Skrypt 10. Funkcja liniowa. Opracowanie L Równanie pierwszego stopnia z dwiema niewiadomymi.
|
|
- Rafał Michalik
- 7 lat temu
- Przeglądów:
Transkrypt
1 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 10 Funkcja liniowa 10. Równanie pierwszego stopnia z dwiema niewiadomymi. 11. Geometryczna interpretacja układu równań liniowych z dwiema niewiadomymi (1). 12. Geometryczna interpretacja układu równań liniowych z dwiema niewiadomymi (2). 13. Wykorzystanie własności funkcji liniowej do interpretacji zagadnień geometrycznych. 14. Zastosowanie funkcji liniowej do opisywania zjawisk fizycznych oraz z życia codziennego. Opracowanie L2 Uniwersytet SWPS ul. Chodakowska 19/31, Warszawa tel , faks
2 Temat: Równanie pierwszego stopnia z dwiema niewiadomymi Zadanie 1. Dany jest warunek: a) W puste pola wpisz odpowiednie liczby tak aby otrzymać równość prawdziwą. b) Jak myślisz - ile par liczb spełnia warunek? c) Czy dany warunek można zapisać inaczej? d) Para liczb (a, b) spełniających ten warunek wyznacza współrzędne punktu. Zaznacz w układzie współrzędnych te punkty i określ jak są położone? Otwórz program GeoGebra. W pole wprowadzania wpisz równanie. Przedstaw interpretację graficzną równania. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci, gdzie. Liczby a, b, c nazywamy współczynnikami równania. Podaj inne przykłady równań liniowych z dwiema niewiadomymi. Jaka jest interpretacja graficzna tych równań? Zadanie 2. Podaj przykłady równań liniowych z dwiema niewiadomymi uzupełniając odpowiednio tabelę. Przedstaw interpretację graficzną otrzymanych równań. str. 2
3 a) Przykłady równań liniowych z dwiema niewiadomymi gdy:. Równanie: Lp. a b c Inna postać równania Podaj trzy pary liczb spełniające równanie I. 0-2 II. 0 4 Interpretacja graficzna. str. 3
4 b) Przykłady równań liniowych z dwiema niewiadomymi gdy: Równanie: Lp. a b c Inna postać równania. Podaj trzy pary liczb spełniające równanie I. 0 II. 0 Interpretacja graficzna. str. 4
5 c) Przykłady równań liniowych z dwiema niewiadomymi gdy: Równanie: Lp. a b c. Inna postać równania. Wpisz trzy pary liczb spełniające równanie I. 3 II. 0 Interpretacja graficzna. Zadanie 3. Podaj interpretację graficzną równań: a) b) c) str. 5
6 Zadanie 4. Wyznacz równanie, którego wykres jest przedstawiony poniżej. a) Równanie: b) Równanie: c) Równanie: str. 6
7 Temat: Geometryczna interpretacja układu równań pierwszego stopnia z dwiema niewiadomymi (1) Instrukcja obsługi apletu: Otwórz aplet liniowa06 Masz przed sobą aplet ilustrujący geometryczną interpretację układu równań pierwszego stopnia z dwiema niewiadomymi. Za pomocą Pole wyboru Współczynniki suwaki możesz ustalać wartości współczynników oraz w poszczególnych równaniach. Wpisując w Pola tekstowe odpowiednie liczby również możesz dobrać współczynniki równań. Współczynniki możesz dobierać z zakresu <-10,10>. Pola wyboru: Interpretacja graficzna, Pokaż k, Pokaz l, Położenie prostych k, l ilustrują graficzną interpretację układu równań. Pole wyboru Odpowiedź podaje odpowiedź co jest rozwiązaniem układu równań oraz określa rodzaj układu. Przycisk Odśwież Widok wyczyszcza wszystkie pola wyboru oraz wykres. Zadanie 1.Sprawdź czy podana para liczb spełnia poszczególne równania układu równań: a) b) Wpisz do tabeli odpowiednią parę liczb: c) d) e) f) Para spełnia tylko I spełnia tylko II spełnia I równanie nie spełnia liczb która: równanie równanie i II równanie równania I i nie spełnia równania II to : Wykorzystując aplet liniowa06 przedstaw interpretację geometryczną podanego układu równań. Co jest rozwiązaniem tego układu równań? str. 7
8 Zadanie 2. Przedstaw interpretację graficzną układu równań i podaj jego rozwiązanie. Określ czy jest to układ oznaczony, nieoznaczony czy sprzeczny? Sprawdź swoje rozwiązania przy pomocy apletu liniowa06. a) Odpowiedź: b) str. 8
9 Odpowiedź: c) Odpowiedź: d) Odpowiedź: str. 9
