Biosignál I. Lékařská fakulta Masarykovy univerzity Brno

Podobne dokumenty
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

Funkce zadané implicitně. 4. března 2019

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

Úvodní informace. 18. února 2019

Kristýna Kuncová. Matematika B2 18/19

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Kristýna Kuncová. Matematika B3

Matematika (KMI/PMATE)

1 Soustava lineárních rovnic

Diferenciální rovnice základní pojmy. Rovnice se

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

5. a 12. prosince 2018

DFT. verze:

kontaktní modely (Winklerův, Pasternakův)

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Rovnice proudění Slapový model

Laplaceova transformace

Biosignál II. Lékařská fakulta Masarykovy univerzity Brno

Co nám prozradí derivace? 21. listopadu 2018

Numerické metody minimalizace

Vybrané kapitoly z matematiky

Kristýna Kuncová. Matematika B2

Linea rnı (ne)za vislost

Matematika 2, vzorová písemka 1

Edita Pelantová, katedra matematiky / 16

Inverzní Z-transformace

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

Matematika III Stechiometrie stručný

Statistika (KMI/PSTAT)

Geometrická nelinearita: úvod

Cauchyova úloha pro obyčejnou diferenciální rovnici

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

GEM a soustavy lineárních rovnic, část 2

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Numerické metody 8. května FJFI ČVUT v Praze

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

(13) Fourierovy řady

Univerzita Palackého v Olomouci

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

Funkce více proměnných: limita, spojitost, derivace

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

1 Předmluva Značení... 3

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

(a). Pak f. (a) pro i j a 2 f

Periodický pohyb obecného oscilátoru ve dvou dimenzích

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Kombinatorika a grafy I

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17

Statistika (KMI/PSTAT)

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Poznámky z matematiky

Lineární algebra - iterační metody

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?

Numerické metody a statistika

Kapitola 2. Nelineární rovnice

Obsah. Aplikovaná matematika I. Vlivem meze Vlivem funkce Bernhard Riemann. Mendelu Brno. 3 Vlastnosti určitého integrálu

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Základní elektrotechnická terminologie,

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Matematika pro ekonomiku

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30

Kombinatorika a komplexní aritmetika

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].

Úvod do TEXu. Brno, L A TEX dokumenty a matematika.

(A B) ij = k. (A) ik (B) jk.

Matematická analýza 2. Kubr Milan

6 Dedekindovy řezy (30 bodů)

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

Výzvy, které před matematiku staví

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

1 Dedekindovy řezy (30 bodů)

7. Aplikace derivace

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)

Škola matematického modelování 2017

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Transkrypt:

Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2010

Biosignál O co jde? Signál signál je fyzikální děj nesoucí informaci o systému užitečnou informaci Biosignál signál nese informaci o živém systému a jsou tu problémy: Co je informace? Co je systém? Co je živý systém?

Biosignál Rozměry signálu bezčasové časové jednorozměrné střední tlak krve teplotka, oxymetrie vektor teplota+tlak+bmi EKG, EEG dvojrozměrný RTG sono, scinti trojrozměrný CT, MRI 4D sono Jak je to s tím časem? vlastně je to další rozměr biosignály mohou mít jeden až čtyři rozměry

Biosignál Deterministický signál idealizace: jednoznačně určená hodnota v každém bodě deterministický biosignál lze jednoznačně popsat funkcí y = f (t, x 1, x 2, x 3,...) funkce, resp. posloupnost, je matematickým modelem deterministického (bio)signálu v technice užitečné např. střídavý proud v medicíně spíš teoretický význam

Biosignál Stochastický signál reálná situace: náhody se nezbavíme šum, onemocnění,... stochastický biosignál matematickým modelem je náhodný proces {X (t, x 1, x 2, x 3,...)} výhody dostatečně obecné dostatečně věrné nevýhody lze popsat jen pravděpodobnostmi příliš obecné neučí se na střední škole

Biosignál Bud me diskrétní... spojitý čas 1 spojitý lze si představit jako plynulý deterministický signál modelem je funkce stochastický signál modelem je spojitý náhodný proces diskrétní čas čas je definovaný jen v izolovaných okamžicích mezi okamžiky nemusíme vidět např. čas mezi měřeními mezi okamžiky nemusí být signál definovaný např. natalita deterministický signál modelem je posloupnost stochastický signál modelem je diskrétní náhodný proces diskrétní hodnoty hodnoty jsou vybírány jen z konečné množiny výsledek kvantování např. cena v korunách, číslice na displeji přirozeně diskrétní signál např. počet nemocných, náklady 1 resp. libovolná nezávisle proměnná

Biosignál Diskrétně podruhé vzorkování pro celou řadu úloh je třeba z (bio)signálu se spojitým vybrat jen vzorky vzorkovat lze rovnoměrně nebo nerovnoměrně

Biosignál Diskrétně podruhé vzorkovací teorém minimální vzorkovací frekvence Shanon-Kotelnikovův teorém, Nyquistova limita,... f max 2 f sampling

Systém Systém je když... systém je poměrně obecný pojem, vyjadřuje obvykle nějaké uspořádání prvků a vztahů mezi nimi příklady systémů: fylogenetická klasifikace šelem model ekosystému blokové schema osciloskopu kompartmentový model metabolizmu metabolické dráhy jing a jang 2... tak jak z toho udělat definici? 2 i neexistující věc lze popsat jako systém

Systém Systém je když... pracujeme systematicky (např.) Systém je dvojice množin (P, V ), kde P je množina prvků a V je množina vztahů mezi nimi.

Systém Rozdělení systémů lineární systémy matematicky lze popsal lineární diferenciální rovnicí s konstantními koeficienty: nx a i y(t) (i) = i=0 mx b j x(t) (j), n > m j=0 lze popsal lineární diferenční rovnicí s konstantními koeficienty: nx a i y(t i) = i=0 mx b j x(t i), n > m platí princip superpozice chovají se hezky, jsou dobře řešitelné,... ALE! pro většinu biologických systémů příliš zjednodušující nelineární systémy jakýkoliv systém, který není lineární j=0

Systém Lineární systémy matematický popis vnitřní popis víme-li, jak systém vypadá formalizace soustavou diferenciálních rovnic reprezentujících strukturu u lineárních systémů 4 matice vnější popis využíváme platnosti principu superpozice... a několika dalších fint přenosová funkce frekvenční charakteristika impulzní a skoková odezva systému

Systém Nelineární systémy obecně neplatí princip superpozice vnější popis obvykle nelze vnitřní popis velmi komplikovaný např. z matic čísel jsou matice funkcí, objevují se další členy,... problémy s nelinearitou z odezvy na dva vstupní signály obecně nemůžeme usuzovat na odezvu na součet kde to jde, snažíme se linearizovat kde to nejde, nelineární věda

Systém Kam až jsme se dostali fraktály, chaos,... Pojmy, které mohou v souvislosti se systémy padnout stavový prostor trajektorie a speciálně v souvislosti s nelineárními systémy teorie chaosu fraktál

Systém Jak souvicí signály a systémy? signály a soustavy se učí na technikách jako jeden předmět systém je zdrojem signálu signál je průchodem systémem modifikován modifikace záměrná: zpracování signálu, filtrace,... modifikace nežádoucí: poruchy, šum,...

Matematické intermezzo K čemu to?

Matematické intermezzo Komplexní čísla již kvadratická rovnice nemusí mít v reálných číslech řešení x 1,2 = b± D 2a D = b 2 4ac nelze odmocňovat záporná čísla? lze, ale výsledkem není reálné číslo definujeme komplexní jednotku i = 1 technici značí komplexní jednotku j

Matematické intermezzo Komplexní čísla obvykle značíme z C lze vyjádřit ve tvaru z = a + ib, kde a, b R pak hovoříme o složkovém nebo též algebraickém tvaru značíme a = Re(z) a b = Im(z) Gaussova rovina číslo z lze reprezentovat jako bod o souřadnicích Re(z) a Im(z) z lze vyjádřit i pomocí vzdálenosti od počátku z a úhlu mezi průvodičem a reálnou osou ϕ goniometrický tvar: z = z (cos ϕ + i sin ϕ) exponenciální tvar: z = z e iϕ

Matematické intermezzo Posloupnosti a řady užitečný pojem, pokud se hovoří o diskrétních deterministických signálech některé pojmy jsou na nich snáze pochopitelnější posloupnost je nekonečná sekvence čísel a 1, a 2,... a n,... řada je součet takové posloupnosti: a 1 + a 2 +... + a n +... = i=0 a i ne každá posloupnost nebo řada má pro nás smysl

Matematické intermezzo Funkce jedné proměnné pojem intuitivně známý již ze základní školy představa, že jde o předpis přiřazující nějakému x nějaké y je dostačující obecný zápis: y = f (x) důležitý pojem je limita funkce: a = lim x x0 f (x)

Matematické intermezzo Derivace funkce jedné proměnné geometrický význam: směrnice tečny grafu značení: f (x), y, dy dx, d dxf (x), ḟ (t),... definice: y f (x) f (x 0 ) = lim x x0 x x 0 funkci lze derivovat bod po bodu a tak lze získat opět funkci opakováním derivace získáme derivace vyšších řádů

Matematické intermezzo Integrál funkce jedné proměnné neurčitý integrál opačný postup k derivaci, hledání primitivní funkce značení: F (x) = f (x) dx neurčitý integrál zobecnění sumace, stanovení plochy pod křivkou značení: a ono to souvisí: b a I = b a f (x) dx f (x) dx = F (b) F (a)

Matematické intermezzo Funkce více proměnných přirozené zobecnění funkce jedné proměnné např. z = f (x, y) jde-li o funkci na několik proměnných, lze chápat jako několik funkcí na jednu proměnnou

Matematické intermezzo Derivace funkce více proměnných opět si lze představit směrnici tečny grafu kam však bude směrnice směřovat? parciální derivace parciální derivace ve směru os: z x, z y ( ) gradient: grad z(x, y) = z x, z y totální diferenciál: parciální derivace ve směru gradientu

Matematické intermezzo Integrál funkce více proměnných základem je určitý integrál několik úrovní abstrakce Darbouxův Riemannův Lebegueův Kurzweilův význam má objemu pod plochou

Matematické intermezzo Vektor a matice vektor si lze představit jako n-tici čísel matici si lze představit jako m n-tici čísel na vektor lze pohĺıžet jako na matici 1 n matice lze sčítat jen pokud mají stejné rozměry pro násobení matic platí složitější podmínky vždy lze násobit čtvercové matice, ale obvykle: A B B A

Matematické intermezzo Náhodný jev obvykle nevíme, jak nějaký pokus dopadne: výsledek hodu kostkou? exploze v laboratoři? vyléčení nemocného? výsledem genetického algoritmu?... náhodný jev si můžeme představit jako jeden z možných výsledků pokusu náhodnému jevu můžeme přiřadit pravděpodobnost číslo z intervalu < 0, 1 >

Matematické intermezzo Náhodná veličina korektní definice nevypadá hezky: B B : {ω Ω : X (ω) B} A takže raději neformálně: náhodná veličina je funkce přiřazující každému jevu z dané množiny jevů jeho pravděpodobnost náhodnou veličinu lze popsat několika způsoby: pravděpodobnostní funkcí hustotou pravděpodobnosti distribuční funkcí k orientačnímu hodnocení slouží ukazatele střední hodnota kvartily rozptyl momenty šikmost, špičatost...

Matematické intermezzo Náhodný vektor vektor, jehož prvky jsou náhodné veličiny popis podobný jako u náhodné veličiny přibývá hodnocení vzájemného vztahu prvků vektoru: korelace a korelační koeficienty kovariance a (ko)varianční matice

Matematické intermezzo Náhodný proces korektní definice je hůře uchopitelná obohacení náhodné veličiny o časovou složku může být spojitý nebo diskrétní

A to je konec přednášky... Má někdo sílu na dotazy?