Twierdzenie Cantora-Bernsteina dowody znane-nieznane



Podobne dokumenty
Prosty dowód twierdzenia Cantora Bernsteina

Wstęp do Matematyki (4)

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Wstęp do Matematyki (1)

ZALICZENIE WYKŁADU: 30.I.2019

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Równoliczność zbiorów

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Egzamin z logiki i teorii mnogości, rozwiązania zadań

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

FUNKCJE. (odwzorowania) Funkcje 1

domykanie relacji, relacja równoważności, rozkłady zbiorów

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

Wykład ze Wstępu do Logiki i Teorii Mnogości

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Informatyka, I stopień

II. Równania autonomiczne. 1. Podstawowe pojęcia.

Twierdzenie Pitagorasa

020 Liczby rzeczywiste

Zasada indukcji matematycznej

Rekurencyjna przeliczalność

Struktury formalne, czyli elementy Teorii Modeli

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel

Zadania do Rozdziału X

1 Działania na zbiorach

Krzywa uniwersalna Sierpińskiego

Zbiory, relacje i funkcje

Paul Erdős i Dowody z Księgi

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Algebry skończonego typu i formy kwadratowe

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego

Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016

KARTA KURSU. Kod Punktacja ECTS* 7

1. Funkcje monotoniczne, wahanie funkcji.

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

Matematyka II - Organizacja zajęć. Egzamin w sesji letniej

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Elementy logiki matematycznej

Filtry i nety w przestrzeniach topologicznych

Rozkład figury symetrycznej na dwie przystające

KARTA KURSU. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory

1 Funkcje uniwersalne

6. Punkty osobliwe, residua i obliczanie całek

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

NOWE ODKRYCIA W KLASYCZNEJ LOGICE?

Logika i teoria mnogości Wykład 14

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

FRAKTALE I SAMOPODOBIEŃSTWO

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

Zbiór zadań z matematyki dla studentów chemii

LOGIKA I TEORIA ZBIORÓW

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Logika i teoria mnogości Wykład Sformalizowane teorie matematyczne

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

276 Recenzje recenzja w Wiadomościach Matematycznych, tom 45, nr 1). W roku 2003 w Dolnośląskim Wydawnictwie Edukacyjnym ukazała się książka Jacka Cic

Wyszukiwanie binarne

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Paradoksalny rozkład kuli

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Działanie grupy na zbiorze

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH

Projekt matematyczny

Logika Matematyczna (1)

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16

Zbiór zadań z matematyki dla studentów chemii

Matematyka dyskretna. Andrzej Łachwa, UJ, A/10

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Elementy logiki i teorii mnogości

Fale biegnące w równaniach reakcji-dyfuzji

Transkrypt:

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXIX(2003) Zdzisław Skupień(Kraków) Twierdzenie Cantora-Bernsteina dowody znane-nieznane 1. Wstęp. Matematyka jest niewątpliwie procesem społecznym społecznym procesem gromadzenia zobiektywizowanej informacji. Niezawodnym polem jej zastosowań jest więc dydaktyka. Tej zaś ma służyć poniższe zestawienie inspirujących krótkich dowodów i przypomnienie oraz skorygowanie kilku informacji historycznych. Chociaż twierdzenie Cantora-Bernsteina nie zależy od pewnika wyboru, żaden z dowodów nie jest konstrukcyjny w sensie algorytmicznym, bo skończona liczba kroków nie musi wystarczyć dla uzyskania bijekcji. Kontrowersje wokół służebności rozważanego twierdzenia o bijekcji względem pojęcia liczby są celowo przypomniane. Artykuł niniejszy jest również odpowiedzią na matematyczno-merytoryczne uwagi w liście prof. J. Mioduszewskiego[23]. 2. Dowody iteracyjne. Przechodząc do matematyki, dla dowolnych zbiorówaibzałóżmy,żeistniejąiniekcje:a BorazB A.Twierdzenie Cantora-Bernsteina orzeka, że: (α)istniejebijekcjaodjednegozezbiorówa,bnadrugi. DowódD1.Wystarczyzałożyć,żeżadnaztychiniekcjiniejestbijekcją. Załóżmy więc, że zbiór B jest podzbiorem właściwym zbioru A, gdyż zamiast wyjściowego zbioru B możemy rozważyć jego iniektywny obraz zawartywa.niechf:a Bbędziedanąiniekcją(gdyB A).NiechC oznaczazbiórtychy A,dlaktórychistniejąx A\Binieujemnaliczba n,takieżey=f n (x),gdzief n oznaczan-tąiteracjęiniekcjif,przyczym f 0 jestidentycznością.zatema\b Cidlakażdegoy Cjednoznaczniewyznaczonesąin,ix,anadtof[C] C(cowięcej,f[C]=B C oraza\c =B\f[C]).Stąduniainiekcjif zacieśnionejdozbioruc orazidentycznościnaa\cjestbijekcją,powiedzmyh,odzbioruana B,h=f C id A\C. W powyższym dowodzie(i poniżej) dla odwzorowania ϕ, ϕ = ϕ( ), symbolϕ[ ]oznaczaprzedłużenieϕnazbiory,np.f[c]jestobrazemzbioruc poprzezf.

86 Z. Skupień Analogiczny dowód wykorzystujący dodatkowo podział zbioru A na orbity odwzorowania f podaje Mioduszewski w swoim artykule[22] z r. 1998, cytując tylko Papy ego(1964) jako autora analogicznego dowodu. Dowód D1 można zaś wywieść z artykułu[29] Reichbacha(z Wrocławia) opublikowanego w Colloquium Mathematicum w roku 1955. Reichbach późniejmeirreichaw(p.notawzestawiezżałobnejkarty w[39](2000); Reichaw-Reichbach u Leetcha w[12]) nie cytując żadnych źródeł, podaje dowód(którego skrótem jest D2 poniżej) w istocie następującej wersji(β) twierdzenia-hipotezy sformułowanej przez Cantora w 13 prac[6, 7] już wroku1883(powtórzonejw[8, 2](1895),gdziejestteżwersja standardowa równoważnie sformułowana powyżej jako(α)): (β)jeżelim M MizbioryM,M sąrównoliczne,tosąonerównolicznezdowolnymzbiorempośrednimm. Dowód D2.Dladanejbijekcjif:M f[m],gdzie(m :=)f[m] M,rozważmydowolnyzbiórE M\f[M]anastępnieS:=E f[e] f[f[e]]...zauważmy,żes=e f[s],skądf[m]\s=f[m]\f[s]= f[m\s],ponieważfjestiniekcją.wtedyf :=id S f (M\S)jestbijekcją M E f[m]. WoznaczeniachdowoduD1:M=A,E f[m]=b A.Nadtozbiory C i S z tych dowodów są identycznie konstruowane poprzez rekursję, wychodzącodrozłącznychzbiorówodpowiednioa\bie =B\f[A]. JednakżezbioryCiSniemusząsiędopełniaćdoAidlategobijekcjef, h:a Bmogąbyćróżne.Różnebowiemmogąbyćteżbijekcjewpełni wyznaczone przez dane dwie iniekcje.(w D1 jedną z danych iniekcji jest po prostu tożsamość na zbiorze B). Ciekawszezaś,żedowódD1jestwywiedzionyzpracyCoxa[10]zr.1968. Dowód D1 jest ulepszoną adaptacją(z zachowaniem i metody, i standardowych oznaczeńa,b,f,h)dowodulematu,wktórymzakładasiębezpośrednio,żeb A.DodowoduD1włączonazostałaistotnauwaga,że f[c]=b C.Reichbach(iniktinny)niejestjednakcytowanyprzezCoxa. W komentarzu[12, s. 1104] przytoczono tekst J. F. Leetcha(pomijający nazwisko Cox), że dowód Coxa jest bardzo podobny do podanego przez M. Reichawa-Reichbacha. Dopiero poprzez ten komentarz dotarłem niedawno i do Coxa, i do Reichbacha-Reichawa(tu nazwisko nowe, Reichaw, po łączniku za starym jest napisane wg polskiej tradycji). Przedstawmy zatem bardzo krótką wersję dowodu, która jest ulepszonym(ale i zbyt sformalizowanym) skrótem dowodu Coxa. Cox unika iteracji złożenia g f dzięki wspomnianemu lematowi. Dowód D3.Załóżmy,żezdanychiniekcjif:A Borazg:B A żadnaniejestbijekcją,irozważmyiniekcjęg f:a Aorazpodzbiór

zbioru A: Twierdzenie Cantora-Bernsteina dowody znane-nieznane 87 A A :=A\g[B] (g f)[a\g[b]]...= (g f) i [A\g[B]]. Wtedyodwzorowanieh:=f A A g 1 (A\A A ):A Bjestbijekcją, ponieważ(g f)[a A ]=g[b] A A istądf[a A ]=g 1 [A A ],nadtoa\a A = g[b]\a A,azatemg 1 [A\A A ]=B\f[A A ]. Dowód ten pokazuje, w jakim sensie bijekcja h jest w pełni wyznaczona przez dane iniekcje. Równoliczność danych zbiorów jest wynikiem ich dwupodziałównaczęściparamirównoliczne(jednąztychdwuparjesta A i f[a A ]).Analizującwcześniejopublikowanedowody,awszczególnościdowódJ.Königa[19],fakttenzauważyłiuogólniłBanach[1],anastępnie wykorzystał wraz z Tarskim w ich paradoksalnej konstrukcji skończonego podziału kuli, z którego izometrie o rozłącznych dziedzinach wytwarzają dwie kopie tej kuli. Następny dowód wykorzystujący równolegle rekursje z dowodów D1 i D2 zainspirowany jest dowodem z monografii Jecha[15](1973), w którym na każdymkrokuiteracjitylkozacieśnieniah=fsąkonstruowane,zaśh= iddlapozostałychx.korzystasięzfaktu,żedladowolnejiniekcjifzachodzirównośćf[m\s]=f[m]\f[s],por.dowódd2.dowódpokazuje,że rekursywna konstrukcja jest niealgorytmiczna wymaga nawet nadskończeniewielu(tzn.ω+1)kroków,abywyznaczyćpozostałex.dowódujecha jest prostszy, ale poniższy dowód sugeruje równie prostą wersję, na każdym krokuktórejmogąbyćokreślanetylkozacieśnieniah=id,adopierona końcu h = f dla pozostałych x. Zaletą poniższego dowodu jest wskazanie, że bijekcja h może mieć dwie definicje. DowódD4.Wystarczyzałożyć,żef:A BjestiniekcjąorazB A. Konstruujemydwaciągizbiorów(A n )i(b n )wgschematua 0 :=A,B 0 :=B orazs n :=f[s n 1 ],gdzies=a,b.jeśliprzyjmiemy f(x) dlax A n \B n,ndowolne, h(x)= x dlax B n \A n+1,ndowolne, x(albo f(x)) dla wszystkich pozostałych x, toh:a Bjestbijekcją(ewentualniejednązdwumożliwych). 3. Dowody grafowo-relacyjne. Warto podać spostrzeżenie, że(wbrew stwierdzeniu Bernsteina w[3, s. 121]) bijekcja h na ogół nie jest jednoznacznie wyznaczona przez iniekcje f i g. Spostrzeżenie to(bez odsyłacza do Bernsteina) znajduje się w słynnej teoriografowej monografii[18] z r. 1936 węgierskiego matematyka D. Königa w dowodzie twierdzenia I 12 o pokojarzeniach(de facto 1-faktorach) w drogach nieskończonych i cyklach parzystych. Twierdzenie to wykorzystane jest w multigrafowym dowodzie i=0

