ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)
|
|
- Judyta Jarosz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: = Zad.2 Wartość wyrażenia ( ) 3 4 zapisz w postaci pierwiastka z liczby wymiernej. Zad.3 Oblicz wartość wyrażenia: Zad.4 Zapisz w postaci 2 p, gdzie p C, wyrażenie: : (2 5 ) 5 (0, 5) Zad.5 Porównaj podane liczby: a = , b = Zad.6 Zaznacz na osi liczbowej i zapisz w postaci przedziału zbiór rozwiązań nierówności 7 3x + 2 < 5. Zad.7 Porównaj podane liczby: a = 27 0,(3), b = Zad log 10 2 log Zabudowania zajmują 20% terenu należącego do pewnej firmy. Łączna powierzchnia tych zabudowań wynosi 400 m 2. Jaki procent terenu niezabudowanego stanowi teren zabudowany? Zad.9 Wzrost kursu euro w stosunku do złotego spowodował podwyżkę ceny wycieczki zagranicznej o 5%. Ponieważ nowa cena nie była zachęcająca, postanowiono obniżyć ją o 8%, ustalając cenę promocyjną równą 1449 zł. Oblicz pierwotną cenę wycieczki dla jednego uczestnika. Zad.10 Oblicz: log log log log 4 (3 + log 3 (1 + log 2 4). Zad.11 Spośród liczb: 2 log 18 2 log 3, log 40 2 log 2, 2 log log 2, 2 log 6 log 1 znajdź najmniejszą liczbę całkowitą. Zad.12 Wskaż liczby wymierne: ; 7; 16; π; 1, ; 3, (12); 3 125; ( 2) 0 ; ; 4, ; ; Zad.13 Suma czterech kolejnych liczb naturalnych, które po podzieleniu przez 3 dają resztę równą 1 wynosi 94. Znajdź te liczby.
2 Lista nr 2 WYRAŻENIA ALGEBRAICZNE Zad.1 Rozwiąż nierówność: x 2 1 < (x 1)2 + (x + 2) 2. 2 Zad.2 Uzasadnij, że suma kwadratów trzech kolejnych liczb parzystych przy dzieleniu przez 12 daje resztę równą 8. Zad.3 Wiedząc, że liczba całkowita a nie dzieli się przez 3, znajdź resztę z dzielenia kwadratu liczy a przez 3. Zad.4 Uzasadnij, że jeżeli a + b = 1 i a 2 + b 2 = 7, to a 4 + b 4 = 31. Zad.5 Zapisz wyrażenie (x 2 + x 1 ) (1 + x) 1 w najprostszej postaci. Zad.6 Ania potrzebuje 12 dni na zrobienie plakatu. Jeżeli będzie pracowała razem z Martą, to plakat powstanie w ciągu 8 dni. Oblicz, ile dni potrzebuje Marta na zrobienie plakatu. Zad.7 Wykaż, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność: x x. Zad.8 Długość prostokąta jest trzykrotnie większa od jego szerokości. Jeżeli szerokość zmniejszymy o 4, to stosunek szerokości do długości będzie równy 2 : 7. Oblicz odwód tego prostokąta. Zad.9 Wykaż, że jeżeli a i b są długościami przyprostokątnych trójkąta prostokątnego oraz c jest długością przeciwprostokątnej tego trójkąta, to a + b c 2. Zad.10 Wykaż, że jeżeli xy > 0, to (x + y) ( 1 x + 1 ) 4. y Zad.11 Rozwiąż nierówność liniową x < x Zad.12 Rozwiąż równanie 25 9 x = Sprawdź, czy liczba ta należy do przedziału określonego przez nierówność 2x 3 < 7.
3 Lista nr 3 RÓWNANIA I NIERÓWNOŚCI Zad.1 Czy liczba 2 3 jest rozwiązaniem równania: 7x2 x(4 + x) = (2x 5)(3x 10) 2(x + 14)? Zad.2 Sprawdź, która spośród liczb: 2, 3, 4, 10 nie jest rozwiązaniem nierówności: 1 6 (x + 3) + 1 (x + 1) 1, 5. 8 Zad.3 Sprawdź, czy liczba 2 jest rozwiązaniem równania: log 3 (x + 3) = log 3 (x 3). Zad.4 Rozwiąż równanie: 2 x 2 7x = 4 x Zad.5 Znajdź wszystkie liczby całkowite ujemne spełniające nierówność: 3(x + 3) 2 + 4(x 2)(x + 2) < 7(x + 2) Zad.6 Wyznacz wszystkie liczby pierwsze spełniające nierówność: (x 5) 2 2x 2 + (x 3)(x + 3) 98. Zad.7 Znajdź wszystkie liczby spełniające nierówności: (x 2 5x + 6)(x 2 + 4) 0 oraz 4 x 2 0. Zad.8 Wyznacz takie liczby a i b, aby zachodziła równość: a x b x 4 = 3x 5 (x + 3)(x 4) dla x 3 i x 4. Zad.9 Przeciwprostokątna trójkąta prostokątnego jest dłuższa od jednej przyprostokątnej o 1 cm i od drugiej przyprostokątnej o 32 cm. Oblicz długości boków tego trójkąta. Zad.10 W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię 240 m 2. Basen w drugim hotelu ma powierzchnię 350 m 2 oraz jest o 5 m dłuższy i 2 m szerszy niż w pierwszym hotelu. Oblicz, jakie wymiary mogą mieć baseny w obu hotelach. Zad.11 Pierwsza część trasy, którą pokonał autobus pokryta była gołoledzią. Po ustąpieniu gołoledzi prędkość autobusu wzrosła o 30%. Gdyby cała trasa była pokryta gołoledzią autobus potrzebowałby na pokonanie drugiej jej części o pół godziny więcej niż przy dobrych warunkach. W jakim czasie autobus pokonał drugą część trasy po ustąpieniu gołoledzi?
4 Lista nr 4 FUNKCJA KWADRATOWA Zad.1 Rozwiąż równania: (a) 4 x 6 = x + x 2 x 6, (b) (x + 3)(x2 4) x 2 + 2x = 0 (c) 2x 3 = 18x. Zad.2 Obwód prostokąta jest równy 20, a jeden z boków ma długość x. Zapisz wzór funkcji opisującej pole prostokąta w zależności od x i podaj jej dziedzinę. Zad.3 Liczby x 1 i x 2 (x 1 < x 2 ) są pierwiastkami równania x x 24 = 0. Oblicz 2x 1 + x 2. Zad.4 Znajdź te wartości a, dla których równanie (2 0, 5x)(2x a) = 0 ma dwa rozwiązania takie, że większe z nich jest mniejsze od 5. Zad.5 Wyznacz zbiór wartości funkcji f(x) = 2(x + 3)(x 4). Zad.6 Zbiorem wartości funkcji kwadratowej f jest przedział ( ; 2. Zbiór rozwiązań nierówności f(x) 0 jest przedziałem 3; 6. Naszkicuj wykres i wyznacz wzór tej funkcji. x 5 dla x < 1, Zad.7 Znajdź sumę miejsc zerowych funkcji f(x) = x 2 4 dla 1 x < 3, x 7 dla x 3. { x + 2 dla x 1; 1), Zad.8 Zapisz zbiór wartości funkcji f(x) = (x 1) 2 oraz sprawdź, czy dla x 1; 3) liczba a = (0, 25) 0,5 należy do jej dziedziny. Zad.9 Funkcja f określona jest wzorem f(x) = x 2 4x + 3. Naszkicuj wykresy funkcji f(x) i f(x + 1) oraz rozwiąż równanie f(x + 1) = 3. Zad.10 Dana jest funkcja f o równaniu f(x) = (x 4)(x + 2) + 2x. Wyznacz największą i najmniejszą wartość funkcji f w przedziale 3; 1. Zad.11 Dana jest funkcja f o równaniu f(x) = 2x 2 + 4x 30. Znajdź miejsca zerowe tej funkcji, naszkicuj jej wykres oraz zapisz w postaci kanonicznej i iloczynowej. Określ jej monotoniczność oraz znajdź punkty przecięcia wykresu tej funkcji z osiami układu współrzędnych. Zad.12 Znajdź wzór funkcji kwadratowej, której wykresem jest parabola o wierzchołku (2; 1) przechodząca przez punkt o współrzędnych (1; 1). Otrzymaną funkcję przedstaw w postaci ogólnej. Oblicz jej miejsca zerowe i naszkicuj wykres.
