Funkcja liniowa powtórzenie wiadomości Napisz wzór funkcji liniowej wiedząc, że: a) miejscem zerowym funkcji jest liczba oraz f()=, b) miejscem zerowym funkcji jest liczba i i wykres funkcji przecina oś OY w punkcie A ( 0, ) c) do jej wykresu należą punkty A (, ) oraz B (, ) d) jej wykres przechodzi przez punkt A (, ) i jest nachylony do osi OX pod kątem 5 rad e) jej wykres jest równoległy do wykresu funkcji y= i przechodzi przez punkt A (, ) f) jej wykres jest równoległy do wykresu funkcji y x i przechodzi przez punkt A (, ) g) jej wykres jest prostopadły do wykresu funkcji y x i przechodzi przez punkt A (, ) h) f ( ) i f ( x) 0 x, i) f ( ) i f ( x) 0 x R Wyznacz kąt nachylenia wykresu funkcji liniowej do osi OX, jeśli wiadomo, że do jej wykresu należą punkty A (, ) oraz B (,0) Naszkicuj wykresy funkcji: a) f ( x) x b) f ( x) x c) f ( x) x x d) f ( x) x x x 8 x dla x, e) f ( x) x dla x, dla x, Wyznacz te wartości parametru m, dla których miejscem zerowym funkcji f ( x) m x jest liczba 5 Wyznacz te wartości parametru m, dla których wykresy funkcji liniowych f ( x) x m oraz g ( x) m x są równoległe Wyznacz te wartości parametru m, dla których wykresy funkcji liniowych f ( x) m x oraz g( x) x m są prostopadłe 7 Wyznacz te wartości parametru m, dla których funkcja liniowa o wzorze f ( x) ( m ) x jest rosnąca 8 Rozwiąż równania i nierówności: a) x b) x x c) x x x d) x 5 e) x x f) x x x 8x 9 Dane jest równanie liniowe z niewiadomą x Przedyskutuj liczbę i rodzaj rozwiązań równania ze względu na wartości parametrów a) mx m x b) x x a b 0 Dla jakich wartości parametru m ( m R) układ równań x m y m z niewiadomymi x i y jest x y oznaczony, nieoznaczony, sprzeczny? W przypadku istnienia rozwiązania wyznacz je Rozwiąż układ równań metodą wyznaczników y z x x z y x y z Dla jakich wartości parametru m rozwiązaniem układu równań dodatnich? y m x y m x jest parą liczb
Zilustruj zbiór wszystkich punktów płaszczyzny, których współrzędne spełniają równanie i nierówność: a) x y y b) x y x y Rozwiąż algebraicznie lub graficznie układ równań x y x y 5 Wyznacz zbiór tych punktów płaszczyzny, których współrzędne spełniają układ nierówności x y y x Ile wody należałoby dolać do kg ośmioprocentowej solanki, aby otrzymać roztwór pięcioprocentowy? 7 Z solanki czteroprocentowej odparowano kg wody Otrzymana solanka ma stężenie 0% Ile waży ta solanka? 8 Ile soli należy dosypać do 9kg solanki o stężeniu %, aby otrzymać solankę o stężeniu 0%? 9 Ile trzeba zmieszać roztworu wodnego soli kuchennej o stężeniu % z roztworem soli kuchennej o stężeniu %, żeby otrzymać kg roztworu o stężeniu 8%? 