1 Zmienne losowe wielowymiarowe.



Podobne dokumenty
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

12DRAP - parametry rozkładów wielowymiarowych

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Komputerowa analiza danych doświadczalnych

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Prawdopodobieństwo i statystyka

Rozkłady dwóch zmiennych losowych

Szkice do zajęć z Przedmiotu Wyrównawczego

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Prawdopodobieństwo i statystyka

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Statystyka matematyczna

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Rozkłady prawdopodobieństwa zmiennych losowych

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Rozkłady łaczne wielu zmiennych losowych

Prawdopodobieństwo i statystyka

Rozkłady wielu zmiennych

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Zmienne losowe skokowe

Jednowymiarowa zmienna losowa

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady

Procesy stochastyczne

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Statystyka i eksploracja danych

Procesy stochastyczne

Rachunek prawdopodobieństwa- wykład 6

Wykład 2 Zmienne losowe i ich rozkłady

Statystyka i eksploracja danych

Ważne rozkłady i twierdzenia c.d.

Laboratorium nr 7. Zmienne losowe typu skokowego.

Metody systemowe i decyzyjne w informatyce

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Prawdopodobieństwo i statystyka

Podstawowe modele probabilistyczne

Biostatystyka, # 3 /Weterynaria I/

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

Wykład 3 Momenty zmiennych losowych.

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Wykład 3 Momenty zmiennych losowych.

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ.

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Matematyka dla biologów Zajęcia nr 12.

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Statystyka matematyczna

5 Przegląd najważniejszych rozkładów

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

1 Gaussowskie zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

Rachunek prawdopodobieństwa i statystyka

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

Metody systemowe i decyzyjne w informatyce

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

1 Funkcje dwóch zmiennych podstawowe pojęcia

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Statystyka. Magdalena Jakubek. kwiecień 2017

Rachunek prawdopodobieństwa II

Zadania zestaw 1: Zadania zestaw 2

Transkrypt:

1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n, X(ω)=(X 1 (ω),x (ω),...,x k (ω)) Definicja1.. Dystrybuanta n-wymiarowejzmiennejlosowejxnazywamyfunkcję F X (t 1,t,...,t n ):IR n IRokreślonąwzorem F X (t 1,t,...,t n )=P(X 1 <t 1,X <t,...,x n <t n ) Zajmiemy się bliżej zmiennymi losowymi dwuwymiarowymi. Dwuwymiarową zmienną losową(x,y) przyjmującą co najwyżej przeliczalnie wiele wartości (x i,y j ):i I,j J} nazywamydwuwymiarowązmiennąlosowądyskretną. Rozkład prawdopodobieństwa takiej zmiennej można przedstawić w postaci ((x i,y j ),p ij )}, gdzie p ij =P(X=x i,y=y j ), dla i I,j J. Dla zbiorów I, J skończonych wygodnie przedstawia się rozkład prawdopodobieństwa w postaci tabeli X\Y y 1 y... y n x 1 p 11 p 1... p 1n x p 1 p... p n. x m p m1 p m... p mn Dystrybuanta takiej zmiennej jest funkcją schodkową F(x,y)=P(X<x,Y<y)= i,j;x i <x,y j <y p ij. Przykład 1.1. Rzucamy 3 razy monetą. Niech zmienna losowa X oznacza liczbę wyrzuconych orłów a zmienna losowa Y numer rzutu, w którym orzeł pojawił się po raz pierwszy. Łączny rozkład prawdopodobieństwa wektora losowego(x, Y) przedstawia następujaca tabela. X\Y 1 3 0 0.15 0 0 1 0.15 0.15 0.15 0.5 0.15 0 3 0.15 0 0 1

Mówimy, że zmienna losowa(x, Y) jest typu ciągłego, jeżeli istnieje nieujemna funkcja całkowalna f(x, y) taka, że dystrybuanta ma postać F(x,y)= x y Wpunktachciągłości(x 0,y 0 )funkcjif(x,y) f(u,v))dudv. F x y (x 0,y 0 )=f(x 0,y 0 ). DlaborelowskiegozbioruA IR mamy P((X,Y) A)= f(x,y))dxdy. Następujące twierdzenie charakteryzuje dystrybuantę zmiennej losowej dwuwymiarowej Twierdzenie 1.1. Funkcja F(x, y) jest dystrybuantą pewnej zmiennej losowej(x, Y)wtedy itylkowtedy,gdy: F(x,y)jestniemalejącazewzględunakażdązezmiennych, F(x, y) jest lewostronnie ciągła ze względu na każdą ze zmiennych, dlakażdegoxikażdegoy lim F(x,y)=0, lim F(x,y)=0 x y oraz lim F(x,y)=1. x,y + dlakażdychx 1 <x,y 1 <y A F(x,y ) F(x 1,y ) F(x,y 1 )+F(x 1,y 1 ) 0. Wnioskiem z twierdzenia 1.1 jest następująca charakteryzacja funkcji gęstości. Twierdzenie 1.. Funkcja f(x, y) jest gęstością rozkładu prawdopodobieństwa pewnego wektora losowego wtedy i tylko wtedy, gdy: f(x,y) 0dlakażdego(x,y) IR, + + f(x,y)dxdy=1. Znając rozkład prawdopodobieństwa wektora(x, Y) możemy wyznaczyć rozkłady prawdopodobieństwa zmiennych X, Y. Nazywamy je rozkładami brzegowymi. W przypadku zmiennej losowej dwuwymiarowej dyskretnej(x, Y) są one określone wzorami: p i =P(X=x i )= j p ij, oraz p j =P(Y=y j )= i p ij Dla zmiennej dwuwymiarowej ciągłej(x, Y) tzw. gęstości brzegowe są następujące: f X (x)= f(x,y)dy, f Y (y)= f(x,y)dx. Rozkład wektora losowego(mówimy czasem rozkład łączny) wyznacza jednoznacznie rozkłady brzegowe, ale nie na odwrót. Rozkłady brzegowe wyznaczają rozkład łączny, gdy składowe wektora losowego są zmiennymi niezależnymi.

Twierdzenie1.3.ZmiennelosoweX,Y sąniezależnewtedyitylkowtedy,gdy F (X,Y) (x,y)=f X (x) F Y (y). W przypadku zmiennych dyskretnych warunek ten równoważny jest warunkowi p ik =p i p k dlawszystkichi,k a dla zmiennych typu ciągłego warunkowi f (X,Y) (x,y)=f X (x)f Y (y) dlawszystkichx,y IR. Powyższe twierdzenie jest prawdziwe dla dowolnej skończonej ilości zmiennych losowych X 1,X,...,X n. Przykład 1.. Zmienna losowa X jest liczbą spalonych zasilaczy w pracowni w ciagu dnia, zmienna losowa Y jest liczbą przepięć w sieci energetycznej. Łączny rozkład wektora losowego (X,Y)opisujetabela X\Y 0 1 0 0.8 0.01 1 0 0.07 0.0 0.1 a)obliczyćp((x,y) (,0),(,1)}). b)wyznaczyćrozkładybrzegowezmiennejlosowejxorazy.ilewynosip(x =1), P(Y=0).ObliczyćEX, EY. c)czyzmiennelosowex,ysąniezależne? a) Na podstawie tabeli podanego rozkładu łącznego wektora(x, Y) mamy P((X,Y) (,0),(,1)})=0.0+0.1=0.1. b) Rozkład brzegowy zmiennej losowej X wyznaczamy sumując wiersze tabeli prawdopodobieństw rozkładu łącznego(x, Y), rozkład brzegowy zmiennej losowej Y wyznaczamy sumując kolumny tabeli prawdopodobieństw rozkładu łącznego(x, Y) X\Y 0 1 r.brzegowy X 0 0.8 0.01 0.81 1 0 0.07 0.07 0.0 0.1 0.1 r.brzegowy Y 0.8 0.18 Mamywtedy:P(X=1)=0.07, P(Y=0)=0.8oraz EX=0 0.81+1 0.07+ 0.1=0.31 EY=0 0.8+1 0.18=0.18 c)w twierdzeniu 1.3 podany jest warunek konieczny i wystarczajacy niezależności zmiennych losowych. Zmienne losowe X, Y nie są niezależne bo na przykład P(X=0,Y=0)=0.8 0.81 0.8=P(X=0) P(Y=0). 3

Przykład 1.3. Wektorlosowy(X,Y)marozkładogęstości cxy dla 0 x 1,0 y x 0 poza tym a) Wyznaczyć stałą c. b) Wyznaczyć rozkłady brzegowe. c)czyzmiennelosowex,ysąniezależne? d)obliczyćp(0.5<x<0.5,y>0.5). e)obliczyćp(0.5<x<1,y X). a)funkcjaf(x,y)jestgęstościąwtedyitylkowtedygdyf(x,y) 0dla(x,y) R i Mamyzatemc 0oraz f(x,y)dxdy=1. czylic=6. f(x,y)dxdy= 1 0 x 1 x dx cxydy=c 0 0 dx=c 6 =1 b) rozkłady brzegowe zmiennych losowych X, Y są następujące: f X (x)= f Y (y)= f(x,y)dy= f(x,y)dx= 0, x 0,x 1 x 0 6xydy=3x, gdy0<x<1, 0, y 0,y 1 1 y 6xydx=3y 3y5, gdy0<y<1 c)zmiennelosowex,yniesąniezależneboniejestspełnionywarunek f X (x) f Y (y)dlakażdego(x,y) R ; naprzykładf( 1,1 )=3 34 45 =f 3 X( 1) f Y( 1). d)p(0.5<x<0.5,y>0.5)= 0.5 0.5 dx x 0.56xydy=3 0.5 0.5 x(x 0.5)dx= 5 18 e)p(0.5<x<1,y X)= 1 0.5 dx x x 6xydy=6 1 0.5 xdx x x ydy=3 1 0.5 x(x x )dx= 11 64. Przykład 1.4. Gęstośćwektoralosowego(X,Y)danajestwzorem 1 π e x a)czyzmiennelosowex,ysąniezależne? b)obliczyćp(x>1). c)obliczyćp((x,y) A),gdzieA=(x,y):x +y <1}. a) Wyznaczmy gęstość brzegowa zmiennej losowej X +y. f X (x)= 1 e x +y dy= 1 x 1 π π e e y dy= e x, x R π 4

Wobliczeniachwykorzystaliśmyznanynamfakt,że Podobnie obliczając mamy: e y f Y (y)= 1 π e y, y R. dy= π. Równośćf X (x) f Y (y)zachodzidlakażdego(x,y) R zatemzmiennelosowe X, Y sa niezależne. Zauważmy, że X oraz Y są zmiennymi losowymi o rozkładzie normalnym N(0, 1). Podana gęstość wektora losowego(x, Y) jest szczególnym przypadkiem gęstości dwuwymiarowego rozkładu normalnego. b)zmiennalosowaxmarozkładn(0,1)zatemp(x>1)=1 Φ(1)=0.1587. A e x +y dxdy i wykorzystując współrzędne biegunowe otrzy- c)p((x,y) A)= 1 mujemy π 1 e x +y dxdy= 1 π 1 1 dϕ re r dr=1 e. π A π 0 0 1. Parametry rozkładu wektorów losowych Gdydanyjestrozkładwektoralosowego(X,Y)orazh:IR IRjestfunkcjącałkowalną, todlaz=h(x,y) h(x, y)f(x, y)dxdy dla wektora losowego typu ciągłego EZ=Eh(X,Y)= h(x i,y k )p i,k dlawektoralosowegotypudyskretnego i,k Definicja1.3. Dla wektora losowego(x,y) kowariancja zmiennychx,y nazywamy liczbe Cov(X,Y)=E(X EX)(Y EY)=EXY EXEY. Jeżeli VarX > 0, VarY > 0, to definiujemy ważny parametr zwany współczynnikiem korelacji. ρ (X,Y) = Cov(X,Y) VarX VarY. Twierdzenie 1.4.(Własności współczynnika korelacji): 1. ρ(x,y) 1.Jeżelizmiennelosowesąniezależne,toρ(X,Y)=0. 3.ρ(aX+b,cY+d)=sgn(ac)ρ(X,Y). 4.ρ(X,Y)=±1wtedyitylkowtedy,gdyistniejąstałea,btakie,żeP(Y=aX+b)=1. Współczynnik korelacji jest miarą zależności liniowej zmiennych X i Y. W przypadku, gdy ρ=0,zmiennelosowenazywamynieskorelowanymi.jeżeliρ(x,y)=0,tozmienne losowe moga być zależne. Świadczy o tym poniższy przykład. 5

Przykład 1.5. ZmiennalosowaXmarozkładN(0,σ)iniechY=X.Sprawdzić,żeCov(X,Y)=0,a zmiennex,ysązależne. Zmienna losowa o rozkładzie N(0, σ) ma wszystkie momemty stopnia nieparzystego równe 0.WszczególnościEX=0, EX 3 =0,zaśEY=VarX=σ.Mamyzatem Cov(X,Y)=Cov(X,X )=EX 3 EX EX =0. Definicja1.4.Dlawektoralosowego(X 1,X,...,X n )określamymacierzkowariacji C n n,wktórej c ij =Cov(X i,x j ), i,j=1,,...,n MacierzCjestmacierząsymetryczną,c ii 0. Przykład 1.6. Gęstość wektora losowego(x, Y) dana jest wzorem 3 8 y cosx dla π x π,0 y 0 poza tym a) Znaleźć rozkłady brzegowe b) Wyznaczyć kowariancję oraz współczynnik korelacji zmiennych X, Y. Czy X, Y są niezależne? a) Rozkłady brzegowe zmiennych X oraz Y są następujące: f X (x)= f Y (y)= f(x,y)dy= f(x,y)dx= 3 8 0, x π,x π 0 y cosxdy= cosx, gdy π<x<π, 3 8 ππ 0, y 0,y y cosxdx= 3 8 y, gdy0<y< b)zauważmy,żezmiennelosowex,y sąniezależne(ponieważf X (x) f Y (y) dlakażdego(x,y))zatemcov(x,y)=0orazρ(x,y)=0. Przykład 1.7. Wektor losowy(x, Y) ma następującą funkcję gęstości 1 xy, gdy0<x<,0<y<x 0, pozatym a) Wyznaczyć kowariancję oraz współczynnik korelacji zmiennych X, Y. b) Napisać macierz kowariancji wektora losowego(x, Y). 6

a)cov(x,y)=exy EX EY Obliczmy najpierw EXY. EXY= 0 x dx xy 1 0 xydy=1 x 5 dx= 16 6 0 9. Do obliczenia pozostałych wielkości potrzebna jest znajomość funkcji gęstości zmiennych XorazY. 0, x 0,x f X (x)= f(x,y)dy= x 0 1 xydy=1 4 x3, gdy0<x<, f Y (y)= Obliczmy jeszcze; EX= 0 x x3 4 dx=8 5 EY= 0 y(y y3 4 )dy= 16 15 EX = 0 x x3 4 dx=8 3 VarX=EX (EX) = 8 75 EY = 0 y (y y3 4 )dy=4 3 VarY=EY (EY) = 44 5 Mamy zatem: Cov(X,Y)= 16 9 ρ(x,y)= Cov(X,Y) VarX VarY = 4 8 5 16 15 = 16 5 f(x,y)dx= 66. 0, y 0,y y 1 xydx=y 1 4 y3, gdy0<y< b)macierzkowariancjicwektoralosowegox,y,gdzie c 1 =c 1 =Cov(X,Y),c 11 =VarX,c =VarY jestnastepująca: C= 8 75 16 5 16 5 44 5 Przykład 1.8. Współczynnik korelacji zmiennych losowych X, Y wynosi 0.5. Jaki współczynnik korelacjimajązmiennelosowe4x 3oraz Y+4? Wykorzystując własności współczynnika korelacji mamy ρ(4x 3, Y+4)=sgn( 8)ρ(X,Y)= 0.5 7

1..1 Rozkładywarunkowe W rozdziale rozważaliśmy prawdopodobieństwo warunkowe( warunek był zdarzeniem o prawdopodobieństwie dodatnim). Dla wektora losowego(x, Y) interesujące jest pytanie jak wartości jednej składowej wpływają na prawdopodobieństwo przyjmowania wartości przez drugą składową. Zależności te opisują rozkłady warunkowe. Definicja 1.5. Dla dyskretnego wektora losowego(x, Y) warunkowy rozkład zmiennejxprzywarunku(y=y k ),P(Y=y k ) 0określamyjako i analogicznie. (x i,p(x=x i Y=y k )),i I warunkowyrozkładzmiennejyprzywarunku(x=x i ),P(X=x i ) 0to (y k,p(y=y k X=x i )),k J Definicja 1.6. Dla wektora losowego(x, Y) typu ciągłego gęstością warunkową zmiennejlosowejxprzywarunku(y=y),f Y (y)>0nazywamyfunkcję f X Y (x y)= f(x,y) f Y (y) i analogicznie gęstościa warunkową zmiennej losowej Y przy warunku(x = x), f X (x)>0nazywamyfunkcję f Y X (y x)= f(x,y) f X (x). Zauważmy, że bezpośrednio z definicji wynika,że rozkład warunkowy jest prawdopodobieństwem, gęstośc warunkowa jest funkcją gęstości. Ponadto dla niezależnych zmiennych losowych X, Y prawdopodobieństwa warunkowe są prawdopodobieństwami brzegowymi, gęstości warunkowe są gęstościami brzegowymi. Możemy zatem obliczać wartość oczekiwaną rozkładu warunkowego. Definicja 1.7. Warunkową wartość oczekiwaną zmiennej losowej X przy warunku(y=y k )określamynastępujaco: E(X Y=y k )= i Ix i P(X=x i Y=y k ), gdy(x,y)jestdyskretny xf(x y k)dx, gdy(x,y)jesttypuciagłego i analogicznie warunkowąwartośćoczekiwanązmiennejlosowejy przywarunku(x=x i ) określamy następujaco: E(Y X=x i )= k Jy k P(Y=y k X=x i ), gdy(x,y)jestdyskretny yf(y x i)dx, gdy(x,y)jesttypuciagłego 8

Twierdzenie1.5.JeśliistniejeEXtoistniejeE(X Y=y). W zastosowaniach rachunku prawdopodobieństwa, posługujemy się pojęciem warunkowej wartości oczekiwanej zmiennej losowej Y względem zmiennej losowej X, oznaczanej przez E(Y X). E(Y X)tonowazmiennalosowapostacim Y (X).Najczęściejpodajemywarunkowąwartość oczekiwaną zmiennej losowej Y względem zmiennej losowej X poprzez wzór na funkcję : m Y (x)=e(y X=x). Funkcjęm Y (X)nazywamyfunkcjąregresjizmiennejlosowjYwzględemzmiennej losowej X. Analogicznie określamy warunkową wartość oczekiwaną zmiennej losowej X względem zmiennej losowej Y i oznaczamy E(X Y). Twierdzenie1.6.JeśliVarX<, VarY< todlam Y (X)=E(Y X)zachodzi min h E(Y h(x)) =E(Y m Y (X)), gdzieh(x)jestdowolnąfunkcjąborelowską,żeeh (X)<. Twierdzenie1.7.Niech(X,Y)będziewektoremlosowymiistniejeEXto: 1.E(E(X Y))=EX.dlaniezależnychzmiennychX,Y mamye(x Y)=EX. Przykład 1.9. Dla zmiennych losowych X, Y opisanych w rozwiązaniu Przykładu 3.9 wyznaczyć: a) rozkład warunkowy zmiennej losowej Y przy warunku(x = k), b) rozkład łączny wektora(x, Y), rozkłady brzegowe, c) funkcję regresji zmiennej losowej Y względem X i narysować jej wykres. Przykład 1.10. Dwuwymiarowazmiennalosowa(X,Y)marozkładjednostajnynazbiorzeD=(x,y): x +y 9,y 0},toznaczy c, gdy(x,y) D 0, pozatym a) Wyznaczyć stałą c. b) Wyznaczyć rozkłady brzegowe zmiennych losowych X, Y. c)wyznaczyćgęstościwarunkowef X Y,f Y X. d)czyzmiennelosowex,ysąniezależne? e) Wyznaczyć funkcję regresji zmiennej losowej Y względem X. 9

Przykład 1.11. Gęstością wektora losowego(x, Y) jest funkcja 1 xy, gdy0<x<,0<y<x 0, pozatym a)wyznaczyćgęstościwarunkowef X Y,f Y X.CzyzmiennelosoweX,Ysąniezależne. b) Wyznaczyć i narysować funkcję regresji zmiennej losowej Y względem zmiennej losowej X. Definicja 1.8. Mówimy,że wektor losowy(x, Y) ma dwuwymiarowy rozkład normalny, jeśli jego funkcja gęstości ma postać gdzie 1 πσ x σ y 1 ρ e 1 [(x mx) (1 ρ ) σx ρ(x mx)(y my) σxσy ] + (y my) σy EX=m X, EY=m Y, VarX=σ X, VarY=σ Y, ρ(x,y)=ρ. Jeśli wektor losowy(x, Y) ma dwuwymiarowy rozkład normalny icov(x,y)=0tozmiennelosowex,y sąniezależne. Przykład 1.1. Badano wpływ zawartości pewnego składnika, zawartość składnika opisuje zmienna losowa X, na wytrzymałość Y tworzywa i stwierdzono, że łączny rozkład zmiennych losowych (X,Y)dobrzeopisujedwuwymiarowyrozkładnormalnyoparametrachm X =3,m Y = 1.6,σ X =1, σ Y =0.4,ρ=0.9. a) Wyznaczyć i narysować funkcję regresji Y względem X. b) Obliczyć, ile wynosi najmniejsza zawartość składnika X, przy której wytrzymałość tworzywa Y przekroczy, z prawdopodobieństwem 0.9? W praktycznych zagadnieniach trzeba nieraz wyznaczyć taką prostą, że spośród wszystkich prostych leżących na płaszczyżnie xoy średnie odchylenie kwadratowe zmiennej losowej Y od tej prostej jest najmniejsze. Definicja1.9.Prostąy=a 0 x+b 0 dlaktórejzachodzi E(Y (a 0 X+b 0 )) =min a,b E(Y (ax+b)) nazywamy prostą regresji zmiennej losowej Y względem zmiennej X. 10

Nietrudno uzasadnić następujący fakt. JeśliVarX,VarY sąskończonetoprostay=a 0 x+b 0 gdzie a 0 = Cov(X,Y) VarX,b 0=EY a 0 EX jest prostą regresji zmiennej losowej Y względem X. Równoważne równanie prostej regresji zmiennej losowej Y względem X ma postać y EY VarX =ρ(x,y) x EX VarY Dla wektora losowego(x, Y) o dwuwymiarowym rozkładzie normalnym funkcje regresji pokrywaja się z prostymi regresji. Przykład 1.13. Dla wektora losowego opisanego w Przykładzie 3 tego rozdziału wyznaczyć prostą regresji zmiennej losowej Y względem zmiennej losowej X oraz prostą regresji X względem Y. 11