88 Z. Skupień twierdzenia Cantora-Bernsteina w części VI 3 monografii, p. analogiczny grafowy dowód u Bertranda i Horáka[4]. Wyżej wspomniany podział na orbity jest tam podziałem na reprezentujące je nieskierowane drogi i cykle. Jednakże warto i należy zauważyć, że te podziały uzyskuje się, stosując pewnik wyboru. Mój dowód w nocie [34](aletakżeidowódPapy ego)wterminachstrzałekidróg(tj.relacji reprezentujących iteracje iniekcji) można interpretować jako analogiczny dowód digrafowy. Równoliczność danych zbiorów A, B uzyskuję(podobnie jak Halmos[13]) dzięki ich trójpodziałom, które da się skonstruować bez użycia pewnika wyboru. Można uznać, że dowodami w ogólności grafowymi są te, w których rozważa się poszczególne elementy i ciągi albo raczej drogi, czyli specjalne relacje, tworzone z kolejnych obrazów tych elementów. Już w r. 1906 pierwszy taki dowód opublikował Jules König[19](Julius König w niemieckiej publikacji swego syna[18]). Dowód ten lakonicznie skomentowany w artykule przeglądowym[21, s. 194] jako oryginalny, raczej długi, prowadzony metodą tam i z powrotem wart jest przypomnienia. Przecież zainspirował on ibanacha,isierpińskiego[33],i oczywiście D.Königa(którynadto wswoimartykule[17,s.130]wfund.math.(iwmonografii)pisze,że wynik Banacha jest implicite, a dowód Banacha w zasadzie, taki sam jak u ojca). J. König świeżo pod wrażeniem opublikowanych zarzutów Poincarégo[27] odnośnie ówczesnych podstaw logiki, arytmetyki i teorii mnogości (jest tam zarzut stosowania liczb zanim zostały zdefiniowane, w szczególności stosowania(nieweryfikowalnej?) indukcji zupełnej, i zarzut błędnego koła w definicjach liczby naturalnej, por.[28]: Księga 2, Rozdz. IV.V oraz III.VI) stara się unikać zarówno liczenia jak i(zresztą bezskutecznie) rekursji. Oto twierdzenie i(nieznacznie skrócony) dowód Königa, gdzie jest ówczesnym oznaczeniem(też u Sierpińskiego) relacji równoliczności zbiorów: (α )JeśliX Y 1 i Y X 1,gdzieX 1 Xi Y 1 Y,toX Y. DowódD5.ZdanieX Y 1 oznaczaregułę(i),żekażdyelementx X wyznaczajedyney Y 1,inaodwrót:temuyodpowiadatox[przyczym wszystkiey Y 1 sąużyte Z.S.].PodobnieY X 1 oznaczaanalogiczną regułę(ii).weźmywięcdowolnyelementx 1 X.Wg(I)zx 1 otrzymujemy następniky 1 Y,temuy 1 zgodniez(ii)odpowiadanastępnikx 2 X 1 itd.jeślix 1 X 1,towg(II)istniejey 0 Ybezpośredniopoprzedzającex 1 wciągu,iciągprzedłużamywlewo,aleniejesttomożliwe,gdyx 1 X\X 1. Ostatecznie są trzy możliwości: (i)ciągmapoczątekwx,(ii) początekwy,(iii)ciągniemapoczątku, czyli jest stale przedłużalny w lewo. Nadto dla różnych x X odpowiadające ciągialbomajątensamelementjakowyrazwobuciągachiwtedyciągi są identyczne, albo nie(czyli są rozłączne). Wśród ciągów może być ciąg

Twierdzenie Cantora-Bernsteina dowody znane-nieznane 89 okresowyiniemaonpoczątku.dlaustanowienia,żex Y,mającdowolny x 1 Xiodpowiadającyciąg,wprzypadku(i)lub(iii)elementowix 1 przyporządkowujemyjegonastępniky 1 wciągu,zaśwprzypadku(ii) jegopoprzedniky 0. Zatem dowód ten nie jest długi, ale podobnie jak zupełnie analogiczne dowody: Papy ego(w terminach relacji, tj. następstw strzałek) i Mioduszewskiego zależy on od pewnika wyboru, który gwarantuje konstrukcję podziałuuniix Ynarozważaneciągi.Halmos,któryteżniecytujeJ.Königa, konstruuje te same ciągi co König, a następnie trójpodziały i dwupodziały, Banach uzyskuje zbiory wyrazów tych ciągów za pomocą przecięć zbiorów, Sierpiński zaś rozważa ciągi utworzone tylko z poprzedników u Königa. Dowód Papy ego zasługuje na uwagę jako dowód czysto relacyjny. Nadto książka Papy ego rzetelnie napisana i znakomicie kolorowo ilustrowana jest zadziwiającym dowodem optymizmu dydaktycznego zarówno autora jak i belgijskiego ministerstwa edukacji. Przeznaczona dla uczniów 12 13- letnich ale z programem eksperymentalnym, wypracowanym pod auspicjami UNESCO i już wcześniej realizowanym przez kilka lat, książka ta zgrabnie i precyzyjnie omawia teorię mnogości, grupy permutacji i przekształceń geometrycznych, pierścień liczb całkowitych, system dwójkowy, algebrę wektorów, kończąc na grupach abstrakcyjnych. Zawiera wkładki z portretami i życiorysami kilku matematyków, w tym Cantora, ale twierdzenie Cantora- Bernsteina(jako stwierdzenie, proposition) przypisuje tylko Bernsteinowi (podobnie czyni Poincaré w[27]). 4. Dowód nieiteracyjny. Wszystkie dowody wyżej omawiane lub wzmiankowane wykorzystują rekursje. Z rekursji korzysta oryginalny dowód A. Zelevinsky ego[35] opublikowany jako jeden z dowodów doskonałych w książce Dowody z Księgi Aignera i Zieglera(1998, 2001). Nierekursywny dowód podaje monografia[16, ss. 46 47]. Poniżej podaję nierekursywną wersję swojego dowodu z[34] korzystającą z pewnego ogólnego lematu(w którym odwzorowanie jest dowolne, niekoniecznie iniektywne). Sam lemat i jego dowód sugerują uproszczenia dowodu z monografii[16]. Lemat. Jeśli X jest dowolnym zbiorem, Z dowolnym podzbiorem, Z X, oraz ϕ: X X dowolnym odwzorowaniem, to istnieje najmniejszy zmożliwychpodzbiórc Z Xtaki,żeC Z =ϕ[c Z ] Z. Dowód. Zauważmy,żeC Z =,dokładniegdyz=.niech S Z ={C X: ϕ[c] CorazZ C}. StąddlakażdegoelementuC S Z zbiórc :=ϕ[c] Zjestoczywiście podzbioremzbioruc.dlategoϕ[c ] ϕ[c] C,azatemC S Z.PonieważzaśS Z jestrodzinąpodzbiorów(alerównieżs Z,boX S Z ),więc

90 Z. Skupień zbiórc Z := S Z jestjednoznacznieokreślony.udowodnimy,żec Z S Z. MianowicieC Z jestnadzbioremdlazoraz [ ] ϕ[c Z ]=ϕ C ϕ[c] C=C Z, C S Z C S Z C S Z gdzieobierównościwynikajązdefinicjic Z,inkluzjezaśzsubmultyplikatywnościϕ[ ]izmonotonicznościoperacjiprzecinania.stądc Z jestnajmniejszymelementem(wsensieinkluzji)ws Z,azatemC Z =(C Z ) =ϕ[c Z ] Z. Powyższy lemat i jego dowód prosto i nieco ogólniej ujmują DedekindowąideęnierekusywnegookreśleniazbioruC Z,nazwanegoprzezDedekinda łańcuchem podzbioru Z. Idea ta jest wykorzystana w klasycznych dowodach Dedekinda[9, s. 449](1932, w nieopublikowanym wcześniej liście (1899) do Cantora) i Zermela[38](1908, p. też eleganckie sformułowanie tegodowoduuhausdorffa[14,s.50](1914)),aupeana(1906,bezcytowania Dedekinda) jest metodą przedstawiania unii iterowanych obrazów jako przecięcia podzbiorów. Zatem lemat niezależnie od aksjomatu wyboru dowodziistnieniauniic Z = i=0 ϕi [Z]. Uwaga. ModyfikującdefinicjęrodzinyS Z wpowyższymdowodzie, możemy uzyskać istnienie najmniejszych podzbiorów: C Z =ϕ [C Z ] Z, C± Z =ϕ[c± Z ] ϕ [C ± Z ] Z, gdzieϕ [ ]oznaczaprzejściedoprzeciwobrazupoprzezϕ,zaśc ± Z jestunią orbit elementów zbioru Z. Dowód D6.Wystarczyokreślićbijekcjęh:A Bzapomocądanych iniekcjif:a Big:B A,tylkogdyanif,anigniesąbijekcjami.Dla ułatwienia prezentacji(i umożliwienia wizualizacji) załóżmy, że zbiory A, B są rozłączne(bo rozłączne są równoważne zbiory A { }, B {{ }}). Zatem napewnychpodzbiorachzbiorua,powiedzmya A ia B owłasnościach A A A\g[B]ig 1 [A B ] B\f[A],musibyćodpowiednioh=fnaA A ih= g 1 naa B.Powyższylematumożliwiaznalezienienajmniejszychtakich podzbiorów, a to może prowadzić do dwóch wersji bijekcji h. Stosujemy bowiemlemat,przyjmującϕ=g f XorazC Z =:A A dlaz=a\g[b] ix=a,awtedybijekcjahmożebyćnastępującąuniązacieśnień:h= f A A g 1 A\A A. JeślizaśC Z =:A B dlaz=g[b\f[a]]ix=a\a A,tohmożemieć następującądrugąwersję:h=g 1 A B f A\A B. ZatemjeślizbiórA C :=A\(A A A B )jestniepusty,tonaa C albo h=f A C alboh=g 1 A C,p.rys.

Twierdzenie Cantora-Bernsteina dowody znane-nieznane 91 RozważanezbioryA A ia B uzyskujesięrekursywnie: A A = (g f) i [A\g[B]],A B = (g f) i [g[b\f[a]]]. i=0 Tezbiorymożnaokreślićteżzapomocąistnieniadrógwrelacjiφ:=f g, która jest zbiorem strzałek między elementami zbioru A B. Drogą, powiedzmya z,czylidrogąodelementuadoelementuz,nazywamy(skończony) zbiór strzałek(podzbiór relacji φ) tworzących następstwo strzałek: a b,b c,...,x y,y z;ewentualnietylkoa zalbo dlaz=a. Mówimy, że dwa elementy są połączalne, jeśli istnieje droga od jednego z nich dodrugiego.zatema A ia B tozbioryelementówwa,któresąpołączalne odpowiednioza\g[b]izb\f[a];a C zaś toresztaelementówwa.stąd, ponieważkażdyelementjestkońcemconajwyżejjednejstrzałki,zbiorya A ia B sąrozłączne. 5. Jeszcze trochę historii. Ponieważ literaturowe odwołania i do Bernsteina, i do nieco późniejszych prac bywają błędne, podkreślmy, że Bernstein nieopublikowałswojegodowoduzr.1897nawetwswojejrozprawiezlat 1901, 1905. Podaje w niej jedynie, że jego dowód opublikował Borel(1898) oraz Schönflies(1900), i że inny dowód podał Zermelo(1901)(przy czym sam Zermelo nie cytuje później swego dowodu). Bernstein cytuje tylko anons [31](1896)(zresztą błędnego) dowodu Schrödera. 29 sierpnia 1899 Dedekind przesłał Cantorowi swój ww. dowód, a w odpowiedzi już następnego dnia Cantor napisał, że Schröder przedstawił swój dowód jesienią 1896 na konferencjiwefrankfurcienadmenemiżeopublikowałgow[32,ods.337] oraz że młody Bernstein przedstawił swój dowód około Wielkanocy 1897 na seminarium w Halle. Wszystko wskazuje, że Bernstein przygotowując przedruk[3](1905) swojej dysertacji nie wiedział, że dowód Schrödera nie jest poprawny. Błąd wykrył Korselt, który w maju 1902 przesłał kontrprzykład oraz swój dowód twierdzenia(β) najpierw Schröderowi, potem po otrzymaniu od niego szybkiej odpowiedzi do Mathematische Annalen również jeszcze tegoż maja. Redakcja Math. Ann. opublikowała drugą i=0

92 Z. Skupień wersję[20]tejpracy(zroku1910),wktórejkorseltstwierdza,żebłądnie jest znany, oraz cytuje dawną odpowiedź Schrödera. Schröder już wcześniej wykrył swój błąd, latem lub jesienią roku 1901 powiedział o nim Maxowi Dehnowi, przyjacielowi Bernsteina, i obiecał zawiadomić Cantora, ale listu zaczętego1.ix.1901 nieukończył...schröderbyłautoremznanego podręcznika z algebry i logiki, p. cytat u Zermela w[38]. A opublikowany dowód Korselta to dowód Mioduszewskiego, tyle tylko że zamiast o orbitach Korselt mówi o cyklach i łańcuchach(tj. drogach). Korselt też nie cytuje Königa, ale twierdzi, że podobne(?) dowody znaleźli później Zermelo ipeano,iżejegodowódteżniewykorzystujeliczbiindukcjizupełnej. Na koniec uwag historycznych podkreślmy, że dowody Zermela[38](1908) i Peana[25](1906) są niezależne. W styczniu 1906 Zermelo wysłał swój dowódpoincarému,któryw[27]jużwmaju1906przytoczyłidowódbernsteina, i Zermela, dyskwalifikując oba Bernsteina za rekurencję, Zermela za rzekome błędne koło. W swoim artykule[37] Zermelo nie zarzuca Peanowi plagiatu, lecz wyraża żal, że ten, polemizując w[26] z artykułem Poincarégo, przytacza swój dowód, nawet nie wspominając o analogicznym dowodzie Zermela u Poincarégo jakby dlatego, aby następnie zwalczanie aksjomatu wyboru tym dobitniej kierować ku Zermelowi. Dopiero w komentarzu przy swoim dowodzie w[38](1908) Zermelo stwierdza, że wykorzystał metodę łańcuchów Dedekinda[11], zaś w komentarzu[9, s. 451] do ww. listu do Cantora z dowodem Dedekinda słusznie podkreśla, że te dowody różnią się nieistotnie. Faktycznie tylko oznaczeniami(!). Reasumując, o nierekurencyjnym dowodzie twierdzenia Cantora-Bernsteina, wykorzystującym analogonpowyższegolematu,możnawięcmówić,żeto Dowód DPZ (Dedekinda-Peana-Zermela). Nie twierdzę, że ten ostatni dowód(niewątpliwie najlepszy w sensie logiki) należy wykładać adeptom matematyki. Teoria mnogości w ramach wstępu do matematyki ma poszerzyć i ugruntować znajomość języka struktur matematycznych. Subtelności warto jednak przynajmniej wzmiankować. Przecież ambicją matematyków-mnogościowców jest skonstruowanie prawie całego bogactwa matematyki, np. bogactwa struktur liczbowych, w ramach teorii mnogości. Jeśli więc dowód twierdzenia Cantora-Bernsteina, które ma posłużyć do zdefiniowania i uporządkowania liczb kardynalnych, skażony jest użyciem liczb(np. ciągów), to warto wspomnieć o remedium. Przy okazji owym adeptom znającym ciągi uzasadni się celowość korowodów z definicją par itp. niby-ciągów.

Twierdzenie Cantora-Bernsteina dowody znane-nieznane 93 Bibliografia [1]S. Banach, Unthéorèmesurlestransformations biunivoques,fund.math.6 (1924), 236 239. [2]F.Bernstein,Inaugural-Dissertation,Göttingen,1901(p.niecozmienionyprzedrukw[3]). [3]F.Bernstein,UntersuchungenausderMengenlehre,Math.Ann.61(1905),117 155. [4]E. Bertram, P. Horák, Someapplicationsofgraphtheorytootherpartsof mathematics, Math. Intellig. 21(1999), 6 11. [5]E. Borel, Leçonssurlathéoriedesfonctions,Gauthier-Villars,Paris,1898. [6] G. C a n t o r, Ueber unendliche, lineare Punktmannichfaltigkeiten, Math. Ann. 21 (1883), 545 586(przedruk w[7, 9]). [7] G. C a n t o r, Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen, Leipzig, 1883. [8]G. Cantor, BeiträgezurBegründungdertransfinitenMengenlehre,Math.Ann. 46(1895), 481 512(przedruk w[9]; tł. na ang. i red. Ph.E.B. Jourdain: Contributions to the Founding of the Theory of Transfinite Numbers, Dover, New York, 1915). [9]G. Cantor, GesammelteAbhandlungen,red.E.Zermelo,Springer,Berlin,1932. [10]R.H. Cox, AproofoftheSchroeder-Bernsteintheorem,Amer.Math.Monthly76 (1968), 508. [11]R. Dedekind, WassindundwassollendieZahlen,Braunschweig,1888. [12]D.Drasin,R.Gilmer,Complementsandcomments,Amer.Math.Monthly79 (1971), 1104 1106. [13]P.R. Halmos, NaiveSetTheory,VanNostrandReinholdCo.,NewYorketal., 1960. [14]F.Hausdorff,GrundzügederMengenlehre,VerlagvonVeit&Co.,Leipzig,1914. [15]T.J. Jech, TheAxiomofChoice,North-Holland,Amsterdam;Amer.Elsevier, New York, 1973. [16]W. Just, M. Weese, DiscoveringModernSetTheory.I:TheBasics,Amer. Math. Soc., 1996. [17]D. König, Surlescorrespondances multivoquesdesensembles,fund.math.8 (1926), 114 134. [18]D.König,TheoriederendlichenundunendlichenGraphen,Akad.Verlag.,Leipzig, 1936(przedruk: Teubner Verlag., Leipzig, 1986). [19]Jules König (cyt.jakojuliusw[18]),surlathéoriedesensembles,c.r.acad. Sci. Paris 143(1906), 110 112. [20]A.Korselt,ÜbereinenBeweisdesÄquivalenzsatzes,Math.Ann.70(1911),294 296. [21]R. Mańka, A. Wojciechowska, OdwóchtwierdzeniachCantora,Wiadom. Mat. 25(1984), 191 198. [22]J. Mioduszewski, TwierdzenieCantora-Bernsteina znanydowódzapisany inaczej, Matematyka 4 98(272), rok 51(1998), 207 211. [23]J. Mioduszewski, WsprawieartykułuZ.Skupienia(ListdoRedakcji),Wiadom. Mat. 37(2001), 181 182. [24] Papy(avecF.Papy),Mathématiquemoderne,Wyd.M.Didier,Bruxelles Paris, 1964. [25]G. Peano, SupertheoremadeCantor-Bernstein,Rend.delCircoloMatematicodi Palermo 21(1906), 360 366.

94 Z. Skupień [26]G. Peano, SupertheoremadeCantor-Bernstein,RivistadiMatematica8(no.5), 136 157. [27]H.Poincaré,Lesmathématiquesetlalogique,Rev.deMetaphysiqueetdeMorale 14(1906) 294 317. [28]H. Poincaré (tł.m.h.horwitz),naukaimetoda,nakładj.mortkowicza,warszawa, 1911, G. Centnerszwer; Lwów, Księgarnia H. Altenberga. [29]M. Reichbach (późniejreichaw),unesimpledémonstrationduthéorèmede Cantor-Bernstein, Colloq. Math. 3(1955), 163. [30]A. Schoenflies, DieEntwicklungderLehrevondenPunktmanningfaltigkeiten, Jahresber. Deutschen Math.-Verein. 8(1900), Heft 2. [31]E. Schröder, ÜberG.CantorscheSätze,Jahresber.DeutschenMath.-Verein.5 (1896), Heft 1, 81 82. [32]E. Schröder, ÜberzweiDefinitionenderEndlichkeitundG.CantorscheSätze, Nova Acta Leop. 71(1898), 303 366. [33]W. Sierpiński, CardinalandOrdinalNumbers,PWN,Warszawa,1958. [34]Z. Skupień, ProstydowódtwierdzeniaCantora-Bernsteina,Wiadom.Mat.35 (1999), 49 53. [35]A. Zelevinsky, w:m. Aigner, G.M. Ziegler, ProofsfromTHEBOOK, Springer, 2001(Dowody z Księgi, Wyd. Nauk. PWN, Warszawa, 2002, ss. 118 119). [36]E. Zermelo, GöttingerNachr.10(1901),1 5(p.Bernstein[3,s.121]). [37]E. Zermelo, NeuerBeweisfürdieMöglichkeiteinerWohlordnung,Math.Ann. 65(1908), 107 128. [38]E.Zermelo,UntersuchungenüberdieGrundlagenderMengenlehreI,Math.Ann. 65(1908), 261 281. [39](Z żałobnej karty) Meir Reichaw(1923 2000), Wiadom. Mat. 36(2000), 189 191.