Prosty dowód twierdzenia Cantora Bernsteina
|
|
- Danuta Kołodziej
- 7 lat temu
- Przeglądów:
Transkrypt
1 ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXV(1999) Zdzisław Skupień(Kraków) Prosty dowód twierdzenia Cantora Bernsteina Motto(od S. Hartmana[8]): Nie będziemy gadać niepotrzebnych rzeczy. S. I. Witkiewicz(Witkacy), Szewcy Celem niniejszych uwag jest spopularyzowanie najbardziej może elementarnego dowodu twierdzenia Cantora Bernsteina, podającego naturalny i nietrywialny warunek konieczny i wystarczający równoliczności dwóch dowolnych zbiorów A, B. 1.TwierdzenieCantora Bernsteinaorzeka,żesłabanierówność między mocami zbiorów jest relacją antysymetryczną. Oznacza to, że dla dowolnychzbiorówa,b,jeśli A B oraz B A,to A = B. Tak sformułowane twierdzenie wydaje się oczywiste i jest takie, ale tylko w przypadku skończonych mocy A, B. Równoważne sformułowanie twierdzenia odwołuje się do definicji równoliczności(w terminach istnienia bijekcji A B). Każda funkcja utożsamiana jest ze swoim wykresem. Inaczej mówiąc, funkcjafjestzbiorempar x,f(x),czylistrzałekodxdof(x),gdziex przebiega dziedzinę funkcji. Elementy x i f(x) nazywamy odpowiednio początkiem(bełtem)ikońcem(grotem)strzałkix f(x).obrazzbiorua poprzez funkcję f oznaczamy symbolem f[a]. Twierdzenie Cantora Bernsteina. Jeśli odwzorowania f: A B orazg:b Asąiniekcjami,toistniejebijekcjah:A B. Dowód.Załóżmy,żezbioryA,Bsąrozłączne(możnabowiemrozważaćrozłącznezbioryA { },B {{ }}).Załóżmy,żef gjestzbiorem wszystkich strzałek między elementami zbioru A B. Mówimy, że elementy xiysąpołączalne,jeślix=ylubistniejeciągstrzałekprowadzącychod jednego elementu do drugiego. Konstruujemy bijekcję h. Podzielmy A B natrzypodzbiory:a A B A składasięzwszystkichelementówpołączalnych
2 50 Z. Skupień za\g[b],a B B B połączalnychzb\f[a],zaśa C B C topozostałaczęśćzbiorua B.Oznaczeniasątakie,żeA=A A A B A C oraz B=B A B B B C.Rozważanetrzypodzbiorysąparamirozłączne,bo każdyelementjestkońcemconajwyżejjednejstrzałki.nadtof[a A ]=B A, g 1 [A B ]=B B orazg 1 [A C ]=B C =f[a C ].Dlategobijekcjahmożebyć następującąuniązacieśnieńodwzorowańfig 1 : h=f (A A A C ) g 1 A B. Konstrukcja w dowodzie ma oczywiście charakter egzystencjalny. Uwaga 1.Konstrukcjębijekcjihwpowyższymdowodziemożnazmodyfikować,jeślipodzbiórA C.Mianowicierelacja byćpołączalnym jest relacją równoważności na zbiorze A B, ponieważ każdy element jest początkiem dokładnie jednej, końcem zaś co najwyżej jednej strzałki. Klasami połączalnych nazwijmy odpowiadające klasy równoważności. Możemy więc przyjąć,żebijekcjah tofnaa A,g 1 naa B orazalbofalbog 1 na każdymniepustymprzecięciupodzbiorua C zpojedynczymiklasamipołączalnych. Najprostszą modyfikację bijekcji otrzymujemy przyjmując h=f A A g 1 (A B A C ). 2. Impulsem do rozważań jest najnowszy artykuł Mioduszewskiego[17] przedstawiający wersję dowodu w terminach iteracji i orbit odwzorowania zbioru w siebie. Inny powód, to interesująca książka[11], w której to twierdzenie jest nazywane twierdzeniem Cantora Schrödera Bernsteina. Autorzy tej książki twierdzą, że 45% autorów używa nazwy Twierdzenie Cantora Bernsteina, a drugie 45% Twierdzenie Schrödera Bernsteina. Nie ujawniają,coczyni10%(alesamidotejgrupynależą).zkoleiautorzyartykułu [16] należą do pierwszej z tych grup, ale uzasadniają możliwość używania nazwy Twierdzenie Cantora Dedekinda Bernsteina. Wszystkie cztery osoby wymienione w tych nazwach, to matematycy niemieccy. Sformułowania twierdzenia opublikował Georg Cantor[3, 4] w latach 1883 i 1895, poprawny dowód znalazł dziewiętnastoletni wówczas Felix Bernstein i przedstawił na seminarium Cantora w Halle wiosną r. 1897, po czym dowódtenopublikowałe.borelwswojejksiążce[2]w1898r.ohistoriitego twierdzenia, o różnych jego dowodach i o początkach teorii mnogości można poczytać w artykule Mańki i Wojciechowskiej[16], p. też Cantor[5]. Dotychczas opublikowane dowody albo bywają dość skomplikowane albo są wadliwe lub wręcz błędne. Przykładem błędnego dowodu jest dowód E. Schrödera [19], opublikowany w 1898 r. Błąd poprawiony jest przez Korselta[13]. Poprawne dowody w pierwszej dekadzie XX wieku opublikowali J. König[15], Peano[18] i Zermelo[21]. Dowody Bernsteina i Zermela przytoczone są w monografii Hausdorffa[9]. Swój oryginalny dowód przedstawił Dedekind