10 e) Odpowiedź: Zadanie 3. Podaj interpretację graficzną układu równań: Określ jego rozwiązanie. Czy na podstawie interpretacji graficznej możesz podać dokładne rozwiązanie układu równań? Podany układ rozwiąż algebraicznie. Sprawdź rozwiązanie wykorzystując aplet liniowa06 Zadanie 4. Narysuj w układzie współrzędnych prostą określoną równaniem. Dorysuj w tym układzie drugą prostą tak, aby równania obu prostych tworzyły układ: a) oznaczony b) nieoznaczony c) sprzeczny Zapisz układ równań, odpowiadający danej interpretacji graficznej. str. 10
11 a) Układ równań: b) Układ równań: c) Układ równań: str. 11
12 Temat: Geometryczna interpretacja układu równań pierwszego stopnia z dwiema niewiadomymi (2) Do rozwiązania zadań 1a, 2a, 3a wykorzystaj aplet liniowa06 Podaj metodę tworzenia układów równań nieoznaczonych, sprzecznych, oznaczonych. Wykorzystaj tę metodę w zadaniach 1 b, 2 b, 3 b, 4. Sprawdź swoje wnioski przy pomocy apletu liniowa06 Zadanie 1. Dopisz brakujące równanie, tak aby układ równań był oznaczony: a) b) Zadanie 2. Dopisz drugie równanie, tak aby układ równań był sprzeczny: a) b) Zadanie 3. Dopisz pierwsze równanie, tak aby układ równań miał nieskończenie wiele rozwiązań: a) b) Zadanie 4. Nie rozwiązując układu równań określ, czy dany układ jest: oznaczony, nieoznaczony czy sprzeczny? Odpowiedź uzasadnij. a) c) b) d) Zadanie 5. Napisz układ równań, którego interpretację geometryczną przedstawiono na rysunku: a) Układ: str. 12
13 b) Układ: Sprawdź swoje wnioski przy pomocy apletu liniowa06 Zadanie 6. Utwórz układ dwóch równań liniowych z dwiema niewiadomymi tak, aby dana para liczb była rozwiązaniem tego układu a) (0, 2) b) (-1, 2) Czy można utworzyć więcej niż jeden układ spełniający warunki zadania? Jaką zasadę można przyjąć dla układu, którego rozwiązaniem jest dana para liczb? Do analizy zadania lub sprawdzenia wniosków możesz wykorzystać aplet liniowa06. Zadanie. 7. Podane układy równań rozwiąż graficznie i algebraicznie: a) b) c) d) Jaką wspólną własność mają te układy równań? Podaną własność uogólnij i uzasadnij. Który układ różni się od pozostałych? Na czym ta różnica polega? Utwórz swoje układy równań, które mają tę własność. str. 13
14 Temat: Wykorzystanie własności funkcji liniowej do interpretacji zagadnień geometrycznych. Zadanie 1. Wśród funkcji opisanych wzorem, znajdź te, których wykresami są proste wyznaczające z osiami OX, OY trójkąt o polu równym 24. Karta pracy nr 1 a) Narysuj wykres funkcji dla. b) Wyznacz punkty przecięcia wykresu funkcji z osiami OX i OY. Punkt przecięcia z osią OY: A = (..., ), Punkt przecięcia z osią OX: B = (..., ) c) Zaznacz trójkąt ABC i wyznacz jego pole. Otwórz aplet liniowa07 W polu Grafiki2 wybierz za pomocą suwaka zadanie = 1. Zaznacz pole wyboru Wizualizacja graficzna i zmieniaj za pomocą suwaka współczynnik b. Co można powiedzieć o trójkątach ABC? str. 14
15 Dla jakiej wartości b pole trójkąta ABC wyniesie 24? Podaj ilustrację graficzną w tym przypadku. Rozwiąż zadanie algebraicznie a następnie sprawdź swoje rozwiązanie przy pomocy apletu. Zadanie 2. Dla jakiej wartości m proste, które są wykresami funkcji: oraz a) będą prostopadłe b) będą równolegle c) przetną się w punkcie d) przetną się w punkcie? Karta pracy nr 2 Otwórz aplet liniowa07 W polu Grafiki2 wybierz za pomocą suwaka zadanie = 2. W polu Grafiki zmieniaj za pomocą suwaka liczbę m. Obserwuj równania prostych. Dobierz liczbę m tak aby te proste były prostopadłe. Zadanie rozwiąż algebraicznie. Zaznacz wizualizację graficzną i sprawdź odpowiedź. Dobierz liczbę m tak aby te proste były równoległe. Zaznacz wizualizację graficzną i sprawdź odpowiedź. Rozwiąż zadanie algebraicznie. Dobierz liczbę m tak aby te proste przecinały się w punkcie D. Zadanie3. Punkty,, są kolejnymi wierzchołkami prostokąta KLMN. Wyznacz wierzcholek N. Napisz równania prostych zawierających boki MN i KN prostokąta. Karta pracy nr 3 Otwórz aplet liniowa07 W polu Grafiki2 wybierz za pomocą suwaka zadanie = 3. Zaznacz pole wyboru Ilustracja początkowa. Zastanów się w jaki sposób graficznie można wyznaczyć punkt N. Za pomocą przycisku Pokaż rozwiązanie graficzne możesz zobaczyć rozwiązanie zadnia. Równanie prostej ML str. 15
16 Równanie prostej KL Wyznaczenie współrzędnych punktu N Równanie prostej MN Równanie prostej KN Zadanie 4. Dane są punkty R, S. Trójkąt RST jest prostokątny. Jaki warunek musi spelniać punkt T, jeżeli punkt T leży na przeciwprostokątnej trójkąta RST? Karta pracy nr 4 Otwórz aplet liniowa07 Zaznacz pole wyboru Wizualizacja graficzna. Zauważ, że można zmieniać położenie punktów R, S. Punkt T leży na przeciwprostokątnej trójkąta RST. Co możesz powiedzieć na temat położenia prostej ST i odcinka RS? Co możesz powiedzieć na temat położenia prostej RT i odcinka RS? Wykorzystaj te informacje do rozwiązania zadania. Sprawdź rozwiązanie za pomocą pola wyboru Rozwiązanie 1, Rozwiązanie 2. Zadanie 5. Boki trójkąta zawierają się w prostych,, Wyznacz współrzędne wierzchołków trójkąta. Przedstaw interpretację graficzną zadania. Zadanie rozwiąż algebraicznie. Ilustrację graficzną zadania oraz inne przykłady można otrzymać przy pomocy apletu liniowa07 zadanie =5. str. 16
17 Temat: Zastosowanie funkcji liniowej do opisywania zjawisk fizycznych oraz z życia codziennego. Zadanie 1. Temperatura zamarzania wody wynosi C lub 32 F. Punktem wrzenia wody jest C lub 212 F. Zależność między skalą Celsjusza a skalą Fahrenheita jest liniowa. Przyjmij, że C oznacza temperaturę wyrażoną w stopniach Celsjusza, natomiast F oznacza temperaturę wyrażoną w stopniach Fahrenheita. Wyraź F jako funkcję C oraz C jako funkcję F. a) Znajdź temperaturę, przy której wskazania obu termometrów są równe. b) Wyraż w stopniach Fahrenheita C c) Wyraż w stopniach Celsjusza F Zadanie 2. Samolot lecąc z wiatrem, pokonuje 1200 kilometrów w ciągu dwóch godzin. Droga powrotna pod wiatr, zabiera mu 2,5 godziny. Oblicz prędkość własną samolotu i prędkość wiatru. Zadanie 3. Pani Kowalska prowadzi damski zakład fryzjerski. Miesięczne koszty utrzymania firmy wynoszą 1100 zł. Ścięcie włosów w tym zakladzie kosztuje 30 zł. Napisz wzór funkcji, która opisuje dochód właścicielki zakladu w zależności od liczby klientek decydujących się na ścięcie włosów. Przy ilu klientkach w ciagu miesiąca dochód pani Kowalskiej ze ścięcia włosów wyniesie 1300 zł? Zadanie 4. Za zużycie wody mieszkańcy pewnego miasta płacą 3,81 zł / m 3 plus 2,90 zł stałą opłatę miesięczną. a) Napisz wzór, za pomocą którego można policzyć koszty zużycia wody. b) Ile wody zużyto w miesiącu, jeżeli rachunek za wodę wyniósł 29,57 zł? Zadanie 5. Samochód zużywa średnio 6 l paliwa na 100 km. Kierowca zatankował 70 l paliwa i wyruszył w podróż. a) Przedstaw za pomocą wzoru i wykresu ilość litrów paliwa, jaka pozostała w baku w zależności od liczby przejechanych kilometrów. b) Ile litrów paliwa pozostanie w baku po przejechaniu 520 km? c) Ile kilometrów przejechał kierowca jeżeli w baku pozostało 24 l paliwa? Zadanie 6. Pieszy, rowerzysta, kierowca samochodu wyruszyli z tego samego miejsca i w tym samym kierunku. Pieszy i rowerzysta wyruszyli równocześnie, natomiast samochód str. 17
18 wyruszył 90 minut po nich. Prędkość pieszego wynosiła, rowerzysty 14, samochodu. a) Napisz wzory zależności przebytej drogi od czasu dla pieszego, rowerzysty i samochodu. S p (t) = S r (t) = S a (t) = b) Narysuj w jednym układzie współrzędnych wykresy powyższych zależności. c) Po jakim czasie samochód minie pieszego? d) Po jakim czasie samochód minie rowerzystę? e) Ile kilometrów przejedzie samochód od miejsca spotkania z pieszym do miejsca spotkania z rowerzystą? str. 18
Skrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
Skrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Skrypt dla ucznia. Geometria analityczna część 3: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Geometria analityczna
Skrypt 19. Trygonometria: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste
. c) do jej wykresu należą punkty A ( 3,2 3 3) oraz
Funkcja liniowa powtórzenie wiadomości Napisz wzór funkcji liniowej wiedząc, że: a) miejscem zerowym funkcji jest liczba oraz f()=, b) miejscem zerowym funkcji jest liczba i i wykres funkcji przecina oś
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Skrypt 16. Ciągi: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Skrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Skrypt 32. Przygotowanie do matury. Równania i nierówności
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt Przygotowanie do matury Równania
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Skrypt 20. Planimetria: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Planimetria: 1. Kąty w
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
FUNKCJA LINIOWA, OKRĘGI
FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym
S t r o n a ZBIÓR ZADAŃ Matematyczne ABC maturzysty na poziomie podstawowym Każdy uczeń, który kończy szkołę ponadgimnazjalną i chce przystąpić do matury, zobowiązany jest do zdawania egzaminu z matematyki
Skrypt 31. Powtórzenie do matury Liczby rzeczywiste
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury
BAZA ZADAŃ KLASA 1 TECHNIKUM
LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y
Skrypt 7. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Określ zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
Skrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP
Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1
Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA
POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA I. Wykresy funkcji 1. Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y=ax+b. Jakie znaki mają współczynniki a i b? A. a
Skrypt 15. Figury płaskie Symetrie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 15 Figury płaskie Symetrie 1. Symetria względem
FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.
FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 018 r.
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 194057 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) { 21x 14y = 28 Rozwiazaniem
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Skrypt 26. Przygotowanie do egzaminu Równania i układy równań
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Przygotowanie do egzaminu Równania i układy
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1. 19.). 2. Arkusz zawiera 13 zadań zamkniętych i 6
Skrypt 14. Figury płaskie Okrąg wpisany i opisany na wielokącie. 7. Wielokąty foremne. Miara kąta wewnętrznego wielokąta foremnego
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 14 Figury płaskie Okrąg wpisany i opisany
Skrypt 29. Statystyka. Opracowanie L2
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie
Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Klasa Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut MARZEC ROK 2019 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 32 Przygotowanie do egzaminu Trójkąty prostokątne
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142033 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pole trójkata
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 9 CZERWCA 2015 R. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1
========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY Stowarzyszenie Nauczycieli Matematyki www.snm.edu.pl KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
Skrypt 9. Układy równań. 1. Zapisywanie związków między nieznanymi wielkościami za pomocą układu dwóch równań
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 9 Układy równań 1. Zapisywanie związków między
Skrypt 14. Funkcje inne:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 14 Funkcje inne: 1. Wielkości
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
LUBELSKA PRÓBA PRZED MATURĄ
POZIOM PODSTAWOWY GR- Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 1 sierpnia 018
Skrypt 13. Funkcje. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Funkcje 16. Wykorzystanie
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Skrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Odległośc w układzie współrzędnych. Środek odcinka.
GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
ROZWIĄZANIA DO ZADAŃ
TURNIRJ MATEMATYCZNY ELIPSA dla klas LO ROZWIĄZANIA DO ZADAŃ Zadanie. (2 pkt.) Dla jakich wartości parametru m (m R), część wspólna przedziałów A = (, m m i B = 2m 2, + ) jest zbiorem pustym? / Jeśli A
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 49988 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Odległość punktu A =
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY