STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2



Podobne dokumenty
Rachunek prawdopodobieństwa

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Zdarzenia losowe i prawdopodobieństwo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Podstawy nauk przyrodniczych Matematyka

Podstawy metod probabilistycznych. dr Adam Kiersztyn

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

Metody probabilistyczne

Statystyka matematyczna

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.

Statystyka podstawowe wzory i definicje

Metody probabilistyczne

Matematyczne Podstawy Kognitywistyki

Prawdopodobieństwo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Statystyka Astronomiczna

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

STATYSTYKA MATEMATYCZNA

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

Rachunek prawdopodobieństwa dla informatyków

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

Rachunek prawdopodobieństwa- wykład 2

Kombinatoryka i rachunek prawdopodobieństwa

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

METODY PROBABILISTYCZNE I STATYSTYKA

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Wstęp. Kurs w skrócie

Statystyka matematyczna

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Doświadczenie i zdarzenie losowe

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

Kombinatoryka i rachunek prawdopodobieństwa

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

Podstawy Teorii Prawdopodobieństwa

Statystyka matematyczna

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Zdarzenie losowe (zdarzenie)

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Statystyka w analizie i planowaniu eksperymentu

KURS PRAWDOPODOBIEŃSTWO

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Statystyka matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Matematyka podstawowa X. Rachunek prawdopodobieństwa

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

KOMBINATORYKA. Problem przydziału prac

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

Zmienna losowa. Rozkład skokowy

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

Rachunek prawdopodobieństwa Rozdział 1. Wstęp

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

Przestrzeń probabilistyczna

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony

Plan wynikowy klasa 3

KURS PRAWDOPODOBIEŃSTWO

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.

PRÓBNY EGZAMIN MATURALNY

PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D

Transkrypt:

STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta κ kappa Λ λ lambda µ mi ν ni ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega

Oznaczenia N zbiór liczb naturalnych: 0, 1, 2, 3,... R zbiór liczb rzeczywistych: (, ) iloczyn logiczny, koniunkcja, i suma logiczna, alternatywa, lub implikacja, wynikanie, p q jeśli p, to q równoważność, wtedy i tylko wtedy negacja, zaprzeczenie, nie n a i := a 1 + a 2 + + a n i=1 n a i := a 1 a 2 a n i=1

Operacje mnogościowe (na zbiorach) należy do, np. x A nie należy do, np. x A zbiór pusty A A A B B B A B iloczyn (część wspólna, przekrój) zbiorów A i B: x A B x A x B A B suma zbiorów A i B: x A B x A x B A \ B różnica zbiorów A i B: x A \ B x A x B

Operacje mnogościowe c.d. n A i := A 1 A 2 A n i=1 n A i := A 1 A 2 A n i=1 A B A B A jest podzbiorem B, B zawiera A, A zawiera się w B: A B (x A x B) A B A B = zbiory A i B są rozłączne 2 A, P(A) rodzina wszystkich podzbiorów zbioru A, potęga zbioru A

Prawa de Morgana W logice: (p q) ( p q) (p q) ( p q) Dla zbiorów A, B Ω: Ω \ (A B) = (Ω \ A) (Ω \ B), Ω \ (A B) = (Ω \ A) (Ω \ B). Dla ciągów zbiorów A 1, A 2,... Ω: Ω \ i A i = i (Ω \ A i ), Ω \ i A i = (Ω \ A i ). i

a

Przestrzeń probabilistyczna: (Ω, F, P) ω zdarzenie elementarne Ω zbiór (wszystkich) zdarzeń elementarnych, przestrzeń zdarzeń elementarnych A Ω, A F zdarzenie losowe F σ-ciało zdarzeń: rodzina podzbiorów Ω zamknięta na przeliczalne operacje mnogościowe: Ω F A, B F A \ B F A 1, A 2, F i=1 A i F P prawdopodobieństwo, miara probabilistyczna przeliczalnie addytywna, nieujemna miara unormowana : P: F [0, 1], P(Ω) = 1 Jeżeli A 1, A 2, F, jest ciągiem zdarzeń parami rozłącznych: A i A j = dla i j, to ( ) (Kołmogorow, 1933) P A i = P(A i ) i=1 i=1

Przykład (Rzut monetą) { } Ω =,, { { } { } { }} F =,,,,, ({ }) ({ }) P( ) = 0, P = p, P = 1 p, P(Ω) = 1. p [0, 1], a monetę nazywamy sprawiedliwą, jeśli p = 0.5. Przykład (Rzut kością do gry) Ω = {,,,,, }, F = 2 Ω (2 6 = 64 podzbiory), P({ })=P({ })=P({ })=P({ })=P({ })=P({ 1 })= 6.

Klasyczna definicja prawdopodobieństwa Jeśli zbiór Ω jest przeliczalny: Ω = {ω 1, ω 2,... }, F = 2 Ω, to P(A) = i A p i, gdzie p i = P({ω i }). Jeśli zbiór Ω jest skończony: Ω = {ω 1, ω 2,..., ω n }, F = 2 Ω, oraz wszystkie zdarzenia elementarne są jednakowo prawdopodobne, to P(A) = #A #Ω, gdzie #A oznacza liczbę elementów zbioru A (liczba zdarzeń elementarnych sprzyjających zdarzeniu A).

Elementy kombinatoryki zasada mnożenia Zasada mnożenia: jeśli #A 1 = n 1, #A 2 = n 2,..., #A k = n k, to #(A 1 A k ) = n 1 n 2... n k, gdzie A 1 A k = {(x 1,..., x k ) : x 1 A 1,..., x k A k }. Przykład Mamy do dyspozycji 3 rodzaje wafli, 8 smaków lodów oraz 5 sosów. Ile różnych zestawów można stworzyć, jeśli każdy zestaw ma składać się z jednego wafla, jednej porcji lodów oraz jednego sosu. Rozwiązanie Mamy #A 1 = 3, #A 2 = 8, #A 3 = 5, więc różnych zestawów jest #(A 1 A 2 A 3 ) = 3 8 5 = 120.

Elementy kombinatoryki wariacje z powtórzeniami k-wyrazową wariacją z powtórzeniami zbioru Y nazywamy każdą funkcję f : {1, 2,..., k} Y. Wariację z powtórzeniami z n elementów po k można interpretować jako próbę k-elementową pobraną ze zwracaniem z populacji n-elementowej. Liczba wszystkich różnych k-elementowych wariacji z powtórzeniami zbioru n-elementowego jest równa V k n = n k, n 1, k 0. Każda funkcja f określona na zbiorze {1, 2,..., k} wyznacza jednoznacznie ciąg (f (1), f (2),..., f (k)), i na odwrót: każdy k-wyrazowy ciąg elementów zbioru Y wyznacza pewną funkcję f : {1, 2,..., k} Y. Zamiast o funkcjach możemy zatem mówić o ciągach. Wariacje uznajemy za różne, jeśli różne są odpowiednie funkcje, zatem np. wariacje z powtórzeniami aab i aba są różne.

Elementy kombinatoryki wariacje bez powtórzeń k-wyrazową wariacją bez powtórzeń zbioru Y złożonego z n elementów, gdzie 0 k n, nazywamy każdą funkcję różnowartościową f : {1, 2,..., k} Y. Wariację bez powtórzeń z n elementów po k można interpretować jako próbę k-elementową pobraną bez zwracania z populacji n-elementowej. Liczba wszystkich różnych k-elementowych wariacji bez powtórzeń zbioru n-elementowego jest równa V k n = n (n 1)... (n k + 1) = n! (n k)!, 0 k n. Przypomnienie: 0! = 1, n! = (n 1)! n = 1 2... n. Wariacje uznajemy za różne, jeśli różne są odpowiednie funkcje, zatem np. wariacje bez powtórzeń: ab i ba sa różnymi wariacjami.

Elementy kombinatoryki c.d. Przykład W 10-piętrowym budynku windą jedzie 7 osób. Jaka jest szansa, że każda wysiądzie na innym piętrze? Rozwiązanie Zdarzeniami elementarnymi są wszystkie 7-elementowe ciągi o wyrazach ze zbioru 10-elementowego. Zdarzenia sprzyjające to ciągi o różnych wyrazach. Zatem szukane prawdopodobieństwo wynosi: V 7 10 V 7 10 = 10! (10 7)! 10 7 = 10 9 8 7 6 5 4 10 7 = 0.06048.

Elementy kombinatoryki permutacje, kombinacje Permutacją bez powtórzeń (permutacją) n-elementowego zbioru Y nazywamy każdą funkcję f odwzorowującą zbiór {1, 2,..., n} na zbiór Y. Liczba permutacji zbioru n-elementowego jest równa P n = n!, n 0. k-elementową kombinacją (bez powtórzeń) zbioru Y, złożonego z n elementów, nazywamy dowolny k-elementowy podzbiór zbioru Y. Liczba k-elementowych kombinacji zbioru n-elementowego jest równa ( ) n Cn k n! = = k k!(n k)!, 0 k n, (symbol Newtona, współczynnik dwumianowy).

Elementy kombinatoryki Przykład Z talii 24 kart wybieramy 5. Jakie jest prawdopodobieństwo, że otrzymamy dokładnie dwie pary (nie fulla i nie karetę)? Rozwiązanie Wszystkich możliwych wyborów kart jest ( 24) 5. Obliczamy ilość zdarzeń sprzyjających. Wybieramy dwie wartości kart spośród sześciu (np. as i król) na ( 6 2) sposobów. Z czterech kart o danej wartości wybieramy dwa kolory, co dla każdej wartości robimy na ( 4 2) sposobów. Piątą kartę wybieramy dowolnie z pozostałych 16 kart. Ostateczne prawdopodobieństwo wynosi: ( 6 ) ( 2 4 ) ( 2 4 ) 2 16 ( 24 ) = 6 5 2 4 3 2 4 3 2 16 2 3 4 5 24 23 22 21 20 = 5 = 9 8 5 23 11 7 = 360 1771 = 0.203275.

Własności prawdopodobieństwa A B Jeśli A i B wykluczają się (są rozłączne): A B = P(A B) = P(A) + P(B) (Addytywność) Dla A 1, A 2,..., A n, parami rozłącznych: ( n ) n (i j A i A j = ) = P A i = P(A i ) i=1 i=1 Dla dowolnych zbiorów mamy P(A B) = P(A) + P(B) P(A B). A B A \ B A B B \ A A B A B = + + = +

Wzór włączeń i wyłączeń Dla trzech zbiorów mamy P(A B C) = P(A) + P(B) + P(C) + ++ ++ +++ + ++ + + P(A B) P(A C) P(B C)+ + P(A B C). Dla n N zdarzeń prawdziwy jest wzór P(A 1 A n ) = P(A i ) P(A i1 A i2 )+ + 1 i 1 i 2 i 3 n 1 i n 1 i 1 i 2 n P(A i1 A i2 A i3 ) + + ( 1) n+1 P(A 1 A n ).

Własności prawdopodobieństwa, c.d. Ω Zdarzenie pewne: P(Ω) = 1 Zdarzenie niemożliwe: P( ) = 0 Jeśli A B, to P(B \ A) = P(B) P(A). B \ A = B A A (B \ A) =, B = A (B \ A), więc P(B) = P(A) + P(B \ A) Jeśli A B, to P(A) P(B). Dla każdego A, 0 P(A) 1. A A Zdarzenie przeciwne do A: A = A := Ω \ A P(A ) = P(Ω \ A) = P(Ω) P(A) = 1 P(A)

Prawdopodobieństwo warunkowe, niezależność zdarzeń Jeśli P(B) > 0, to prawdopodobieństwem warunkowym zdarzenia A pod warunkiem (zajścia) zdarzenia B nazywamy liczbę P(A B) = P(A B). P(B) Zauważmy, że P(A B) = P(A B) P(B). Zdarzenia A i B nazywamy niezależnymi, jeżeli P(A B) = P(A) P(B). Jeśli zdarzenia A i B są niezależne oraz P(B) > 0, to P(A B) = P(A).

Prawdopodobieństwo warunkowe, c.d. Przykład Wybieramy jedną rodzinę spośród rodzin z dwojgiem dzieci. Obliczyć prawdopodobieństwo zdarzenia, że wybierzemy rodzinę z dwoma chłopcami, jeśli wiemy, że w tej rodzinie: a) starsze dziecko jest chłopcem, b) jest co najmniej jeden chłopiec? Rozwiązanie Ω = {(c, c), (d, d), (c, d), (d, c)} jest zbiorem równo prawdopodobnych par, gdzie pierwszy element oznacza płać młodszego dziecka, drugi starszego. W punkcie a) P({(c, c)} {(c, c), (d, c)}) = 1 4 1 2 = 1 2, w punkcie b) P({(c, c)} {(c, c), (d, c), (c, d)}) = 1 4 3 4 = 1 3.

Niezależność zadarzeń, c.d. Zdarzenia A 1,..., A n nazywamy niezależnymi (zespołowo), jeżeli P(A i1 A i2 A ik ) = P(A i1 )P(A i2 )... P(A ik ) dla wszystkich ciągów 1 i 1 < i 2 < < i k n, k = 2, 3,..., n. Uwaga: w powyższej definicji należy sprawdzić 2 n n 1 równości! Jeśli A 1,..., A n są niezależne, to niezależne są również zdarzenia B 1,..., B n, gdzie B i = A i lub B i = A i, i = 1,..., n. Zastosowanie: gdy A 1,..., A n są zdarzeniami niezależnymi, to ( n P i=1 A i ) = 1 P = 1 ( ( n ) ) ( n ) A i = 1 P A i i=1 i=1 n n i=1 P(A i) = 1 i=1 (1 P(A i )). =

Wzór na prawdopodobieństwo całkowite Jeśli zbiory B 1,..., B n stanowią rozbicie zbioru Ω, to znaczy zbiory te są parami rozłączne oraz Ω = B 1 B n (zupełny układ zdarzeń), to dla dowolnego zdarzenia A zachodzi równość Uzasadnienie: n P(A) = P(A B i ) P(B i ). i=1 P(A) = P(A (B 1 B n )) = = P((A B 1 ) (A B n )) = = P(A B 1 ) + + P(A B n ) = = P(A B 1 )P(B 1 ) + + P(A B n )P(B n ). Przypadek n = 2: jeśli Ω = B 1 B 2, B 1 B 2 =, to P(A) = P(A B 1 ) P(B 1 ) + P(A B 2 ) P(B 2 ).

Wzór na prawdopodobieństwo całkowite Przykład Mamy dwie urny. Pierwsza urna zawiera 2 kule białe i 8 kul czarnych. Druga urna zawiera 8 kul białych i 2 kule czarne. Rzucamy kością do gry i jeśli wypadnie 6 oczek, to losujemy kulę z urny pierwszej, a w przeciwnym przypadku losujemy kulę z urny drugiej. Jakie jest prawdopodobieństwo, że wylosowana kula jest biała? Rozwiązanie A wylosowanie kuli białej B 1 wypadło 6 oczek losujemy z urny pierwszej B 2 wypadła 5 lub mniej oczek losujemy z urny drugiej Mamy P(B 1 ) = 1 6, P(B 2) = 5 6, P(A B 1) = 2 10, P(A B 2) = 8 10, zatem P(A) = P(A B 1 )P(B 1 ) + P(A B 2 )P(B 2 ) = 2 10 1 6 + 8 10 5 6 = 42 60 = 7 10.

Wzór Bayesa Jeśli zbiory B 1,..., B n stanowią rozbicie zbioru Ω oraz P(A) > 0, to dla dowolnego j {1,..., n} mamy P(B j A) = P(A B j) P(B j ) P(A) = P(A B j ) P(B j ) ni=1 P(A B i ) P(B i ). P(B j ) nazywamy prawdopodobieństwami a priori (z góry, z założenia, przed doświadczeniem), P(B j A) nazywamy prawdopodobieństwami a posteriori (po fakcie, po doświadczeniu).

Wzór Bayesa Przykład Mamy dwie urny. Pierwsza urna zawiera 2 kule białe i 8 kul czarnych. Druga urna zawiera 8 kul białych i 2 kule czarne. Z wybranej losowo urny wyciągamy kulę. Jakie jest prawdopodobieństwo, że losowaliśmy z urny pierwszej, jeżeli wylosowana kula jest biała? Rozwiązanie A wylosowanie kuli białej B 1 losujemy z urny pierwszej, B 2 losujemy z urny drugiej Mamy P(B 1 ) = 1 2 = P(B 2), P(A B 1 ) = 2 10, P(A B 2) = 8 10, zatem P(B 1 A) = 2 P(A B 1 )P(B 1 ) P(A B 1 )P(B 1 ) + P(A B 2 )P(B 2 ) = 10 1 2 2 10 1 2 + 8 10 1 2 = 2 10 = 1 5.

Prawdopodobieństwo geometryczne Jeśli na zbiorze Ω określona jest skończona miara µ (np. długość, pole), to możemy określić prawdopodobieństwo wzorem: P(A) = µ(a) µ(ω). Przykład Ania i Basia umówiły się na spotkanie między 12.00 a 13.00. Osoba która dojedzie na miejsce spotkania jako pierwsza, ma czekać na drugą przez 20 minut, ale nie dłużej niż do 13.00. Jaka jest szansa, że dojdzie do spotkania?

Prawdopodobieństwo geometryczne, c.d. Rozwiązanie Ω = [0, 1] [0, 1], gdzie ω = (t A, t B ), t A, t B [0, 1] oznaczają odpowiednio czas przybycia Ani i Basi, liczony od 12:00, w godzinach, Przyjmujemy jako miarę µ pole powierzchni, skąd P(A) = µ(a) µ(ω) = µ(a). Do spotkania dochodzi w zbiorze A = {(t 1, t 2 ) [0, 1] [0, 1] : t 1 t 2 1 3 }. Szukane prawdopodobieństwo wynosi ( 1 P(A) = 1 2 2 2 3 2 ) = 1 4 3 9 = 5 9.