3 Prosty dowód twierdzenia Cantora Bernsteina 51 jedyniewliściedocantorawsierpniu1899r.,por.publikacjew[6]oraz[5, str. 449]. W komentarzu Zermelo stwierdza, por.[5, str. 451], że jego dowód jedynie nieistotnie różni się od Dedekindowego. Mniej lub bardziej oryginalne wersje dowodów można znależć w podręcznikach teorii mnogości, topologii lub analizy. Współcześnie bywa też, że dowód jest pomijany nawet w podręcznikach dla studentów matematyki (jako stosunkowo trudny, por.[20]). 3. W przytoczonym wyżej dowodzie można rozważać parę zbiorów D:= A B,f g imożnająnazwaćdigrafem.wtedyelementyzbiorua B nazywane są wierzchołkami digrafu D. Zauważmy, że każdy wierzchołek digrafu D jest początkiem jednej strzałki i końcem co najwyżej jednej strzałki. Zatem digraf D jest rozłączną unią swoich składowych spójności, z których każda jest ścieżką(nieprzedłużalną i nieskończoną) lub konturem(czyli skończoną ścieżką zamkniętą). Właśnie każda klasa połączalnych, zdefiniowana wyżej w Uwadze 1, jest zbiorem wierzchołków jednej składowej digrafu. WszczególnościzbioryA A B A ia B B B sąpokryteprzezskładowemającepoczątki,przyczympoczątkitesąodpowiedniowa\g[b]ib\f[a]. ZbiórA C B C zaśjestpokrytyprzezskładowebędącekonturamilubobustronnie nieskończonymi ścieżkami. Autorowi wiadomo, że od pewnego czasu popularyzowany jest grafowy dowód matematyka węgierskiego D. Königa[14] wykorzystujący nieskierowane pokojarzenia, por. Horák[10]. Warto zaznaczyć, że książka[14] jest chronologicznie pierwszą monografią teorii grafów, jej autor zaś jest synem autora pracy[15]. 4. Szczególnie proste dowody twierdzenia Cantora Bernsteina oparte są na porządku poprzedzania(lub następowania) zdefiniowanym w rozłącznej uniia B,por.KołmogorowiFomin[12]orazHalmos[7].Dowódw[12] nie jest jednak poprawny, bo zastosowana definicja poprzedzania jest zbyt restrykcyjna. Halmos(który użył nazwy twierdzenie Schrödera Bernsteina) przedstawia dowód na prawie stronę bardzo zbliżony do podanego wyżej (ale dłuższy). W szczególności rozważa identyczne jak wyżej podziały dwóch danych zbiorów na trzy podzbiory. Ponieważ jednak nie definiuje explicite równoważnościowej relacji takiej jak połączalność, więc nie uzyskuje subtelniejszego opisu struktury wytworzonej przez dane odwzorowania f i g. 5. Również Banach jest autorem wersji dowodu twierdzenia Cantora Bernsteina. Następujący wynik, będący uogólnieniem idei Banacha, jest prostym wnioskiem z rozważań przytoczonych wyżej(a także przez Halmosa). Twierdzenie 1. Przy założeniach powyższego twierdzenia Cantora Bernsteina każdy ze zbiorów A i B można przedstawić jako unię A=A 1 A 2 A 3, B=B 1 B 2 B 3
4 52 Z. Skupień MożliwienajmniejszepodzbioryA 1 ia 2,toodpowiednioA A ia B. Wniosek(Banach[1]). Oba zbiory A, B są rozłącznymi uniami A=P Q oraz B=P Q odpowiedniopodzbiorówp,qorazp,q takich,żef[p]=p ig[q ]=Q. trzechrozłącznychpodzbiorów takich,że f[a 1 ] = B 1,g[B 2 ] = A 2 oraz f[a 3 ]=B 3 ig[b 3 ]=A 3.Nadtopodzbiory A 1,A 2 oraz B 1,B 2 sąniepuste,jeśliniepustesąobapodzbiorya\g[b]ib\f[a]. Dowód.Możnaprzyjąć,żePiQsąmaksymalnymizbiorami,naktórychustalonabijekcjahpokrywasięodpowiedniozfig 1.WtedyP iq sąobrazamipiqpoprzezodpowiedniofig 1. Uwaga 2.AutorprzedstawiłdowódnakonferencjiSeventhWorkshop GRAPHS 3in1 wkrynicy27listopada1998roku,wdniuswoichurodzin i w przeddzień imienin. Cytowane prace [1]Stefan Banach, Unthéorèmesurlestransformationsbiunivoques,Fund.Math.6 (1924), [2]Emil Borel, Leçonssurlathéoriedesfonctions,Gauthier-Villars,Paris,1898. [3] G. C a n t o r, Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Leipzig, [4]G. Cantor, BeiträgezurBegründungdertransfinitenMengenlehre,Math.Ann. 46(1895), (wyd. ang.: Contributions to the Founding of the Theory of Transfinite Numbers, Dover, New York, 1915). [5]Georg Cantor, GesammelteAbhandlungen,red.E.Zermelo,Springer,Berlin, [6]RichardDedekind,Ähnliche(deutliche)AbbildungundähnlicheSysteme,w:Gesammelte Math. Werke, vol. III, Braunschweig, 1932, [7]P.R. Halmos, NaiveSetTheory,VanNostrandReinholdCo.,NewYorketal., [8]S. Hartman, Wstępdoanalizyharmonicznej,PWN,Warszawa,1969. [9]Felix Hausdorff, GrundzügederMengenlehre,Veitu.Co.,Leipzig,1914. [10]P.Horák,ReferatnaseminariumwInstytucieMatematykiAGH,Kraków,styczeń [11]W. Just, M. Weese, DiscoveringModernSetTheory.I:TheBasics,Amer. Math. Soc., [12]A.N.Kołmogorow,S.W.Fomin,Elemientytieoriifunkcyjifunkcjonalnogo analiza, Nauka, Moskwa 1972(wyd. I: 1954). [13]A.Korselt,ÜbereinenBeweisdesÄquivalenzsatzes,Math.Ann.70(1911), [14]Dénes König, TheoriederendlichenundunendlichenGraphen,Akad.Verlag., Leipzig, 1936(przedruk: Teubner Verlag., Leipzig, 1986). [15]Julius König, Surlathéoriedesensembles,C.R.Acad.Sci.Paris143(1906),
5 Prosty dowód twierdzenia Cantora Bernsteina 53 [16]R. Mańka, A. Wojciechowska, OdwóchtwierdzeniachCantora,Wiadom. Mat. 25(1984), [17]J. Mioduszewski, TwierdzenieCantora Bernsteina znanydowódzapisany inaczej, Matematyka 4 98(272), rok 51(1998), [18] Giuseppe P e a n o, Super theorema de Cantor Bernstein, Rend. Circ. Mat. Palermo 21(1906), [19]ErnstSchröder,ÜberzweiDefinitionenderEndlichkeitundG.CantorscheSätze, Nova Acta Leop. 71(1898), [20]J. Słupecki, K. Hałkowska, K. Piróg-Rzepecka, Logikaiteoria mnogości, Wyd. Nauk. PWN, Warszawa 1994, 178. [21]Ernst Zermelo, UntersuchungenüberdieGrundlagenderMengenlehreI,Math. Ann. 65(1908),
Twierdzenie Cantora-Bernsteina dowody znane-nieznane
ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXIX(2003) Zdzisław Skupień(Kraków) Twierdzenie Cantora-Bernsteina dowody znane-nieznane 1. Wstęp. Matematyka jest niewątpliwie
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Wykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy
Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) 1. Informacje ogólne koordynator
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Rozkład figury symetrycznej na dwie przystające
Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Zbiory mocy alef zero
Uniwersytet Rzeszowski Wydział Matematyczno-Przyrodniczy Monika Łokaj Zbiory mocy alef zero Praca licencjacka wykonana w Instytucie Matematyki pod kierunkiem dra Michała Lorensa Praca została przyjęta
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Topologia Topology Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Matematyka Poziom kwalifikacji: I stopnia Semestr: IV Rodzaj zajęć: wykład, ćwiczenia Liczba godzin/tydzień:
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii
Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą
Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka
Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Teoria liczb. Wykład nr 9: Przybliżanie liczb rzeczywistych. Ułamki łańcuchowe (cz.1) Semestr letni 2018/2019
Teoria liczb Wykład nr 9: Przybliżanie liczb rzeczywistych. Ułamki łańcuchowe (cz.1) Semestr letni 2018/2019 Trzy sposoby definiowania liczb rzeczywistych Dedekind Parę (A, B) podzbiorów zbioru Q nazywamy
Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry
W niniejszym artykule zero nie jest liczbą naturalną! Ultrafiltry Dominik KWIETNIAK, Kraków Artykuł ten stanowi zapis referatu jaki został wygłoszony na XLVII Szkole Matematyki Poglądowej Ekstrema. Przedstawiono
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii
Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących
Filtry i nety w przestrzeniach topologicznych
Filtry i nety w przestrzeniach topologicznych Magdalena Ziębowicz Streszczenie W referacie zostaną przedstawione i scharakteryzowane pojęcia związane z filtrami i ultrafiltrami, ciągami uogólnionymi oraz
Matematyka II - Organizacja zajęć. Egzamin w sesji letniej
Matematyka II - Organizacja zajęć Wykład (45 godz.): 30 godzin - prof. zw. dr hab. inż. Jan Węglarz poniedziałek godz.11.45 15 godzin - środa godz. 13.30 (tygodnie nieparzyste) s. A Egzamin w sesji letniej
Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego
Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................
(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
KARTA KURSU. Kod Punktacja ECTS* 7
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 7 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny: Dr hab. prof.
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Topologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
3 Abstrakcyjne kompleksy symplicjalne.
3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Krzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość
Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;
Logika I. Wykład 3. Relacje i funkcje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Logika matematyczna i teoria mnogości (I) J. de Lucas
Logika matematyczna i teoria mnogości (I) J. de Lucas Ćwiczenie 1. (Zad. L. Newelskiego) Niech p oznacza zdanie Ala je, zaś q zdanie As wyje. Zapisz jako formu ly rachunku zdań nastȩpuj ace zdania: 1.1.
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Fale biegnące w równaniach reakcji-dyfuzji
Fale biegnące w równaniach reakcji-dyfuzji Piotr Bartłomiejczyk Politechnika Gdańska Między teorią a zastosowaniami: Matematyka w działaniu Będlewo, 25 30 maja 2015 P. Bartłomiejczyk Fale biegnące 1 /
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
Wstęp do Matematyki (1)
Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie
1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14
Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA.
ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. PIOTR ZAKRZEWSKI 1. Wykłady 1/2 Definicja 1.1. Przestrzeń polska to przestrzeń topologiczna ośrodkowa, metryzowalna w sposób zupełny. Przykład 1.2.
Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2
Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Informatyka, I stopień
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, I stopień Sylabus modułu: Podstawy logiki i teorii mnogości (LTM200.2) wariantu modułu (opcjonalnie): 1. Informacje ogólne
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
NOWE ODKRYCIA W KLASYCZNEJ LOGICE?
S ł u p s k i e S t u d i a F i l o z o f i c z n e n r 5 * 2 0 0 5 Jan Przybyłowski, Logika z ogólną metodologią nauk. Podręcznik dla humanistów, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2003 NOWE
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Zbiory liczbowe widziane oczami topologa
Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,
3.Funkcje elementarne - przypomnienie
3.Funkcje elementarne - przypomnienie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny3.Funkcje w Krakowie) elementarne - przypomnienie 1 / 51 1 Funkcje
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
KARTA KURSU. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 6 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny dr Antoni
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne