Kurs Komputerowy S System Symboliczny Mathematica
|
|
- Piotr Lipiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kurs Komputerowy S System Symboliczny Mathematica Obliczenia numeryczne Dokladnosc i precyzja Precision[wartosc] SetPrecision[wartosc, precyzja] Accuracy[wartosc] SetAccuracy[wartosc, dokladnosc] MachinePrecision In[1]:= a Sqrt Out[1]= In[]:= Precision a Out[]= In[]:= Precision 1. Out[]= MachinePrecision
2 0-obliczenia numeryczne.nb In[]:= b 1. 0 Out[]= In[]:= Precision b Out[]= 0. In[6]:= b Sqrt. Out[6]= 1.11 In[7]:= Precision b Out[7]= MachinePrecision In[8]:= $MachinePrecision Out[8]= 1.96 In[9]:= c SetPrecision b, 0 Out[9]= In[10]:= Precision c Out[10]= 0. In[11]:= Accuracy c Out[11]= In[1]:= Accuracy 1. Out[1]= 1.806
3 0-obliczenia numeryczne.nb In[1]:= d 1. 0 Out[1]= In[1]:= Accuracy d Out[1]= 0. Wynik dokladny a przyblizony wyrazenie // N N[wyrazenie] N[wyrazenie, precyzja] Chop[wyrazenie] In[1]:= a Sqrt Out[1]= In[16]:= b Sqrt. Out[16]= 1.11 In[17]:= a N Out[17]= 1.11 In[18]:= Precision Out[18]= MachinePrecision In[19]:= N a, 0 Out[19]=
4 0-obliczenia numeryczne.nb In[0]:= Precision Out[0]= 0. In[1]:= Chop 1. Out[1]= 1. In[]:= Chop ^ 10 Out[]= 0 In[]:= Chop ^ 0 Out[]= 0 In[]:= ^ 0 Out[]= In[]:= Fourier 1, 0,, 0, 7, 0, 6,, 1 Out[]= 7. 0., , , , , , , , In[6]:= InverseFourier Out[6]= 1., ,., 0., 7., , 6.,., 1. In[7]:= Chop Out[7]= 1., 0,., 0, 7., 0, 6.,., 1. Suma i iloczyn elementow ciagu NSum[wyrazenie, {zmienna, w_pocz, w_konc}] NProduct[wyrazenie, {zmienna, w_pocz, w_konc}]
5 0-obliczenia numeryczne.nb Options[polecenie] In[8]:= NSum 1 x, x, 1, 100 Out[8]= In[9]:= NSum 1 x, x, 1, Infinity Out[9]= 1.69 In[0]:= Sum 1 x, x, 1, Infinity Out[0]= Π 6 In[1]:= N Out[1]= 1.69 In[]:= Options NSum Out[]= AccuracyGoal, Compiled Automatic, EvaluationMonitor None, Method Automatic, NSumTerms 1, PrecisionGoal Automatic, VerifyConvergence True, WorkingPrecision MachinePrecision In[]:= NSum 1 x, x, 1, Infinity, WorkingPrecision 0 Out[]= In[]:= NSum 1 x, x, 1, Infinity, PrecisionGoal 0, WorkingPrecision 0 NIntegrate::ncvb : NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x NIntegrate obtained and *^- for the integral and error estimates. Out[]= In[]:= Precision Out[]= 0.