0 Dana jest funkcja o wzorze f(x) = x 5 x x a) Napisz wzór funkcji nie używając symbolu wartości bezwzględnej i pierwiastka kwadratowego b) Narysuj wykres tej funkcji c) Zbadaj liczbę rozwiązań równania f(x) = k, kr, ze względu na wartość parametru k Pan Kowalski otrzymuje stałe wynagrodzenie miesięczne oraz dodatkowo wynagrodzenie za nadgodziny Za każdą godzinę nadliczbową otrzymuje o 50% więcej niż za godzinę etatową W marcu miał 0 nadgodzin i otrzymał 90 zł W kwietniu zaś nadgodzin i otrzymał zł a) Oblicz: ) wysokość stałego wynagrodzenia miesięcznego, ) stawkę za godzinę etatową, ) stawkę za godzinę nadliczbową b) Napisz wzór opisujący wynagrodzenie miesięczne pana Kowalskiego w zależności od liczby nadgodzin Zadania do samodzielnego rozwiązania Z tego samego miejsca wyruszyli w tę samą stronę piechur i rowerzysta Piechur wyszedł o godzinie 00 i maszerował z prędkością km/h, a rowerzysta wyjechał o godzinie 0 00 i jechał z prędkością km/h O której godzinie rowerzysta dogonił piechura? Zadanie rozwiąż graficznie Z 0-procentowego roztworu soli kuchennej odparowano pewną ilość wody i otrzymano kg roztworu 0-procentowego Ile kilogramów wody odparowano? Podaj wzór funkcji liniowej, której wykres przecina oś OY w punkcie A(0, ) i jej miejscem zerowym jest liczba 7 Czy istnieje tylko jedna taka funkcja? Dane są wzory funkcji liniowych: f(x) = x 5, g(x) = x, h(x) = ax + a) Dla jakich a wykresy funkcji przecinają się w tym samym punkcie? b) Wyznacz a tak, aby wykresy funkcji f oraz h były prostopadłe 5 Opisz za pomocą układu nierówności zbiór przedstawiony na rysunku Dana jest funkcja f(x) = x dla x (, x 7 dla x (, ) a) Oblicz miejsca zerowe funkcji b) Oblicz współrzędne punktu w którym wykres przecina oś OY
7 Wyznacz miarę kąta, jaki tworzy z osią OX, prosta o równaniu x y 5 = 0 8 Dana jest funkcja o wzorze f(x) = ( a)x +, xr a) Wyznacz a tak, aby miejscem zerowym funkcji była liczba b) Wyznacz wszystkie wartości a, dla których funkcja jest rosnąca w zbiorze R c) Dla a = napisz wzór funkcji liniowej, której wykres jest prostopadły do wykresu danej funkcji i przechodzi przez punkt A( 7, ) 9 W prostokątnym układzie współrzędnych zaznacz zbiór wszystkich punktów, których współrzędne spełniają układ nierówności y x y x 0 Samochód zużywa średnio litrów benzyny na 00 km W jego baku znajduje się litry paliwa a) Napisz wzór funkcji opisującej liczbę litrów benzyny, jaka pozostała w baku w zależności od liczby przejechanych kilometrów Wprowadź oznaczenia: x liczba przejechanych kilometrów, y liczba litrów paliwa b) Na ile kilometrów jazdy wystarczy paliwo znajdujące się w baku? a) W miejsce kropek wstaw takie liczby, aby układ równań x y 5 x y był nieoznaczony b) Podaj interpretację geometryczną tego układu równań c) Jakiej postaci są rozwiązania tego układu? Trzech pracowników pewnej firmy otrzymało razem 900 złotych Wynagrodzenie pierwszego pracownika tak się ma do wynagrodzenia drugiego pracownika jak : Wynagrodzenie, jakie otrzymał trzeci pracownik, wynosi z pracowników? Dana jest funkcja o wzorze f(x) = % wynagrodzenia drugiego pracownika Jakie wynagrodzenie otrzymał każdy x + b, xr a) Podaj miarę kąta nachylenia wykresu funkcji do osi OX b) Wyznacz wszystkie liczby b, dla których miejsce zerowe funkcji jest liczbą większą od 5 c) Napisz wzór funkcji liniowej g, której wykres jest prostopadły do wykresu funkcji f i przechodzi przez punkt A(, ) Jeden z pracowników pewnej firmy otrzymuje stałą pensję miesięczną za 8 przepracowanych godzin oraz dodatkowe wynagrodzenie za nadgodziny Stawka za godzinę nadliczbową jest o 50% większa niż stawka za godzinę etatową W styczniu pracownik ten miał 8 nadgodzin i otrzymał razem 700 zł a) Oblicz stawkę za godzinę nadliczbową oraz stawkę za godzinę etatową b) Napisz wzór funkcji wyrażającej wynagrodzenie pracownika w zależności od liczby przepracowanych godzin nadliczbowych 5 Dana jest funkcja o wzorze f(x) = x + x x a) Napisz wzór funkcji nie używając symbolu wartości bezwzględnej i pierwiastka kwadratowego b) Narysuj wykres tej funkcji c) Zbadaj liczbę rozwiązań równania f(x) = k, kr, ze względu na wartość parametru k Dane jest równanie z niewiadomą x i parametrem m: m x = m + x + Przedyskutuj liczbę rozwiązań równania ze względu na wartość parametru m W przypadku istnienia rozwiązania wyznacz je i podaj w najprostszej postaci 7 Dana jest funkcja o wzorze f(x) = ( 5a)x + 8, xr a) Dla a = 0,5 wyznacz zbiór tych argumentów, dla których funkcja przyjmuje wartości należące do zbioru A =, 5 b) Wyznacz a tak, aby kąt nachylenia wykresu funkcji do osi OX wynosił = c) Dla jakich a wykres funkcji f jest prostopadły do wykresu funkcji 5
g(x) = 0,75x? 8 Dla jakich wartości parametru k rozwiązaniem układu równań x y k 5x y k jest para liczb o jednakowych znakach? 9 Na płaszczyźnie z prostokątnym układem współrzędnych zilustruj zbiór punktów, których współrzędne spełniają nierówność: y + x + 0 Pewna firma komputerowa produkuje dwa typy komputerów Koszt części potrzebnych do złożenia komputera I rodzaju wynosi 500 zł, a II rodzaju 000 zł Firma zyskuje na każdym sprzedanym komputerze I typu 00 zł, a II typu 00 zł Tygodniowo firma przeznacza na potrzebne materiały co najwyżej 500 zł, a sprzedaje co najwyżej 0 komputerów Ile komputerów każdego rodzaju powinna firma produkować tygodniowo, aby zysk jej był jak największy? Jaki to będzie zysk? Odpowiedzi: Spotkanie nastąpiło o godz 00 8 kg y = 7 x, tak a) a =,5, b) a = 5 y x y x,5 x 0 y 0 x =,5 oraz x = ; przecięcie z osią OY: ( 0, ) 7 = 0 8 a) a = 9 5, b) a < x 7 c) y = 5, c) równanie nie ma rozwiązań dla k (, ); ma jedno rozwiązanie dla k = ; ma dwa rozwiązania dla k (, +) Dla m = 0,5 równanie jest tożsamościowe; dla m = 0,5 równanie jest sprzeczne; dla mr { }, równanie ma jedno rozwiązanie x = 7 a) x, 0, b) a = 0,, c) a = m 8 k (, ) 0 a) y = 0,0x, xr + { 0}, b) 00 km a),5 x + y =,5, c) ( x, 0,5x + ), xr lub ( y +, y), yr 500 zł, 00 zł, 00 zł 9 0 x liczba komputerów I rodzaju;
a) 50, b) b <, c) y = x + a) za godzinę etatową 5 zł, za godzinę nadliczbową,5 zł; b) w(n) = 50 +,5n, gdzie nn 5a) f(x)= x dla x (, ) ; x dla x,) x dla x, ) b) y liczba komputerów II rodzaju; y x 0 5 y x x 0 x C y 0 yc Firma powinna produkować tylko komputery I rodzaju Największy zysk wyniesie przy produkcji 0 komputerów I rodzaju Zysk ten wyniesie 000 zł