PrecisionGoal Automatic, VerifyConvergence True, WorkingPrecision MachinePrecision< NSum@1 x ^, x, 1, Infinity<, WorkingPrecision 0D 1.90

2 KursS_cz.nb x ^, x, 1, <, WorkingPrecision 0, EvaluationMonitor :> ", x, "\t", x ^, DDD x x x x x NProduct@x ^ Hx + L, x, 1, <D 19.1 Product@x ^ Hx + L, x, 1, <D N@%D H* otrzymamy numeryczna postac wyrazenia *L 19.1 Rozwiazywanie rownan NSolve[rown, zm] rown x ^ + x x + x 0 NSolve@rown, xd x -.0<, x 0.0<< Solve@rown, xd 99x - -, 9x - + Clear@a, b, cd

3 KursS_cz.nb x ^ + b x + c 0, xd ::x b - 1. b -. a c a >, :x b -. a c b + a FindRoot[wielomian, zm] w x^ - x^ - x^ + x + FindRoot@w, x, 1<D + x - x - x + x x 1.< FindRoot@w, x, - 1<D x - 1.< Plot@w, x, -, <D >>

4 KursS_cz.nb Interpolacja, ekstrapolacja, aproksymacja Interpolation[dane], gdzie dane {k1,k,k} lub dane{{x1,y1}, {x,y}, {x,y},.., {xn, yn}} lub dane {{{x1,k1,...}, y1}, {{x,k,..},y},...} Interpolation[dane, wart] f Interpolation@1,,,,,,,, <D InterpolatingFunction@1, 9<<, <>D f@.d.9 Plot@f@xD, x, 1, 9<D

5 KursS_cz.nb <DD k 1, 1<,, <,, <,, <,, <,, << 1, 1<,, <,, <,, <,, <,, << f1 Interpolation@kD InterpolatingFunction@1, <<, <>D Show@Plot@f1@xD, x, 1, <D, ListPlot@kDD Options@InterpolationD, Method Automatic, PeriodicInterpolation False< o 1,,,,,,,, < 1,,,,,,,, <

6 KursS_cz.nb o0 o1 o o o o o 0D; 1D; D; D; D; D; D; GraphicsGrid@Plot@o0@xD, x, 1, <D, Plot@o1@xD, x, 1, <D, Plot@o@xD, x, 1, <D, Plot@o@xD, x, 1, <D, Plot@o@xD, x, 1, <D, Plot@o@xD, x, 1, <D, Plot@o@xD, x, 1, <D<<D Fit[dane, funkcja, zm] o 1,,,,,,,, < n1 n n n Fit@o, Fit@o, Fit@o, Fit@o, 1, 1, 1, 1, x<, xd x, x ^, x ^ <, xd x, x ^, x ^, x ^, x ^ <, xd x, x ^, x ^, x ^, x ^, x ^, x ^ <, xd x x x x x x -.91 x x x x x + 9. x. x +. x x x

7 KursS_cz.nb x, 0, 9<, PlotRange -> 0, 9<, -, 1<<D, x, 0, 9<, PlotRange -> 0, 9<, -, 1<<D, x, 0, 9<, PlotRange -> 0, 9<, -, 1<<D, x, 0, 9<, PlotRange -> 0, 9<, -, 1<<D, FindFit[dane, funkcja, param, zm] FindFit[dane, {funkcja, warunki}, param, zm] d@x1_, x_, x_d : x1 H1 - E ^ H- x Hx - xlll ^ dd d@1, 0., D I1 - ã-0. H-+xL M

8 KursS_cz.nb x, 0, <D wartosci dd<, x, 0, <D 0,.99<, 1, 0.09<,, 0.<,, 0.11<,, 0.99<,, 0.0<,, 0.<,, 0.<,, <, 9, 0.901<,, 0.90<< fdd 1, x, x ^, x ^, x ^, x ^ <, xd Show@Plot@fdd, x, 0, <D, ListPlot@wartosciDD x x - 0. x x x

9 KursS_cz.nb b, cd ffdd a H1 - E ^ H- b Hx - clll ^, a, b, c<, xd Show@Plot@d@a, b, cd. ffdd, x, 0, <D, ListPlot@wartosciDD a 1., b 0., c.< Maksimum i minimum funkcji FindMinimum[funkcja, {zm, wartosc}], NMinimize[funkcja, zm], FindMaximum[funkcja, {zm, wartosc}], NMaximize[funkcja, zm]. g x^ - x^ - x^ + x - 1 Plot@g, x, -,.<D x - x - x + x FindMinimum@g, x, 0<D - 1.1, x << 9

10 KursS_cz.nb x, 1<D -.9, x.<< xd -.9, x.<< x, - 1<D FindMaximum::cvmit : Failed to converge to the requested accuracy or precision within 0 iterations , 9x -.1 NMaximize@g, xd NMaximize::cvdiv : Failed to converge to a solution. The function may be unbounded , 9x -.1 i 1; FindMinimum@g, x, 1<, EvaluationMonitor :> HPrint@"i", i, " i1 x1. i x1. i x. i x1.1 i x. i x.9 i x.01 i x. i9 x.1 i ", "x", xd; i ++LD x. -.9, x.<< Calkowanie i rownania rozniczkowe W wyniku obliczen symbolicznych jako rozwiazanie otrzymujemy funkcje w postaci symbolicznej, a wyniku obliczen numerycznych otrzymujemy przyblizone wartoœci funkcji dla pewnych wybranych punktow z jej dziedziny. / Calkowanie

11 funkcje w postaci symbolicznej, a wyniku obliczen numerycznych KursS_cz.nb otrzymujemy przyblizone wartoœci funkcji dla pewnych wybranych punktow z jej dziedziny. / Calkowanie NIntegrate[funkcja, {zmiena, w_pocz, w_konc}] Options@NIntegrateD AccuracyGoal, Compiled Automatic, EvaluationMonitor None, Exclusions None, MaxPoints Automatic, MaxRecursion Automatic, Method Automatic, MinRecursion 0, PrecisionGoal Automatic, WorkingPrecision MachinePrecision< NIntegrate@Cos@xD ^, x, 0, 1<D 0. Rownania rozniczkowe NDSolve[{rownanie, warunki}, funkcja, {zm, w_pocz, w_konc}] DSolve@y '@xd Cos@xD, y@xd, xd y@xd C@1D + Sin@xD<<? *DSolve* System` DSolve NDSolve NDSolveValue ParametricNDSolve ds DSolve@y '@xd Cos@xD, y@0d 1<, y@xd, xd fds y@xd. ds@@1dd y@xd 1 + Sin@xD<< 1 + Sin@xD Table@fds, x, 0, <D N 1., 1.1, 1.909, 1.111, 0.19, 0.0, 0.0, 1.99, 1.99, 1.11, 0.99< ParametricNDSolveValue 11

12 1 KursS_cz.nb x, 0, <D nds 1<, x, 0, <D x, 0, <D 1., 1.1, , 1.111, 0.19, 0.0, 0.0, 1.9, 1.99, 1.11, 0.99<

Kurs Komputerowy S System Symboliczny Mathematica

Kurs Komputerowy S System Symboliczny Mathematica Kurs Komputerowy S System Symboliczny Mathematica Obliczenia numeryczne Dokladnosc i precyzja Precision[wartosc] SetPrecision[wartosc, precyzja] Accuracy[wartosc] SetAccuracy[wartosc, dokladnosc] MachinePrecision

Bardziej szczegółowo

Kurs komputerowy S - Mathematica - cz. 2

Kurs komputerowy S - Mathematica - cz. 2 OBLICZENIA SYMBOLICZNE, Karolina MikulskaRuminska Kurs komputerowy S Mathematica cz. zmienna = wartosc Set[zmienna,wartosc] x = 7 7 x = x ^ x = 5 5 x Inaczej.. y = y ^ y y = 5 y 5 5 y = 0 y 0 000 KursS_cz.nb

Bardziej szczegółowo

Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ;

Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ; Zadanie1 (* parametryzacja okręgu r'= x',y',0 *) Z ogólnego twierdzenia o rozwiązaniach równania Laplace a wynika, że potencjał elektryczny nie może mieć w tym punkcie ekstremum lokalnego. Warto się jednak

Bardziej szczegółowo

Wprowadzanie wyrazen w Mathematice

Wprowadzanie wyrazen w Mathematice 1 z 52 2006-11-12 14:07 Wprowadzanie wyrazen w Mathematice Greckie litery Greckie litery jako nazwy zmiennych In[1]:= Expand[(α + β)^3] Out[1]= In[2]:= Out[2]= Expand[(\[Alpha] + \[Beta])^3] In[3]:= Out[3]=

Bardziej szczegółowo

Sin[Pi / 4] Log[2, 1024] Prime[10]

Sin[Pi / 4] Log[2, 1024] Prime[10] In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1 ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Wykład 6. Prawo Hooke a. Robert Hooke

Wykład 6. Prawo Hooke a. Robert Hooke Wykład 6 Równania różniczkowe, funkcje DSolve oraz NDSolve. Wykres fazowy. Prawo Hooke a, drgania sprężyn. Ruch z oporem powietrza. In[1]:= ClearAll["Global`*"] wyczyść wszystko Prawo Hooke a Robert Hooke

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses

Bardziej szczegółowo

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6

Bardziej szczegółowo

Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów

Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów Mathematica (1) Organizacja Mathematica Notebooks Dokument Mathematica zorganizowany jest w tzw. komórki. KaŜda komórka zawiera materiał określonego rodzaju: tekst, grafikę, dane wejściowe, dane wyjściowe

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

= 1, = = + 1D, + 2D<,

= 1, = = + 1D, + 2D<, 'Przypadkowe bladzenie' jako przyklad prostego problemu, ktory moze byc pierwszym zadaniem, dla studiujacych 'Mathematica', zwiazanychm z rozwiazaniem 'rzeczywistego' problemu. Rozwazmy ruch jednowymiarowy

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny Ćwiczenia nr 0 Wielki rozkład kanoniczny Jest to rozkład prawdopodobieństwa dla układu o zmiennej liczbie cząstek N. Liczbę cząstek możemy potraktować jako dodatkową liczbą kwantową układu. ψ jest to stan

Bardziej szczegółowo

Interpolacja funkcji

Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

DOPASOWYWANIE KRZYWYCH

DOPASOWYWANIE KRZYWYCH DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.

Bardziej szczegółowo

Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku

Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Cel: Dla zadanej tolerancji e wybrać minimalną liczbę węzłów, wystarczającą do utrzymania globalnego błedu w ramach tolerancji. Błąd globalny trudny

Bardziej szczegółowo

Funkcje i Procedury. Wyrazenien

Funkcje i Procedury. Wyrazenien Funkcje i Procedury. Określanie Funkcji. Rozwiązanie skomplikowanych zagadnień czasami jest niemożliwe bez zastosowania własnej funkcji i procedur. Chcemy stworzyć dobre aplikacje? Trzeba umieć stworzyć

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

wiczenia (z przyk adami i cz ciowymi rozwi zaniami)

wiczenia (z przyk adami i cz ciowymi rozwi zaniami) wiczenia (z przyk adami i cz ciowymi rozwi zaniami) 1. Narysuj wykresy funkcji z x 2 y 2, z 2 x 2 y 9 w R 3. Narysuj linie x 1 2 t, y 1 2 t, z 2 t. Poka wszystkie wykresy na jednym obrazku. Rozwi zanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba

Bardziej szczegółowo

Zestaw 5. Rozdział 1: Równania algebraiczne, układy równań

Zestaw 5. Rozdział 1: Równania algebraiczne, układy równań Zestaw 5. Rozdział 1: Równania algebraiczne, układy równań Solve - polecenie służące do rozwiązywania równań i układów równań, w tym z parametrem. Wynik zwracany przez polecenie Solve jest listą podstawień:

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą

Bardziej szczegółowo

Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć

Bardziej szczegółowo

Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą

Bardziej szczegółowo

Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć

Bardziej szczegółowo

Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę

Bardziej szczegółowo

Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę

Bardziej szczegółowo

Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć

Bardziej szczegółowo

ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć

Bardziej szczegółowo

Fizyka na komputerze

Fizyka na komputerze Fizyka na komputerze O zastosowaniu systemów algebry symbolicznej Andrzej Odrzywolek Instytut Fizyki UJ, Zakład Teorii Względności i Astrofizyki 13.05.2008, wtorek, 16:00 Dane kontaktowe dr Andrzej Odrzywołek

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

Plotki. Wstęp. Wybrane wbudowane funkcje graficzne:

Plotki. Wstęp. Wybrane wbudowane funkcje graficzne: Plotki Wstęp Wybrane wbudowane funkcje graficzne: funkcja Plot@y, 8x, x min, x max

Bardziej szczegółowo

Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999

Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999 Imie Nazwisko Zestaw 121 Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999 Zaznacz wlasciwa odpowiedz przez otoczenie kolkiem litery a, b lub c. Tylko jedna z podanych odpowiedzi jest

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100

7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100 ZADANIE 1 (1 PKT) Dane sa zbiory A = ( 6 7, 6) i B = N liczb naturalnych dodatnich. Wówczas iloczyn zbiorów A B jest równy A) {1, 2,, 4, 5} B) (, 5 C) {1, 2,, 4, 5, 6} D) (, 6) ZADANIE 2 (1 PKT) Jeśli

Bardziej szczegółowo

GENERACJA PRZEBIEGU SINUSOIDALNEGO.

GENERACJA PRZEBIEGU SINUSOIDALNEGO. GENERACJA PRZEBIEGU SINUSOIDALNEGO. Podstawą generacji sygnału sinusoidalnego jest równanie różnicowe wyprowadzone w sposób następujący. Transmitancja układu generującego jest równa: Na wyjściu spodziewany

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

APROKSYMACJA. Rys. 1. Funkcja aproksymująca zbiór punktów pomiarowych (1) (2) (3) (4) (5) (6) (7) ... Zmienna y

APROKSYMACJA. Rys. 1. Funkcja aproksymująca zbiór punktów pomiarowych (1) (2) (3) (4) (5) (6) (7) ... Zmienna y 40 APROKSYMACJA Zmienna y 36 33 30 27 24 21 18 15 12 9 6 3 0 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 Zmienna x Rys. 1. Funkcja aproksymująca zbiór punktów pomiarowych (1) (2) (3) (4) (5) (6) (7)...

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Mathematica jest bardzo zaawansowanym narz dziem do tworzenia 2D and 3D grafiki. W pewnym

Mathematica jest bardzo zaawansowanym narz dziem do tworzenia 2D and 3D grafiki. W pewnym . Grafika Mathematica jest bardzo zaawansowanym narz dziem do tworzenia D and D grafiki. W pewnym sensie jest to najprostsza a w innym najbardziej skomplikowana cz tego skryptu. Jest ona prosta bo wszystkie

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 24 MARCA 202 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 3 3 3 jest równa A)

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

16 Jednowymiarowy model Isinga

16 Jednowymiarowy model Isinga 16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin

Bardziej szczegółowo

Mathematica od zera. Paulina Suchanek, IFT Wroclaw. Factor x 2 2 x 1. Series Log 1 x, x, 0, 5. 1. Wprowadzenie. Start. Struktura notatnika

Mathematica od zera. Paulina Suchanek, IFT Wroclaw. Factor x 2 2 x 1. Series Log 1 x, x, 0, 5. 1. Wprowadzenie. Start. Struktura notatnika Mathematica od zera Paulina Suchanek, IFT Wroclaw 1. Wprowadzenie Start Struktura notatnika Notatnik edytujemy uzywajac opcji z zakladki Format. Strukture rozdzialow wprowadzamy wybierajac opcje z okienka

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór

Bardziej szczegółowo

Elementy metod numerycznych - zajęcia 11

Elementy metod numerycznych - zajęcia 11 Elementy metod numerycznych - zajęcia 11 Mathematica - Wolfram Alpha 1 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie zwięzłe odpowiedzi na pytania oznaczone symbolem ( x, p) i numerkiem (x),

Bardziej szczegółowo

Interpolacja i modelowanie krzywych 2D i 3D

Interpolacja i modelowanie krzywych 2D i 3D Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych

Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 14czerwca2013r. STEPHEN

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223 Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny

Bardziej szczegółowo

Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab

Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej

Bardziej szczegółowo

Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania. Przykładowe zadania optymalizacji nieliniowej bez ograniczeń

Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania. Przykładowe zadania optymalizacji nieliniowej bez ograniczeń Wydział Elektroniki Kier: Automatyka i Robotyka Studia magisterskie II stopnia Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania Przykładowe zadania optymalizacji nieliniowej

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk

Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne

Bardziej szczegółowo

NR SCH. TTYŁ SCHEMAT MODYFIKACJA MODYFIKACJA NR SCH. TTYŁ SCHEMAT 1 2 3 5 8 1 2 3 5 8 ł ł ł ł D D DYF N v N YĄ N N Y Y Y N D F F F D N Y Y Y Y F Y Y Y Y Y Y ᆇ嚧 Y Y DD Y Y N Y Y N N YY ~ ~ Ś Ś Y D ~ ~ YY

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Specjalnościowy Obowiązkowy Polski Semestr szósty

Specjalnościowy Obowiązkowy Polski Semestr szósty KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical

Bardziej szczegółowo