6 6 0-obliczenia numeryczne.nb In[6]:= NSum 1 x, x, 1, 10, EvaluationMonitor : Print "x ", x, " ", N 1 x, 10 x x. 0. x x x. 0.0 x x x x x Out[6]= 1.977
7 0-obliczenia numeryczne.nb 7 In[7]:= NSum 1 x, x, 1, 10, WorkingPrecision 0, EvaluationMonitor : Print "x ", x, " ", N 1 x, 10 x x x x x x x x x x Out[7]= In[8]:= NProduct x x 1, x, 1, 100 Out[8]= In[9]:= Product x x 1, x, 1, 100 Out[9]= In[0]:= N Out[0]=
8 8 0-obliczenia numeryczne.nb In[1]:= Options NProduct Out[1]= AccuracyGoal, Compiled Automatic, EvaluationMonitor None, Method Automatic, NProductFactors 1, PrecisionGoal Automatic, VerifyConvergence True, WorkingPrecision MachinePrecision Rozwiazywanie rownan NSolve[rown, zmienna] (* NSolve[...] N[Solve[...]] *) In[]:= eq x x 0 NSolve eq, x Out[]= x x 0 Out[]= x.67, x In[]:= Solve eq, x Out[]= x 7, x 7 In[]:= N Out[]= x.67, x In[6]:= Clear a, b, c In[7]:= NSolve a x b x c 0, x Out[7]= x b 1. b. a c a, x b b. a c a
9 0-obliczenia numeryczne.nb 9 FindRoot[wielomian, zmienna] In[8]:= f x x x x 1 FindRoot f, x, 1 Out[8]= 1 x x x x Out[9]= x 1.10 In[0]:= FindRoot f, x, 0 Out[0]= x In[1]:= FindRoot f, x, 1 Out[1]= x In[]:= Plot f, x,, Out[]= Interpolacja, ekstrapolacja i aproksymacja Interpolation[dane] dane: {f1, f, f,...} {{x1, f1}, {x, f}, {x, f},...} {{{x1, y,...}, f1}, {{x, y,...}, f},...} Interpolation[dane,wartosc]
10 10 0-obliczenia numeryczne.nb In[]:= d 1,,, 6,, 7,, 8 fi Interpolation d Out[]= 1,,, 6,, 7,, 8 Out[]= InterpolatingFunction 1, 8, In[]:= fi fi. Out[]= Out[6]=. In[7]:= fi 10 InterpolatingFunction::dmval : Input value 10 lies outside the range of data in the interpolating function. Extrapolation will be used. Out[7]= 9 In[8]:= Plot fi x, x, 1, Out[8]=
11 0-obliczenia numeryczne.nb 11 In[9]:= Show, ListPlot d Out[9]= In[60]:= d 1, 1,,,,,, 6, 6,, 8, 7, 9,, 11, 8 fi Interpolation d Out[60]= 1, 1,,,,,, 6, 6,, 8, 7, 9,, 11, 8 Out[61]= InterpolatingFunction 1, 11, In[6]:= Show Plot fi x, x, 1, 11, ListPlot d 7 6 Out[6]= In[6]:= Options Interpolation Out[6]= InterpolationOrder, Method Automatic, PeriodicInterpolation False
12 1 0-obliczenia numeryczne.nb In[6]:= d 1,,, 6,, 7,, 8 f0 Interpolation d, InterpolationOrder 0 ; f1 Interpolation d, InterpolationOrder 1 ; f Interpolation d, InterpolationOrder ; f Interpolation d, InterpolationOrder ; f Interpolation d, InterpolationOrder ; f Interpolation d, InterpolationOrder ; Out[6]= 1,,, 6,, 7,, 8 In[71]:= GraphicsGrid Plot f0 x, x, 1, 8, Plot f1 x, x, 1, 8, Plot f x, x, 1, 8, Plot f x, x, 1, 8, Plot f x, x, 1, 8, Plot f x, x, 1, Out[71]= Fit[dane, funkcja, zmienna] In[7]:= d 1,,, 6,, 7,, 8 ; f1 Fit d, 1, x, x f Fit d, 1, x, x, x f Fit d, 1, x, x, x, x, x f7 Fit d, 1, x, x, x, x, x, x 6, x 7, x Out[7]= x Out[7]= x x Out[7]= x 0.9 x x x Out[76]= x x 68.8 x 1. x 18.0 x 1. x x 7
13 0-obliczenia numeryczne.nb 1 In[77]:= GraphicsGrid Show Plot f1, x, 0, 9, PlotRange 0, 9,, 1, ListPlot d, Show Plot f, x, 0, 9, PlotRange 0, 9,, 1, ListPlot d, Show Plot f, x, 0, 9, PlotRange 0, 9,, 1, ListPlot d, Show Plot f7, x, 0, 9, PlotRange 0, 9,, 1, ListPlot d Out[77]= In[78]:= Fit 1, 1, x, x, x Out[78]= x 0. x FindFit[dane, funkcja, parametry, zmienna] FindFit[dane,{funkcja,warunki},parametry,zmienna] In[80]:= Clear f In[81]:= f De_, Α_, xe_ : De 1 Exp Α x xe In[8]:= funkcja f, 0., Out[8]= 1 0. x
14 1 0-obliczenia numeryczne.nb In[8]:= Plot funkcja, x, 0, 10 Out[8]= 1 In[8]:= dane Table x, funkcja, x, 1, 10 Out[8]= 1,.9098,, ,, 0.,, ,, , 6, 1.070, 7, 1.99, 8, 1.681, 9, , 10, In[8]:= ff Fit dane, 1, x, x, x, x, x Out[8]= x.70 x x x In[86]:= Show Plot ff, x, 1, 10, ListPlot dane Out[86]=
15 0-obliczenia numeryczne.nb 1 In[87]:= ffit FindFit dane, a 1 Exp b x c ^, a, b, c, x Out[87]= a 1.998, b.118, c In[88]:= Show Plot f a, b, c. ffit, x, 1, 10, ListPlot dane.0..0 Out[88]= In[89]:= ffit FindFit dane, a 1 Exp b x c ^, b 0., a, b, c, x Out[89]= a.000, b , c In[90]:= Show Plot f a, b, c. ffit, x, 1, 10, ListPlot dane Out[90]= 1 Minimum i maksimum funkcji FindMinimum[funkcja, {zmienna, wartosc}]
16 16 0-obliczenia numeryczne.nb NMinimize[funkcja,zmienna] FindMaximum[funkcja,{zmienna,wartosc}] NMaximize[funkcja,zmienna] Opcje: StepMonitor i EvaluationMonitor In[91]:= f x x x x 1 Plot f, x,, Out[91]= 1 x x x x 0 Out[9]= In[9]:= f x x x x 1 FindMinimum f, x, 0 Out[9]= 1 x x x x FindMinimum::lstol : The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision digits of working precision to meet these tolerances. Out[9]= , x In[9]:= FindMinimum f, x, Out[9]= 9.696, x.1906 In[96]:= FindMinimum f, x, Out[96]= 9.696, x.1906
17 0-obliczenia numeryczne.nb 17 In[97]:= NMinimize f, x Out[97]= 9.696, x.1906 In[98]:= Options NMinimize Out[98]= AccuracyGoal Automatic, EvaluationMonitor None, MaxIterations 100, Method Automatic, PrecisionGoal Automatic, StepMonitor None, WorkingPrecision MachinePrecision In[99]:= NMinimize f, x, Method "DifferentialEvolution" Out[99]= 9.696, x.1906 In[100]:= FindMaximum f, x, 0 Out[100]=.701, x In[101]:= FindMaximum f, x, 1 FindMaximum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. Out[101]= , x In[10]:= NMaximize f, x NMaximize::cvdiv : Failed to converge to a solution. The function may be unbounded. Out[10]= , x
18 18 0-obliczenia numeryczne.nb In[10]:= i 1; FindMinimum f, x, 0, StepMonitor : Print "i ", i, " x ", x ; i i 1 x 0. i x i x i x i x i 6 x i 7 x FindMinimum::lstol : The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision digits of working precision to meet these tolerances. Out[10]= , x 0.787
19 0-obliczenia numeryczne.nb 19 In[10]:= i 1; FindMinimum f, x, 0, EvaluationMonitor : Print "i ", i, " x ", x ; i i 1 x 0. i x 0. i x i x i x i 6 x i 7 x i 8 x i 9 x i 10 x i 11 x i 1 x i 1 x i 1 x i 1 x FindMinimum::lstol : The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision digits of working precision to meet these tolerances. Out[10]= , x Calkowanie NIntegrate[funkcja, {zmienna, w_pocz, w_konc}]
20 0 0-obliczenia numeryczne.nb In[10]:= NIntegrate Sin x, x, 0, 1 Out[10]= In[106]:= Options NIntegrate Out[106]= AccuracyGoal, Compiled Automatic, EvaluationMonitor None, Exclusions None, MaxPoints Automatic, MaxRecursion Automatic, Method Automatic, MinRecursion 0, PrecisionGoal Automatic, WorkingPrecision MachinePrecision In[107]:= NIntegrate Sin x ^ Cos y^, x, 0, Pi, y, 0, Pi Out[107]= Rozwiazywanie rownan rozniczkowych NDSolve[{rownanie,warunki}, funkcja,{zmienna, w_pocz, w_konc}] In[109]:= DSolve y x Cos x, y x, x Out[109]= y x C 1 Sin x In[110]:= r DSolve y x Cos x, y 0 1, y x, x Out[110]= y x 1 Sin x In[111]:= f y x. r 1 Out[111]= 1 Sin x In[11]:= Table f, x, 0, 10 N Out[11]= 1., 1.817, 1.909, 1.111, 0.198, , 0.708, , , 1.11, 0.979
21 0-obliczenia numeryczne.nb 1 In[11]:= nr NDSolve y x Cos x, y 0 1, y, x, 0, 10 Out[11]= y InterpolatingFunction 0., 10., In[11]:= Table y x. nr 1, x, 0, 10 Out[11]= 1., 1.817, , 1.111, 0.198, , 0.708, , 1.989, 1.11, In[11]:= Plot f, y x. nr 1, x, 0, Out[11]= In[116]:= Options NDSolve Out[116]= AccuracyGoal Automatic, Compiled Automatic, DependentVariables Automatic, EvaluationMonitor None, InterpolationOrder Automatic, MaxStepFraction 1 10, MaxSteps , MaxStepSize Automatic, Method Automatic, NormFunction Automatic, PrecisionGoal Automatic, SolveDelayed Automatic, StartingStepSize Automatic, StepMonitor None, WorkingPrecision MachinePrecision
Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]
OBLICZENIA NUMERYCZNE, Karolina Mikulska-Ruminska Kurs komputerowy S - Mathematica - cz. Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]? *Sum* System`
Sin[Pi / 4] Log[2, 1024] Prime[10]
In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER
Kurs komputerowy S - Mathematica - cz. 2
OBLICZENIA SYMBOLICZNE, Karolina MikulskaRuminska Kurs komputerowy S Mathematica cz. zmienna = wartosc Set[zmienna,wartosc] x = 7 7 x = x ^ x = 5 5 x Inaczej.. y = y ^ y y = 5 y 5 5 y = 0 y 0 000 KursS_cz.nb
Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ;
Zadanie1 (* parametryzacja okręgu r'= x',y',0 *) Z ogólnego twierdzenia o rozwiązaniach równania Laplace a wynika, że potencjał elektryczny nie może mieć w tym punkcie ekstremum lokalnego. Warto się jednak
Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions
Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses
= 1, = = + 1D, + 2D<,
'Przypadkowe bladzenie' jako przyklad prostego problemu, ktory moze byc pierwszym zadaniem, dla studiujacych 'Mathematica', zwiazanychm z rozwiazaniem 'rzeczywistego' problemu. Rozwazmy ruch jednowymiarowy
n 2 1. lim n 3 sin 2. lim k 2 + n 2 3. lim 8 k n + 2 k + 5 n 2 Oblicz granice n lim n 2 3 π + log(8) x π + log(64) lim sin sin lim
. Oblicz graice. k= k 3 + 3. 3. si k= k + 8 k + k + 5 k= k= k 3 + 3 9 3 π + log(8) 3 k= k 3 + 3 k= k 3 + 3 k= 3 + k 3 Itegrate, {,, } 3 + 8 3 π + log(64) k 3 k= k= si si k + k + k + - LimitSum π 4 k +
2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów
07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate numerically and present results in different formats and precision. 0. Oblicz numerycznie i przedstaw wyniki w różnych formatach i z różną precyzją.
Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje
czyli sztuka obliczeń symbolicznych Mathematica - organizacja Dokument Mathematica zorganizowany jest w tzw. komórki. Ręczne zerowanie zmiennych Clear[variables] (* czyści wartości zmiennych*) x=. (* to
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Mathematica od zera. Paulina Suchanek, IFT Wroclaw. Factor x 2 2 x 1. Series Log 1 x, x, 0, 5. 1. Wprowadzenie. Start. Struktura notatnika
Mathematica od zera Paulina Suchanek, IFT Wroclaw 1. Wprowadzenie Start Struktura notatnika Notatnik edytujemy uzywajac opcji z zakladki Format. Strukture rozdzialow wprowadzamy wybierajac opcje z okienka
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Dokowanie molekularne. Andrzej Bąk
Dokowanie molekularne Andrzej Bąk Import bibliotek sys, pybel, openbabel oraz gzip niezbędnych do wykonania ćwiczenia. import sys sys.path.append('/usr/lib/pymodules /python2.6') try: import sys import
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Wykład 6. Prawo Hooke a. Robert Hooke
Wykład 6 Równania różniczkowe, funkcje DSolve oraz NDSolve. Wykres fazowy. Prawo Hooke a, drgania sprężyn. Ruch z oporem powietrza. In[1]:= ClearAll["Global`*"] wyczyść wszystko Prawo Hooke a Robert Hooke
Chapter 1: Review Exercises
Chpter : Review Eercises Chpter : Review Eercises - Evlute the following integrls:..... 6. 8. ( + ) 9. +.. ( + ). ( ). 8. 9....... 6. 7. (csc + + ) sin tn 6. ( )( + ) 7. ) 8.. + ( + )( ). ( ) sin sin sec
Wprowadzanie wyrazen w Mathematice
1 z 52 2006-11-12 14:07 Wprowadzanie wyrazen w Mathematice Greckie litery Greckie litery jako nazwy zmiennych In[1]:= Expand[(α + β)^3] Out[1]= In[2]:= Out[2]= Expand[(\[Alpha] + \[Beta])^3] In[3]:= Out[3]=
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Obliczenia Symboliczne
Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych
Wielki rozkład kanoniczny
Ćwiczenia nr 0 Wielki rozkład kanoniczny Jest to rozkład prawdopodobieństwa dla układu o zmiennej liczbie cząstek N. Liczbę cząstek możemy potraktować jako dodatkową liczbą kwantową układu. ψ jest to stan
Algebra Symboliczna. Wykład I. Andrzej Odrzywolek. Instytut Fizyki, Zakład Teorii Względności i Astrofizyki
Algebra Symboliczna Wykład I Andrzej Odrzywolek Instytut Fizyki, Zakład Teorii Względności i Astrofizyki 03.10.2007, środa, 13:15 Dane kontaktowe dr Andrzej Odrzywołek pokój 447, IV piętro E-mail: odrzywolek@th.if.uj.edu.pl
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Równania liniowe i nieliniowe
( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."
Kurs Komputerowy S System Symboliczny Mathematica
Kurs Komputerowy S System Symboliczny Mathematica Dodatek Struktura FullForm[] TreeForm[] Timing[] Apply[] In[4]:= w 3 x^2 5 x 4 Out[4]= 4 5 x 3 x 2 In[5]:= FullForm w Out[5]//FullForm= Plus 4, Times 5,
n p 2 i = R 2 (8.1) i=1
8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem
Elementy metod numerycznych - zajęcia 11
Elementy metod numerycznych - zajęcia 11 Mathematica - Wolfram Alpha 1 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie zwięzłe odpowiedzi na pytania oznaczone symbolem ( x, p) i numerkiem (x),
Wykład 7 - Inne moduły wspierające obliczenia numeryczne
Programowanie Wykład 7 - Inne moduły wspierające obliczenia numeryczne Plan wykładu: SymPy Zmienne symboliczne Liczby zespolone Liczby wymierne Obliczenia numeryczne Wyrażenia algebraiczne Wyrażenia wymierne
16 Jednowymiarowy model Isinga
16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin
Python wstęp do programowania dla użytkowników WCSS
Python wstęp do programowania dla użytkowników WCSS Dr inż. Krzysztof Berezowski Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej Wprowadzenie CHARAKTERYSTYKA JĘZYKA Filozofia języka
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
wiczenia (z przyk adami i cz ciowymi rozwi zaniami)
wiczenia (z przyk adami i cz ciowymi rozwi zaniami) 1. Narysuj wykresy funkcji z x 2 y 2, z 2 x 2 y 9 w R 3. Narysuj linie x 1 2 t, y 1 2 t, z 2 t. Poka wszystkie wykresy na jednym obrazku. Rozwi zanie
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
SzeregFouriera-Legendre a
SzeregFouriera-Legendre a Szereg Fouriera-Legendre a : n=0 P n (t) f n Współczynniki f n = Pn (t) f (t) dt - Pn (t) 2 dt - = 2 n + Pn 2 - (t) f (t) dt Pn - (t) 2 dt = 2 2 n + Zadanie Policz kwadrat normy
Maxima i Visual Basic w Excelu
12 marca 2013 Maxima - zapoznanie z programem Maxima to program - system algebry komputerowej. Podstawowa różnica w stosunku do klasycznych programów obliczeniowych jest możliwość wykonywania obliczeń
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
Podstawowe I/O Liczby
Podstawowe I/O Liczby Informatyka Jolanta Bachan Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops Jolanta Bachan 2 Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
METHOD 2 -DIAGNOSTIC OUTSIDE
VW MOTOMETER BOSCH METHOD 1 - OBD 2 METHOD 2 -DIAGNOSTIC OUTSIDE AFTER OPERATION YOU MUST DISCONECT ACU OR REMOVE FUSE FOR RESTART ODOMETER PO ZROBIENIU LICZNIKA ZDJĄĆ KLEMĘ LUB WYJĄĆ 2 BEZPIECZNIKI OD
Analiza matematyczna 3
Analiza matematyczna 3 Pochodna funkcji pierwsza pochodna: x'[t] x [t] Derivative[][x][t] x (t) D[x[t], t] x (t) 7. pochodna: Derivative[7][x][t] x (7) (t) D[x[t], {t, 7}] x (7) (t) pochodne funkcji wielu
Podstawowe wyrażenia matematyczne
Lech Sławik Podstawy Maximy 3 Wyrażenia matematyczne.wxmx 1 / 7 Podstawowe wyrażenia matematyczne 1 Nazwy Nazwy (zmiennych, stałych, funkcji itp.) w Maximie mogą zawierać małe i duże litery alfabetu łacińskiego,
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
for - instrukcja pętli "dla" umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw4.mcd /9 Katedra Inmatyki Stosowanej - Studium Podstaw Inmatyki PAKIET MathCad - Część IV. PROGRAMOWANIE MathCad posiada możliwości tworzenia prostych podprogramów,
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
Zamiana sumowania po stanach jednocząstkowych na całkowanie
TiFS, Ćwiczenia nr 11 Zamiana sumowania po stanach jednocząstkowych na całkowanie Gęstość stanów kwantowych na osi energii f (E) określa liczbę stanów N(E) w określonym przedziale energii de: f (E) de
ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM
Zbigniew ZDZIENNICKI Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe Struktury równoległe układów niezawodnościowych,
Witam! Czym jest Mathematica?
Witam! Nazywam się Jacek Golak Pracuję w Zakładzie Fizyki Jądrowej Instytutu Fizyki UJ Moja dziedzina to teoretyczna fizyka jądrowa Numer pokoju: B2-32 e-mail: jacek.golak@uj.edu.pl strona WWW: http://users.uj.edu.pl/~golak/zestawynof.html
1 Przypadek jednej niewiadomej rzeczywistej, bez parametrów
1 Przypadek jednej niewiadomej rzeczywistej, bez parametrów 1.1 Zalecana metodologia rozwiązywania W tym rozdziale zajmiemy się zagadnieniem polegającym na rozwiązaniu równania o jednej niewiadomej bez
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
Kalibrator napięcia i prądu LB02
Dane aktualne na dzień: 17-08-2017 03:08 Link do produktu: http://sklep.gotronik.pl/kalibrator-napiecia-i-pradu-lb02-p-3934.html Kalibrator napięcia i prądu LB02 Cena Dostępność Numer katalogowy 725,00
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Liczby zespolone to (uporządkowane) pary liczb rzeczywistych, dla których dodawanie i mnożenie jest określone wzorami:
Przytaczając definicję liczb zespolonych, wyznacznika, wypowiedź twierdzenia Cramera oraz Kroneckera-Capelliego, korzystałem z I tomu wykładów Prof. Andrzeja Staruszkiewicza dla fizyków: ALGEBRA I GEOMETRIA,
1 Obliczenia na danych
1 Obliczenia na danych 1.1 Wyrażenia w SAS 1. stałe numeryczne, czyli liczby używane w wyrażeniach SAS. Możemy je prezentować (a) w zapisie standardowym np. 5, 6.7, -2.1, (b) w notacji naukowej np. 2e5
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Algorytmy i struktury danych
Algorytmy i struktury danych 4. Łódź 2018 Suma szeregu harmonicznego - Wpisz kod programu w oknie edycyjnym - Zapisz kod w pliku harmonic.py - Uruchom skrypt (In[1]: run harmonic.py) - Ten program wykorzystuje
Ćwiczenie 1 z metod obliczeniowych w nauce i technice
Ćwiczenie 1 z metod obliczeniowych w nauce i technice dla... (Temat ma być oddany wraz ze sprawozdaniem z ćwiczenia.) 1. Użyj skryptu lagrange.m do obliczenia aproksymacji Lagrange a 4 stopnia wybranej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 4 MARCA 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Ile jest liczb x należacych
Witam Państwa na wykładzie dotyczącym narzędzi obliczeniowych fizyki!
Witam Państwa na wykładzie dotyczącym narzędzi obliczeniowych fizyki! Nazywam się Jacek Golak Pracuję w Zespole Zakładów Fizyki Jądrowej Instytutu Fizyki UJ i jestem kierownikiem Zakładu Teorii Układów
Języki programowania wysokiego poziomu. PHP cz.2.
Języki programowania wysokiego poziomu PHP cz.2. Instrukcje strukturalne PHP Instrukcje strukturalne Instrukcja grupująca (blok instrukcji) Instrukcja warunkowa, if-else Instrukcja wyboru, switch-case
Komputerowe przetwarzanie obrazu Laboratorium 5
Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę
Przykładowy program ćwiczeń
Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości
Harmonogramowanie, kosztorysowanie, planowanie budowy.
Harmonogramowanie, kosztorysowanie, planowanie budowy. Adrian Bałazy, Dawid Fedko Realizacja Modelowanie Symulacje BIM Koordynacja Harmonogram Przedmiary Adrian Bałazy AUTOMATYZACJA PROCESU BUDOWLANEGO
Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów
Mathematica (1) Organizacja Mathematica Notebooks Dokument Mathematica zorganizowany jest w tzw. komórki. KaŜda komórka zawiera materiał określonego rodzaju: tekst, grafikę, dane wejściowe, dane wyjściowe
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 24 MARCA 202 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 3 3 3 jest równa A)
Instalacja
Wprowadzenie Scilab pojawił się w Internecie po raz pierwszy, jako program darmowy, w roku 1994 Od 1990 roku pracowało nad nim 5 naukowców z instytutu INRIA (Francuski Narodowy Instytut Badań w Dziedzinie
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
SymPy matematyka symboliczna w Pythonie
SymPy matematyka symboliczna w Pythonie Mateusz Paprocki Continuum Analytics, Inc. 30 listopada 2015 Co to jest matematyka symboliczna? Python operuje na liczbach zmiennoprzecinkowych
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM
1-2011 PROBLEMY EKSPLOATACJI 205 Zbigniew ZDZIENNICKI, Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych
Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 14czerwca2013r. STEPHEN
Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania. Przykładowe zadania optymalizacji nieliniowej bez ograniczeń
Wydział Elektroniki Kier: Automatyka i Robotyka Studia magisterskie II stopnia Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania Przykładowe zadania optymalizacji nieliniowej
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę
MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
JAVAScript w dokumentach HTML - przypomnienie
Programowanie obiektowe ćw.1 JAVAScript w dokumentach HTML - przypomnienie JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w
Fizyka na komputerze
Fizyka na komputerze O zastosowaniu systemów algebry symbolicznej Andrzej Odrzywolek Instytut Fizyki UJ, Zakład Teorii Względności i Astrofizyki 13.05.2008, wtorek, 16:00 Dane kontaktowe dr Andrzej Odrzywołek
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
Wysokowytrzymałe zestawy śrubowe HV High strength HV-sets
Wysokowytrzymałe zestawy śrubowe HV High strength HV-sets Zestawy HV według nowych norm PN-EN HV-sets according to new PN-EN standards -1 2007 Wymagania ogólne General requirements PN-EN 14399-2 2007-3
Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu
Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie
DOPASOWYWANIE KRZYWYCH
DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
Wstęp do programowania. Różne różności
Wstęp do programowania Różne różności Typy danych Typ danych określa dwie rzeczy: Jak wartości danego typu są określane w pamięci Jakie operacje są dozwolone na obiektach danego typu 2 Rodzaje typów Proste