5 Lista nr 5 FUNKCJE Zad.1 Funkcja f określona na zbiorze liczb naturalnych przyporządkowuje każdej liczbie n resztę z dzielenia przez 5. Określ zbiór wartości funkcji f, podaj zbiór wszystkich miejsc zerowych tej funkcji oraz naszkicuj jej wykres dla n 10. Zad.2 Dana jest funkcja f(x) = x 2 dla x { 3, 2, 1, 0, 2, 4}. Przedstaw tę funkcję za pomocą tabeli, narysuj jej wykres i podaj zbiór wartości funkcji f. Zad.3 Naszkicuj wykresy funkcji f(x) = 3x + 2, g(x) = f( x), h(x) = f(x + 1) + 3. x Zad.4 W tabeli f(x) 2 + podane są wartości funkcji liniowej f dla kilku argumentów. Wyznacz wzór oraz miejsce zerowe funkcji f oraz podaj te argumenty, dla których wartości funkcji są większe od 3 3. Zad.5 Dane są funkcje liniowe f(x) = (m 2)x+5 i g(x) = m x 1. Znajdź wartości parametru m, 3 dla których wykresy tych funkcji są: (a) równoległe, (b) prostopadłe. Zad.6 Wyznacz wzór funkcji liniowej f wiedząc, że zbiorem rozwiązań nierówności f(x) 8 jest przedział ( ; 1, a zbiorem rozwiązań nierówności f(x) 2 jest przedział 4; + ). Zad.7 Funkcje liniowe f i g określone wzorami f(x) = (m + 3)x 1 i g(x) = 4x + (m 1) mają to samo miejsce zerowe. Znajdź współczynnik kierunkowy funkcji f. Zad.8 Dana jest funkcja liniowa f(x) = 3x 1. Rozwiąż nierówność: f(x + 3) f(1 x). Zad.9 Dana jest funkcja liniowa f(x) = (3m 2)x + 2m 1. Dla jakich wartości parametru m funkcja f jest funkcją malejącą? Zad.10 Znajdź wartość m, aby miejscem zerowym funkcji f(x) = (5m 1)x + 20m była liczba 1. Zad.11 Dana jest funkcja f(x) = 4 16 x. (a) Narysuj wykres funkcji f oraz oblicz dla jakiego argumentu funkcja f przyjmuje wartość 2 4. (b) Wykres funkcji g(x) = f(x+2) przesunięto o 4 jednostki do dołu, otrzymując wykres funkcji h. Naszkicuj jej wykres i podaj wzór funkcji h(x). Zad.12 Do wykresu funkcji f(x) = a x należy punkt (3; 27). Oblicz a i naszkicuj wykres funkcji f. Naszkicuj wykresy funkcji g(x) = f(x+3), h(x) = f(x)+3, k(x) = f(x) 3, m(x) = f( x) 3.
6 Lista nr 6 CIĄGI LICZBOWE Zad.1 Zbadaj, które wyrazy ciągu (a n ) danego wzorem a n = 3n+3 n+3 są mniejsze od 5 2. Zad.2 Sprawdź, które wyrazy ciągu (a n ) danego wzorem a n = 2n+15 n są liczbami naturalnymi. Zad.3 Sprawdź na podstawie definicji, czy ciąg ( 2+1, 1 2+1, 2 3) jest ciągiem arytmetycznym. Zad.4 Oblicz, ile początkowych wyrazów ciągu geometrycznego (a n ) o ilorazie równym 2 i a 1 = 5 należy zsumować, aby otrzymać Zad.5 Oblicz wartości x, dla których liczby x 2, x, 2 x 2, w podanej kolejności, tworzą ciąg geometryczny stały. Zad.6 Wiedząc, że suma pierwszego i trzeciego wyrazu ciągu arytmetycznego (a n ) jest równa 4, zaś iloczyn drugiego i czwartego wyrazu tego ciągu jest równy 16, wyznacz pierwszy wyraz i różnicę ciągu (a n ). Podaj wzór ogólny tego ciągu. Zad.7 Wiedząc, że trzeci wyraz ciągu arytmetycznego (a n ) wynosi 2, oblicz sumę pięciu jego początkowych wyrazów. Zad.8 Liczby x 2, 3x, 5 są, w podanej kolejności, pierwszym, drugim i trzecim wyrazem malejącego ciągu arytmetycznego (a n ). Oblicz S 200. Zad.9 S 4 = 18. Zad.10 Wyznacz pierwszy wyraz i różnicę ciągu arytmetycznego (a n ), w którym S 3 = 15 oraz Ciąg (1, x, y 1) jest arytmetyczny, natomiast ciąg (x, y, 12) jest geometryczny. Oblicz x oraz y i podaj ten ciąg geometryczny. Zad.11 Trzywyrazowy ciąg geometryczny jest rosnący. Iloczyn wszystkich wyrazów tego ciągu jest równy ( 8), a iloraz pierwszego wyrazu przez trzeci wyraz wynosi 2 1. Wyznacz ten ciąg. 4 Zad.12 Cyfry pewnej liczby trzycyfrowej x tworzą w kolejności: cyfra setek, cyfra dziesiątek, cyfra jedności trzycyfrowy ciąg geometryczny. Jeżeli od liczby x odejmiemy liczbę trzycyfrową zapisaną za pomocą tych samych cyfr, ale w odrotnej kolejności, to otrzymamy 594. Znajdź liczbę x.
7 Lista nr 7 TRYGONOMETRIA Zad.1 Oblicz wartość wyrażenia a + b, jeżeli a = cos 4 α sin 4 α, b = 1 8 sin 2 α cos 2 α, α = 60. Zad.2 Sprawdź, czy istnieje taka liczba rzeczywista m, że sin α = m 1 i cos α = m + 1. Zad.3 Znajdź liczbę, dla której ciąg (tg 45, a sin 60, 3 tg 60 ) jest ciągiem geometrycznym, a ciąg (tg 45, a, 3 tg 60 ) jest ciągiem arytmetycznym. Zad.4 Dla kąta α = 15 oblicz wartość wyrażenia cos 2α + sin 3α 1 + tg 2 3α. Zad.5 Oblicz miary kątów ostrych α i β (α β) wiedząc, że sin(α + β) = 3 2 oraz tg(α β) = 1. Zad.6 W trójkącie prostokątnym suma cosinusów kątów ostrych jest równa 2 3. Oblicz iloczyn 3 sinusów tych kątów. Zad.7 Kąty α i β są kątami ostrymi trójkąta prostokątnego. Oblicz wartość wyrażenia Zad.8 sin α cos 2 α tg β (1 cos 2 β) sin β. Jedna z przyprostokątnych trójkąta prostokątnego jest o 6 cm dłuższa od drugiej przyprostokątnej. Tangens jednego z kątów ostrych tego trójkąta wynosi 2. Oblicz długość wysokości 5 opuszczonej na przeciwprostokatną. Zad.9 W trójkącie równoramiennym dana jest długość podstawy a = 5 cm i miara kąta przy podstawie α = 30. Wyznacz długości pozostałych boków trójkąta, miary kątów oraz pole trójkąta. Zad.10 Krótsza przekątna trapezu prostokątnego ma długość 4 i dzieli go na dwa trójkąty prostokątne. Wyznacz tangens kąta, jaki tworzy ta przekątna z dłuższą podstawą wiedząc, że wysokość trapezu ma długość 3. Zad.11 Oblicz miary kątów ostrych α i β trójkąta prostokątnego, wiedząc, że tg β = 2 cos α. Zad.12 Wysokość trójkąta ABC opuszczona na bok AB ma długość równą 4 i tworzy z bokiem BC kąt o mierze 45 oraz z bokiem AC kąt o mierze 30. Oblicz obwód tego trójkąta.
8 ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/2019 Lista nr 8 PLANIMETRIA Zad.1 Obliczdługośćpromieniakoławpisanegowrombopolu36cm 2 ikącieostrym30. Zad.2 Znajdźwymiaryprostokątaopolu40,podobnegodoprostokątaobokach3i5. Zad.3 Oblicz pole trapezu równoramiennego o podstawach długości 9 cm i 17 cm oraz ramieniu długości 10 cm. Zad.4 Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku(w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że AD = BE. C E A D B Zad.5 Dany jest równoległobok ABCD. Na przedłużeniu przekątnej AC wybrano punkt E tak, że CE = 1 2 AC (zobaczrysunek).uzasadnij,żepolerównoległobokuabcdjestczteryrazy większe od pola trójkąta DCE. D C E A B Zad.6 Wokręgupoprowadzonocięciwęodługości6dmodległąo3dmodśrodkaokręgu.Oblicz długości łuków okręgu, na które cięciwa ta dzieli okrąg. Zad.7DanyjesttrójkątABCobokach AB =2 13, BC =10, AC =12.Wykaż,żewysokość poprowadzonazwierzchołkabdzielibokacwstosunku1:2. Zad.8 Na trójkącie równobocznym opisano okrąg i w ten sam trójkąt wpisano okrąg. Pole powstałego pierścienia kołowego wynosi 3π. Oblicz pole tego trójkąta. Zad.9 Wykaż, że jeżeli w trójkącie równoramiennym dwusieczna kąta przy podstawie jest prostopadła do ramienia, to trójkąt ten jest równoboczny.
