wiczenia (z przyk adami i cz ciowymi rozwi zaniami)
|
|
- Bartłomiej Szewczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 wiczenia (z przyk adami i cz ciowymi rozwi zaniami) 1. Narysuj wykresy funkcji z x 2 y 2, z 2 x 2 y 9 w R 3. Narysuj linie x 1 2 t, y 1 2 t, z 2 t. Poka wszystkie wykresy na jednym obrazku. Rozwi zanie Plot3Dx 2 y 2, 2 x 2 y 9, x, 1, 1, y, 1, ParametricPlot3D1 2 t, 1 2 t, 2 t, t, 1,
2 2 Zadania1.nb Show, Sprawd nast puj ce twierdzenie: niech det A b dzie wyznacznikiem nn macierzy A (n ustalone). Oznaczmy przez det Aj, k wyznacznik macierzy otrzymanej przez usuni cie j-tego szeregu i k- tej kolumny z macierzy A. Podobnie, mo emy usun dalsze szeregi i kolumny. Sprawd identyczno det A det Ai, j, k, l det. Zobacz poni szy przyk ad dla n 5, det Ai, j det Ai, l det Ak, j det Ak, l i, j, k, l 1, 2, 4, 5. Zilustruj to twierdzenie przy pomocy Manipulate daj c u ytnikowi wybór któr kolumn lub szereg usun. Przyk ad Tableai, j, i, 1, 5, j, 1, 5 MatrixForm a1, 1 a1, 2 a1, 3 a1, 4 a1, 5 a2, 1 a2, 2 a2, 3 a2, 4 a2, 5 a3, 1 a3, 2 a3, 3 a3, 4 a3, 5 a4, 1 a4, 2 a4, 3 a4, 4 a4, 5 a5, 1 a5, 2 a5, 3 a5, 4 a5, 5 A Det a1, 1 a1, 2 a1, 3 a1, 4 a1, 5 a2, 1 a2, 2 a2, 3 a2, 4 a2, 5 a3, 1 a3, 2 a3, 3 a3, 4 a3, 5 a4, 1 a4, 2 a4, 3 a4, 4 a4, 5 a5, 1 a5, 2 a5, 3 a5, 4 a5, 5 A45 Det A12 Det a1, 1 a1, 2 a1, 3 a1, 4 a2, 1 a2, 2 a2, 3 a2, 4 a3, 1 a3, 2 a3, 3 a3, 4 a5, 1 a5, 2 a5, 3 a5, 4 a2, 1 a2, 3 a2, 4 a2, 5 a3, 1 a3, 3 a3, 4 a3, 5 a4, 1 a4, 3 a4, 4 a4, 5 a5, 1 a5, 3 a5, 4 a5, 5
3 Zadania1.nb 3 A1245 Det a2, 1 a2, 3 a2, 4 a3, 1 a3, 3 a3, 4 a5, 1 a5, 3 a5, 4 A15 Det A42 Det a2, 1 a2, 2 a2, 3 a2, 4 a3, 1 a3, 2 a3, 3 a3, 4 a4, 1 a4, 2 a4, 3 a4, 4 a5, 1 a5, 2 a5, 3 a5, 4 a1, 1 a1, 3 a1, 4 a1, 5 a2, 1 a2, 3 a2, 4 a2, 5 a3, 1 a3, 3 a3, 4 a3, 5 a5, 1 a5, 3 a5, 4 a5, 5 A A1245 DetA12, A15, A42, A45 Together 3. Przeczytaj o twierdzeniu Sturma ( i implementuj algorytm który znajduje ilo ró nych rzeczywistych pierwiastków wielomianu bez podwójnych pierwiastków. Przyk ad Nast puj cy wielomian ma dwa rzeczywiste pierwiastki x 4 x 3 x 1 Factor 1 x 1 x 1 x x 2 Typowe podej cie do programowania funkcyjnego sk ada si z implimentacji algorytmu krok po kroku poczym po czeniu pojedy czych kroków w jedn funkcj Definiujemy wielomian qx_ : x 4 x 3 x 1 Sprawdzamy e wielomian nie ma podwójnych pierwiastków: Discriminantqx, x True p qx 1 x x 3 x 4 p1 Dp, x 1 3 x 2 4 x 3 PolynomialRemainderp, p1, x x 3 x2 4 16
4 4 Zadania1.nb p2 PolynomialRemainderp, p1, x Simplify x x2 p3 PolynomialRemainderp1, p2, x Simplify 32 2 x p4 PolynomialRemainderp2, p3, x Simplify 3 16 p5 PolynomialRemainderp3, p4, x Simplify L czymy wszystko w jedn funkcj. Tu wygodnie jest u y funkcji NestWhileList:? NestWhileList NestWhileList f, expr, test generates a list of the results of applying f repeatedly, starting with expr, and continuing until applying test to the result no longer yields True. NestWhileList f, expr, test, m supplies the most recent m results as arguments for test at each step. NestWhileList f, expr, test, All supplies all results so far as arguments for test at each step. NestWhileList f, expr, test, m, max applies f at most max times. SturmSequencef_, x_ ; PolynomialQf, x && Discriminantf, x : PrependNestWhileList2, PolynomialRemainder1, 2, x &, f, Df, x, FreeQLast, x &All, 2, f ss SturmSequenceqx, x 1 x x 3 x 4, 1 3 x 2 4 x 3, x 3 x2 4 16, x, 3 16 Czo owe wspó czynniki a cucha Sturma: CoefficientList, x1 & ss FullSimplify 1, 4, 3 16, 32, 3 16 To samo po zast pineniu x x: CoefficientList, x1 & ss. x x FullSimplify 1, 4, 3 16, 32, 3 16 Inne po yteczne funkcje Sprawdzamy dla jakich parametrów a wielomian nie ma pierwiastków rzeczywistych. ResolveForAllx, Elementx, Reals, a 8 x a x 3 x 4, Reals False Sprawdzamy dla jakich parametrów a wielomian nie ma pierwiastków rzeczywistych.
5 Zadania1.nb 5 ResolveForAllx, Elementx, Reals, a 8 x a x 3 x 4, Reals a 4 Czyli dla a 4 wielomian jest nie ujemny i ma pierwiaski rzeczywiste. Sprawd my ile ich ma: CountRootsa 8 x a x 3 x 4. a 4, x 4 Plota 8 x a x 3 x 4. a 4, x, 3, Niech Q[x] b dzie wielomianem stopnia n. Znajd warto ci charakterystyczne macierzy s s1 s2 s3 sn s1 s2 s3 s4 sn 1 s2 s3 s4 s5 sn 2 s3 s4 s5 s6 sn 3 sn sn 1 sn 2 sn 3 s2 n o wymiarach n 1 n 1 gdzie sk s ladami iloczynów macierzy C k 1 C 1 C 1 i s n. Macierz C 1 o wymiarach nn jest dana przez do czenie wspó czynników wielomianu znakiem minus do ostatniego szeregu a reszta macierzy jest okre lona przez warunek e jedyne nie zerowe elementy s rowne 1 i znajduj si w pozycjach i, i Znajd sygnatur macierzy S (liczb dodatnich i ujemnych warto ci w asnych). Zauwa e poniewa macierz jest symnetryczna, jej warto ci w asne s rzeczywiste. Przyk ad. Clearq, s, ss qx : 2 8 x 3 x 3 x 4 l1 Insert,, 1 & IdentityMatrix3, 1,,,,, 1,,,,, 1
6 6 Zadania1.nb l2 MostCoefficientListQx, x 2, 8,, 3 C1 Appendl1, l2 TraditionalForm s1 TrC1 3 ss1 C1, 1,,,,, 1,,,,, 1, 2, 8,, 3 ssk_? 1 & : C1.ssk 1 s 4; sk_? & : Trssk ss2,, 1,,,,, 1, 2, 8,, 3, 6, 26, 8, 9 s2 Simplify 9 mm Maps, TableRangei, i 3, i,, 3, 2 TraditionalForm Eigenvaluesmm N , , , Równania ró niczkowe zwyczajne [1]. 1. Narysuj portret fazowy Rozwi zanie. v NDSolvex't xt yt, y't xt, x 1, y, xt, yt, t,, 1 xt InterpolatingFunction., 1., t, yt InterpolatingFunction., 1., t
7 Zadania1.nb 7 ParametricPlotEvaluatext, yt. v, t,, 1, PlotRange All, PlotPoints Narysuj pole wektorowe i krzywe fazowe dla uk adu RRZ 2 go rz du
8 8 Zadania1.nb Solution. p1 VectorPloty, x, x, 2, 2, y, 2, 2, PlotRange All odex_, y_ : NDSolve x't yt, y't xt, x x, y y, xt, yt, t, 2, 2 soli_ : ode.22 i,.2 i p2 ParametricPlotEvaluateTablext, yt. soli, i, 1, 6, t,, 2, AxesLabel "x", "y" x
9 Zadania1.nb 9 Showp1, p Geometria ró niczkowa [2]. 1. Obliczy parametr ukowy krzywej w R 3. Rozwi zanie. arclengthα_list, t_ : IntegrateSqrtSimplifyDΑ, t.dα, t, t arclength2 Cost, 2 Sint, 1, t 2 t 2. Narysuj kilka stycznych do okr gu Rozwi zanie. tangentlineα_list, s_, t_ : LineΑ, Α s DΑ, t SqrtFactorDΑ, t.dα, t tt tangentlinecost, Sint, 1, t LineCost, Sint, Cost Sint Cost 2 Sint 2, Sint Cost Cost 2 Sint 2
10 1 Zadania1.nb ShowGraphicsAbsoluteThickness1, EvaluateTablett, t,, 2 Π, Π Narysuj krzyw p ask sparametryzowan parametrem ukowym z zadan krzywizn Κ. Wskazówka: rozwi uk ad RRZ x'[s] Cos[Θ[s]], y'[s] Sin[Θ[s]], Θ'[s] Κ. Rozwi zanie. curveκ_, s_, a_:, c_:, d_:, theta_:, smin_: 1, smax_: 1 : Flattenxs, ys. NDSolvex's CosΘs, y's SinΘs, Θ's Κ, xa c, ya d, Θa theta, xs, ys, Θs, s, smin, smax curves Sins, s,,,,, 18, 18 InterpolatingFunction18., 18., s, InterpolatingFunction18., 18., s
11 Zadania1.nb 11 ParametricPlotEvaluate, s, 18, 18, AspectRatio Automatic Obliczy krzywizn redni oraz Gaussa krzywej w R Narysuj obrazy rzutu stereograficznego punktów z R 2 (lub p aszczyzny zespo onej C) na sferze Riemanna ( 8. Zaimplementuj metod Frobeniusa dla RRZ ( mathworld.wolfram.com/frobeniusmethod.html). 9. Zaimplemenuj hipotez ABC ( Literatura. 1 S. Lynch, Dynamical Systems with Applications using Mathematica, Birkhäuser, Basel, 27, XV, 484 p. [2] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press
12 12 Zadania1.nb LLC, Pliki Mathematica mo na pobra ze strony
Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia
Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
PAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10)
5.5. Wyznaczanie zer wielomianów 79 gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) gdzie stopieñ wielomianu p 1(x) jest mniejszy lub równy n, przy
Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
Technologie Informacyjne
Technologie Informacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności April 11, 2016 Technologie Informacyjne Wprowadzenie : wizualizacja obrazów poprzez wykorzystywanie technik komputerowych.
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój
Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,
Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)
Mathematica - podstawy
Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Badanie silnika asynchronicznego jednofazowego
Badanie silnika asynchronicznego jednofazowego Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady funkcjonowania silnika jednofazowego. W ramach ćwiczenia badane są zmiany wartości prądu rozruchowego
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci
56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
Rys Mo liwe postacie funkcji w metodzie regula falsi
5.3. Regula falsi i metoda siecznych 73 Rys. 5.1. Mo liwe postacie funkcji w metodzie regula falsi Rys. 5.2. Przypadek f (x), f (x) > w metodzie regula falsi 74 V. Równania nieliniowe i uk³ady równañ liniowych
WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania
WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10
Matematyka A kolokwium, 7 maja, godz 8: : Poprawiłem: godz :, 4 września r 3 p Rozwiazać x t x t xt = x t x t xt = 6 + t cos3t + 36te 3t 7e 3t Pierwiastkami równania charakterystycznego = λ λ = λ + 3λ
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
EGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
1 Wizualizacja danych - wykresy 2D
1 Wizualizacja danych - wykresy 2D Funkcje sterujące tworzeniem wykresów plot(x,y, KSL ) tworzy wykres 2D wraz z specyfikatorem lini K - kolor, S - symbol, L - linia figure(nr) subplot(m,n,active) hold
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
Podstawy przedsiębiorczości Klasa: 3 LO Semestr: I Tygodniowy wymiar godzin: 1
KONSPEKT LEKCJI Imię i nazwisko prowadzącego: mgr inż. M. Woziwodzka Przedmiot: Podstawy przedsiębiorczości Klasa: 3 LO Semestr: I Tygodniowy wymiar godzin: 1 Temat: Prawo popytu. 1. Krzywa popytu. 2.
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?
ZADANIE 1. (4pkt./12min.) Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? 1. Wszelkie potrzebne dane
Praca na wielu bazach danych część 2. (Wersja 8.1)
Praca na wielu bazach danych część 2 (Wersja 8.1) 1 Spis treści 1 Analizy baz danych... 3 1.1 Lista analityczna i okno szczegółów podstawowe informacje dla każdej bazy... 3 1.2 Raporty wykonywane jako
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
II. WNIOSKI I UZASADNIENIA: 1. Proponujemy wprowadzić w Rekomendacji nr 6 także rozwiązania dotyczące sytuacji, w których:
Warszawa, dnia 25 stycznia 2013 r. Szanowny Pan Wojciech Kwaśniak Zastępca Przewodniczącego Komisji Nadzoru Finansowego Pl. Powstańców Warszawy 1 00-950 Warszawa Wasz znak: DRB/DRB_I/078/247/11/12/MM W
EGZAMIN MATURALNY Z INFORMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Instrukcja dla zdaj cego CZ I Czas pracy 90 minut 1. Sprawd, czy arkusz egzaminacyjny zawiera 10 stron (zadania
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
1/9. CCTV Tester. Instrukcja obsługi ver. 2.2.1.0. Wymagania systemowe: - Windows XP, Windows Vista, Windows 7 - wolny port USB -.NET Framework 3.
1/9 CCTV Tester Instrukcja obsługi ver. 2.2.1.0 Wymagania systemowe: - Windows XP, Windows Vista, Windows 7 - wolny port USB -.NET Framework 3.5 2/9 CCTV Tester - sposób podłączenia 1.) Podłączyć CCTV
Matematyka dla liceum/funkcja liniowa
Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa
7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6
XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
III. INTERPOLACJA Ogólne zadanie interpolacji. Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj.
III. INTERPOLACJA 3.1. Ogólne zadanie interpolacji Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj. Definicja 3.1. Zadanie interpolacji polega na okreœleniu parametrów tak, eby dla n +
IV. UK ADY RÓWNAÑ LINIOWYCH
IV. UK ADY RÓWNAÑ LINIOWYCH 4.1. Wprowadzenie Uk³ad równañ liniowych gdzie A oznacza dan¹ macierz o wymiarze n n, a b dany n-elementowy wektor, mo e byæ rozwi¹zany w skoñczonej liczbie kroków za pomoc¹
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
Modelowanie obiektów 3D
Synteza i obróbka obrazu Modelowanie obiektów 3D Modelowanie Modelowanie opisanie kształtu obiektu. Najczęściej stosuje się reprezentację powierzchniową opis powierzchni obiektu. Najczęstsza reprezentacja
Laboratorium nr 1. dsolve( rownanie1, rownanie2,, warunek 1, warunek 2 );
Laboratorium nr. Cele ćwiczenia zapoznanie si z metodami symbolicznego i numerycznego rozwi zywania równa ró niczkowych w Matlabie, wykorzystanie Simulinka do tworzenia modelu równania ró niczkowego, archiwizacja
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny KE 00 KO WPISUJE ZJ Y PESEL Miejsce na naklejk z kodem EGZMIN MTURLNY Z MTEMTYKI
Fabian Stasiak. Zbiór wicze Autodesk Inventor 2018 KURS ZAAWANSOWANY. ExpertBooks
Fabian Stasiak PRZYK ADOWE WICZENIE Z PODR CZNIKA Zbiór wicze Autodesk Inventor 2018 KURS ZAAWANSOWANY ExpertBooks 60 wiczenie 1.15 Podstawy pracy z cz ciami wielobry owymi. Zawias W tym wiczeniu poznamy
Programowanie obrabiarek CNC. Nr H8
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr H8 Programowanie obróbki 5-osiowej (3+2) w układzie sterowania itnc530 Opracował: Dr inż. Wojciech
Kratownice Wieża Eiffel a
Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
2.1. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie
Rozdzia 2 Ruch i kinematyka 2.. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, wirowo Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie t, tzn. B X! t (X) =x
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
Metody numeryczne I. Programy wspomagajace obliczenia Maxima. Janusz Szwabiński. szwabin@ift.uni.wroc.pl
Metody numeryczne I Programy wspomagajace obliczenia Maxima Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/25 Maxima Pierwsze kroki Przekształcenia wyrażeń
Macierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Laboratorium 7. Support Vector Machines (klasyfikacja).
Laboratorium 7 Support Vector Machines (klasyfikacja). 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Ćwiczenie 6.5. Otwory i śruby. Skrzynia V
Ćwiczenie 6.5. Otwory i śruby. Skrzynia V W tym ćwiczeniu wykonamy otwory w wieku i w pudle skrzyni, w które będą wstawione śruby mocujące zawiasy do skrzyni. Następnie wstawimy osiem śrub i spróbujemy
REGULAMIN WSPÓŁZAWODNICTWA KLAS W SZKOLE PRZY ULICY WOJSKA POLSKIEGO 16
REGULAMIN WSPÓŁZAWODNICTWA KLAS W SZKOLE PRZY ULICY WOJSKA POLSKIEGO 16 1. We współzawodnictwie uczestniczą wszystkie klasy. 2. Przez cały rok szkolny poszczególne klasy gromadzą punkty za osiągnięcia
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: BADANIE SPADKÓW NAPIĘĆ W INSTALACJACH ELEKTRYCZNYCH Ćwiczenie nr: 1 Laboratorium
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
jest częściowe pokrycie wydatków związanych z wychowaniem dziecka, w tym z opieką nad nim i zaspokojeniem jego potrzeb życiowych.
Praktyczny poradnik Celem świadczenia wychowawczego jest częściowe pokrycie wydatków związanych z wychowaniem dziecka, w tym z opieką nad nim i zaspokojeniem jego potrzeb życiowych. W zakładce "wnioski
Zadania z parametrem
Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu
Ćwiczenie 7 Liczniki binarne i binarne systemy liczbowe.
Ćwiczenie 7 Liczniki binarne i binarne systemy liczbowe. Cel. 1. Poznanie zasady działania liczników binarnych. 2. Poznanie metod reprezentacji liczby w systemach binarnych. Wstęp teoretyczny Liczniki
K P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut
Miejsce na naklejk z kodem szko y OKE ÓD CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 1 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Nowe funkcjonalności
Nowe funkcjonalności 1 I. Aplikacja supermakler 1. Nowe notowania Dotychczasowe notowania koszykowe, z racji ograniczonej możliwości personalizacji, zostały zastąpione nowymi tabelami z notowaniami bieżącymi.
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Eksperyment,,efekt przełomu roku
Eksperyment,,efekt przełomu roku Zapowiedź Kluczowe pytanie: czy średnia procentowa zmiana kursów akcji wybranych 11 spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie (i umieszczonych już