9 ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/2019 Lista nr 9 GEOMETRIA NA PŁASZCZYŹNIE KARTEZJAŃSKIEJ Zad.1 Prostaorównaniu2x y 1=0przecinaprostąorównaniux+y+1=0wpunkcieP. Znajdź współrzędne punktu R symetrycznego do punktu P względem osi OX. Zad.2 WyznacznaosiOXtakipunktK,abyjegoodległośćodpunktu(7;1)wynosiła 5. Zad.3 Wiadomo,żeA=(0;3), B=( 1;0), C=(0;0).Znajdźrównanieprostej,wktórej zawiera się wysokość trójkąta ABC poprowadzona z wierzchołka C. Zad.4 PunktyA=( 1;5),B=(3;3)sąkolejnymiwierzchołkamikwadratu.Wyznaczdługość promienia okręgu opisanego na tym kwadracie oraz długość promienia okręgu wpisanego w ten kwadrat. Zad.5 Oblicz długość środkowej trójkąta ABC poprowadzonej z wierzchołka C, jeżeli wiadomo, żea=( 4; 2),B=(2;6),aśrodekbokuBCmawspółrzędne(4;1). Zad.6 Prosteorównaniachy 4=0i4x y+12=0orazosieukładuwspółrzędnychograniczają trapez. Oblicz tangens kąta ostrego tego trapezu. Zad.7 PunktP=( 2;3)jestpunktemstycznościprostejliokręguośrodkuS=(1; 2).Napisz równanie prostej l. Zad.8 ProstaltworzyzosiąOXkątomierze45 iprzechodziprzezpunktm=( 2;2).Prosta k,prostopadładoprostejl,przecinaośoxwpunkcieoodciętejx 0 = 3.Wyznaczrównania prostychlik. Zad.9 DanyjestwierzchołekA=( 2;1)kwadratuABCDirównanieprostejy=2x,wktórej zawarta jest przekątna BD. Wyznacz współrzędne pozostałych wierzchołków tego kwadratu. Zad.10 DanesądwawierzchołkitrójkątaABC:A=( 2;0),B=(1;1).Wyznaczwspółrzędne trzeciego wierzchołka leżącego na dodatnej półosi OY, jeśli pole trójkąta ABC jest równe 6,5. Zad.11 WtrójkącieABC,wktórym AC = BC danyjestwierzchołeka=( 3;2)orazpunkt E =(1; 0) będący środkiem boku AB. Wyznacz współrzędne pozostałych wierzchołków trójkąta orazjegopolewiedząc,żepunktcnależydoprostejorównaniuy= x+7. Zad.12 Jeden z boków trójkąta równobocznego zawarty jest w osi OX, a jeden z wierzchołków to punkt(0; 0). Napisz równania prostych zawierających boki trójkąta oraz znajdź współrzędne wierzchołków, jeżeli wiesz, że długość boku jest równa 6.
10 Lista nr 10 ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/2019 ZADANIA TYPU: WYKAŻ, UZASADNIJ, UDOWODNIJ... Zad.1 Liczbaxprzydzieleniuprzez7dajeresztę2.Wykaż,żekwadratliczbyxpomniejszonyo4 jest podzielny przez 7. Zad.2 Wykaż,żeliczba jestpodzielnaprzez17. Zad.3 Wiadomo,żea>0i 1 a +a=2.wykaż,żea2 + 1 a 2 = 1 a +a. Zad.4 Uzasadnij,żerównaniex 2 +(b 2)x 2b=0dladowolnejliczbyrzeczywistejbma przynajmniej jedno rozwiązanie. Zad.5 Danyjestciąg(a n )owyrazieogólnyma n = Wykaż,żenieistniejewtymciąguwyrazrówny0. { 2 n 4 dla n nieparzystego n 3 dla n parzystego. Zad.6 Wykaż, że liczba x jest liczbą naturalną parzystą, gdy x= Zad.7 Wykaż, że trapez, w którym przekątne dzielą kąty przy dłuższej podstawie na połowy, jest równoramienny. Zad.8 W prostokącie przekątna długości d dzieli kąt prostokąta na dwie równe części. Wykaż, że pole kwadratu zbudowanego na tej przekątnej jest dwa razy większe od pola prostokąta. Zad.9 DanyjesttrapezABCD,wktórymAB CDorazpunktE,któryleżynaramieniuBC. Udowodnij,że <)AED = <)BAE + <)CDE. Zad.10 WtrójkącieABCpunktyDiEdzieląbokBCnatrzyrówneczęści.Wykaż,żepole trójkąta ADE jest trzy razy mniejsze od pola trójkąta ABC. Zad.11 Wykaż, że jeżeli suma dwóch pierwszych wyrazów ciągu geometrycznego o wyrazach dodatnich równa się sumie trzeciego i czwartego wyrazu, to ciąg jest stały. Zad.12 Pięć liczb tworzy ciąg arytmetyczny, a liczba pierwsza, trzecia i piąta tworzą ciąg geometryczny. Wykaż, że wszystkie liczby tworzące ciąg arytmetyczny muszą być równe.
ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )
ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr LICZBY RZECZYWISTE Zad. Wskaż liczby wymierne: 4 9 ; 7; 6; π;, 333...; 3, (); 3 5; ( ) 0 ; 7 9 ; 4, 000000...; 3 7 7 3 ; 3 3 3. Zad. Dane są liczby
ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)
ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/2019 Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: 5 3 10 27 = 10 3 5 9. Zad.2 Wartość wyrażenia (3 1 3 27 2 3 9 1 ) 3 4 zapisz w postaci pierwiastka
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym
S t r o n a ZBIÓR ZADAŃ Matematyczne ABC maturzysty na poziomie podstawowym Każdy uczeń, który kończy szkołę ponadgimnazjalną i chce przystąpić do matury, zobowiązany jest do zdawania egzaminu z matematyki
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
LUBELSKA PRÓBA PRZED MATURĄ 2015
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
Zadania otwarte. 1. Sprawdź, czy dla każdego kąta ostrego zachodzi równośd:
Klasa II Zadania otwarte 1. Sprawdź, czy dla każdego kąta ostrego zachodzi równośd: 1 cos = tg. cos 1+sin. Napisz równanie prostej przechodzącej przez punkt (-3,5) i nachylonej do osix pod katem 60 0.
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
2 cos α 4. 2 h) g) tgx. i) ctgx
ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa
Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy
LUBELSKA PRÓBA PRZED MATURĄ klasa poziom podstawowy Kod ucznia lub Nazwisko i imię M A T E M A T Y K A klasa - pp MAJA 018 Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-4).
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }
Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Przykłady zadań do standardów.
Przykłady zadań do standardów 1 Wykorzystanie i tworzenie informacji 1 Oblicz wartośd wyrażenia: log 5 log8 log Odp: 1 1 3 5 8 Wyrażenie 5 1 0,5 : 3 zapisz w postaci p, gdzie p jest liczbą całkowitą Odp:
ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3
ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.
Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.
(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI CZERWIEC 20 POZIOM PODSTAWOWY Czas pracy 00 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 6 stron (zadania 9). 2. Arkusz zawiera 3 zadań zamkniętych i
Próbny egzamin maturalny z matematyki Poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)
ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
Prace semestralne luty 2011 czerwiec Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu
Prace semestralne luty 2011 czerwiec 2011 Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu Praca semestralna nr 1a Semestr II Funkcje, funkcja liniowa. Zadania na ocenę dopuszczającą:
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych
1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.
lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.
LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy
Kod ucznia lub Nazwisko i imię M A T E M A T Y K A klasa - pp MAJA 018 Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Zestaw zadań przygotowujących do egzaminu maturalnego z matematyki Poziom podstawowy
Matematyka- Zestaw zadań przygotowujących do egzaminu maturalnego z matematyki. Poziom podstawowy, Maria Płażewska Zestaw zadań przygotowujących do egzaminu maturalnego z matematyki Poziom podstawowy Spis
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy CZERWIEC 2014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY)
ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY) wersja robocza - 19.03.2019 Edukacja Karol Suchoń Korepetycje, zajęcia, przygotowanie do egzaminu www.karolsuchon.pl kontakt: kontakt@karolsuchon.pl
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI SPRWZIN Z 1. SEMESTRU KLSY 2 ROZSZ ZNIE 1 (5 PKT) Funkcja f określona jest wzorem f (x) = (3m 5)x 2 (2m 1)x + 0, 25(3m 5). Wyznacz te wartości
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych
PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie
Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM PODSTAWOWY DATA: 25 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna