V. MODELE MATEMATYCZNE KIERUNKOWEJ. KRYST ALlZACJl STOPÓW

Podobne dokumenty
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

STOPU ODLEWNICZEGO NA BAZIE PEWNEJ METODY KOLLOKACYJNEJ

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

z wykorzystaniem pakiet MARC/MENTAT.

Laboratorium Dynamiki Maszyn

CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH.

Teoria cieplna procesów odlewniczych

33/28 BADANIA MODELOWE CERAMICZNYCH FILTRÓW PIANKOWYCH. PIECH Krystyna ST ACHAŃCZYK Jerzy Instytut Odlewnictwa Kraków, ul.

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

Definicje i przykłady

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

OPORY PRZEPŁYWU TRANSPORTU PNEUMATYCZNEGO MATERIAŁÓW WILGOTNYCH

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

Teoria cieplna procesów odlewniczych

TERMODYNAMIKA PROCESOWA

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

ZMODYFIKOWANA PRÓBA JOMINY ".J-M"

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej. Część 1 Odwzorowanie drgań oscylatora liniowego na płaszczyźnie fazowej

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę:

Analiza matematyczna dla informatyków 3 Zajęcia 14

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

SYMULACJA NUMERYCZNA KRZEPNIĘCIA Z UWZGLĘDNIENIEM RUCHÓW KONWEKCYJNYCH W STREFIE CIEKŁEJ I STAŁO-CIEKŁEJ

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

SYMULACJA PROCESU KIERUNKOWEGO l JEDNOCZESNEGO

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

Przepływy laminarne - zadania

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Podstawy Automatyki. wykład 1 ( ) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Wstęp do równań różniczkowych

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

Równania różniczkowe. Notatki z wykładu.

Analiza termiczna Krzywe stygnięcia

IDENTYFIKACJA CHARAKTERYSTYCZNYCH TEMPERATUR KRZEPNIĘCIA ŻELIWA CHROMOWEGO

chemia wykład 3 Przemiany fazowe

wymiana energii ciepła

Zaawansowane metody numeryczne

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

1. PODSTAWY TEORETYCZNE

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Układy równań i równania wyższych rzędów

x = cos θ. (13.13) P (x) = 0. (13.14) dx 1 x 2 Warto zauważyć, że miara całkowania w zmiennych sferycznych przyjmuje postać

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

LINIOWA MECHANIKA PĘKANIA

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Wstęp do równań różniczkowych

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją

5 Równania różniczkowe zwyczajne rzędu drugiego

3. Równania konstytutywne

Równania różniczkowe liniowe II rzędu

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa

3. FUNKCJA LINIOWA. gdzie ; ół,.

Zagadnienia brzegowe dla równań eliptycznych

SPEKTRALNE CIEPŁO KRYSTALIZACJI ŻELIWA SZAREGO

1. Wprowadzenie: dt q = - λ dx. q = lim F

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

NOŚNOŚĆ GRANICZNA

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

6. ZWIĄZKI FIZYCZNE Wstęp

Funkcja liniowa - podsumowanie

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

Symulacja przepływu ciepła dla wybranych warunków badanego układu

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

Stabilność II Metody Lapunowa badania stabilności

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Przy opisie zjawisk złożonych wartości wszystkich stałych podobieństwa nie mogą być przyjmowane dowolnie.

l. Wprowadzenie W zagadnieniach odwrotnych chodzi nie tyle o wyznaczenie rozwiązania obszaru ograniczonego brzegiem, na którym zadane są

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Rozwiązywanie układów równań liniowych

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

27/10 PROFIL TWARDOŚCI W FUNKCJI ZMIAN STEREOLOGICZNYCH STRUKTURY NA PRZEKROJU WALCÓW ŻELIWNYCH 2. WYNIKI BADAŃ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Rozwiązywanie równań nieliniowych

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Politechnika Poznańska

Transkrypt:

Krzepnięcie metai i stopciw t. VII PL ISSN 0208-9386 ISBN 83-0 4-01 500-5 Os s o i neum 198 4 Bohdan Mochnacki V. MODELE MATEMATYCZNE KIERUNKOWEJ KRYST ALZACJ STOPÓW Tematem niniejszego rozdziału. są metody opisu matematycznego przepływu ciepła i masy w procesie kierunkowej krystaizacji w ujęciu makroskopowym. Właściwości ciepne stopu charakt eryzują w takim przypadku jego właściwe pojemności ciepne, gęstości i współczynniki przewodzenia ciepła da występujących w układzie stanów skupienia. Podobnie charakteryzuje się waściwość:.i ciepne formy ub układu tworzącego krystaizator. Do parametrów termofizycznych charakteryzując ych rozważany stop zaicza się również ciepło krystaizacji i temperaturę kr~epnięcia (da czystych metai i stopów eutektycznych) ub in t erwał temperatur da większości stopów. Przebiegowi wymiany ciepła w objętości krzepnącego metau towarzyszą zjawiska segregacji składu chemicznego obustronnie sprzężone z kinetyką krzepnięcia, głównie poprzez procesy zac ho dzące na froncie krystaizacji. Równocześnie następuje dyfuzyjne odprowadzenie masy od frontu krystaizacji w głąb cieczy oraz konwekcyjne mieszanie ciekłego metau, przy czym opis matematyczny tego procesu jest bardzo złożony. Decydujący wpływ na wymianę ciepła i masy w objętości krzepnącego metau mają tzw. warunki jednoznaczności, charakteryzujące rozpatrywaną te chnoogię. Jest to grupa warunków, na które można oddziaływać w procesie technoogicznym i które mają zasadniczy wpływ na jakość otrzymanego wytworu. Optymany dobór kształtu odewu i szeroko rozumianej formy, materiałów formy, rozmieszczenia o chładzaników, tempe-

126 Bohaan Mochnacki r atury zaewania, warunków odprowadzenia ciepła w układzie (np. warunków w komerze pieca do kierunkowej krystaizacji) są decydującjrni o sukcesie. projektowanej technoogii. czynnikami W formanym opisie matematycznym procesu warunki jednoznaczności dzieh się na warunki geometryczne, brzegowe, początkowe i parametry m a teriałowe układu, zaś szczegóły z tym związane zostaną przedstawione w daszej części pracy;. Opis matematyczny procesów wymi.-<iny ciepła i masy.. Probemy opisu matematycznego procesów wymiany ciepła i masy w zagadnieniach związanych z krystaizacją kierunkową (w skai makroskopowej) nie odbiegają istotnie od rozważanych w teorii ciepnej procesów odewniczych modei tzw. probemu Stefana. Rozważa się więc zadanie ni~stacjonarnego (bądź w pewnych przypadkach pseudostacjonarnego) przepływu ciepła w obszarze niejednorodnym o zmiennych parametrach termofizycznych z przemieszczającą się w czasie granicą (ub granicami) rozdziału faz. Zadanie to może być sprzężone z probemem dyfuzyjnego ruchu masy [1], z probemem wyznaczania naprężeń termicznych w układz,ie [2] itp. Przedstawione w niniejszej pracy sposoby opisu matematycznego nie uwzgędniają całej złożoności sprzężeń zjawisk i można sformułować bardziej precyzyjne modee tych procesów [3]. Otrzymane jednak na podstawie proponowanych modei rozwiązania są wystarczająco dokładne, co potwierdziły iczne eksperymenty [4 J, a równocześnie odpowiednie agorytmy numeryczne są stosunkowo proste i łatwe w reaizacji na maszynach cyfrowych. Jeżei obszar krzepnącego metau traktować jako środowisko izobaryczne i izotropowe, to równanie różniczkowe opisujące zmienne w przestrzeni i czasie poe temperatury w eemencie D (t) rozważanej m tości jest postaci obję- ( )

Modee matematyczne kierunkowej krystaizac ji. stopów 127 gdzie A. m właściwa pojemność ciepna, czynnik przewodzenia ciepła gęstość masy i współ-... podóbsżaru b (t),. m, '. qvm - wydajność. objętościowych źródeł cie,pta. w rozważ,_anyrn podobszarze, T, X, t - temperatura, ws.pórzędne, czas. W icznych rozwiązaniach równania () inearyzuje się, przyjmując. stałe własności ciepne w podobszarach Dm (t) i wówczas otrzymuje się gdzie am - w D (t). m a m at~~,. t). div[gradt(x, t)]+ q;:n, (2) m A. f c o jest współczynnikiem wyrównywania temperatury m m 'm Jeżei podobszar D (t) krzepnącego metau (np. podobszar ciała. m stałego) traktować jako ciało anizotropowe, to wiekością charakteryzującą anizotropię ciała pod wzgędem ciepnym jest tensor przewodności ciepnej (3) przy czym da większości ciał anizotropowych Ą jest tenserem symetrycznym. Równanie przewodnictwa (2) jest w takim przypadku bardziej skompikowane. J eże i rozpatrywać obszar zorientowany w układzie w spółrzędnych prostokątnych X - { x, y, z}, to otrzymuje się Ą T"!t 22 yy A. T" (i\. 33 ZZ + 23 + A. ) T" + 32 yz (4)

128 Bohdan Mochnacki Ponieważ da k ażdeg o tensora symetrycznego można wyszczegónić trzy takie kierunki parami prostopadłe, aby w układzie ka rtez j ańskim o osiach mających wymienione kierunki tensor A. przyjął postać (5) datego w odpowiednio dobranym układzie współrzędnych f u, v, w} równanie (3) sprowadza się do prostszego ch A T " + A T" + Ą T " +q cm 'i' m Tt- uu 2 vv 3 ww vm' (6) nie różniącego się istotnie od równania (2). Brak danych odnośnie do parametrów termofizycznych stopów, traktowanych jako ciała anizotropowe, nie pozwaa najczęściej na rozważanie modei typu (6), chociaż ze wzgędów rachunkowych obiczenia byłyby takiego samego stopnia trudności jak da obszarów izotropowych. Jeżei procesowi prze wodnictwa towarzyszy konwe kcyjny transport ciep ł a (np. w objętoś ci ciek łego, przegrzanego metau), to w miejsce pochodnej temperatury po czasie naeży wprowadzić tzw. pochodną materianą DT(X, t) D t at(x, t) - dt(x ) ot + w. gra 't (7) gdzie w jest wektorowym poem prędkości ruchu czynnika wyp e łniającego obszar D (t). m Przekazywanie ciepła na drodze unoszenia odbywa się zgodnie z równaniem Kirchoffa-Fouriera (tzn. równaniem ) z po ch odną materianą (7) oraz ewentuanym czł onem uwzgędniającym zmienne ciśnienie w obszarze) Poe wektorowe prędkości w jest opisane przez równanie Naviera-Stokesa oraz równanie ciągości. Opis matematyczny wymiany ciepła jest w takim przypadku bardzo złożony, i nawet podejmując próby zastosowania metod numerycznych, trudno jest w chwii obecnej uzyskać

Modee matematyczne kierunkowej krystaizacji stopów 129 pełne rozwiązanie zadania. Z tych też wzgędów w znanych z iteratury rozwiązaniach przyjmuje się najczęściej w O, procesy zaś konwekcyjnego przepływu ciepła uwzgędnia się w sposób uproszczony, np. przez modyfikację wartości parametrów termofizycznych w obszarze ciekłego metau [5] ub przyjmując podział podobszaru cieczy na warstwę termiczną ót (ub dyfuzyjną d ) oraz pozostałą jego część, w. której na skutek mieszania poe temperatur i poe stężeń wyrównują się. Istnieją jednak pewne procesy technoogiczne, w których obszar krzepnącego metau przesuwa się przez urządzenie (np. krystaizator) i wówczas w opisie matematycznym nie można pominąć składn~ka wynikającego z "zewnętrznego" poa prędkości. W teorii ciepnej procesów odewniczych rozważa się dwa podstawowe modee krzepnięcia stopu. Mode pierwszy, nazywany też probemem Stefana, dotyczy metai X krzepnących w okreśonej temperaturze T, stanowiącej wartość granicz.,. ną między fazą ciekłą a ciałem stałym. Można również rozważać anaogiczny mode da większej iczby faz o ostrych granicach rozdziału [6], Mode drugi opisuje krzepnięcie metau w interwae temperatury, gdy proces przejścia od cieczy do ciała stałego wiąże się ze zmianą temperatury od temperatury T L do temperatury T 5, przy czym w bardziej złożonych rozwiązaniach obie te temperatury mogą się zmieniać w zaeżności od chwiowego rozkładu stężeń składników stopowych w pobiżu strefy krzepnącego metau. W pierwszym z omawianych przypadków przepływ ciepła w rozważa~ nej objętości opisuje układ najczęściej dwóch równań ró żniczkowych (da cieczy i ciała stałego) typu (), przy czym q O, z warunkiem vm P(X)e r (t):- A. n gradt (X,t).- 12 1?.. 1 2 n gradtzcx,t)+p 2 q~v, (8) nazywanym warunkiem brzegowym Stefana. W ostatnim równaniu r (t) oznacza brzeg odpowiadający granicy 12 rozdziału faz ciecz-ciało stałe' n jest wersorem prostopadłym do r12(t) w rozważanym punkcie P(X), q*- ciepłem krystaizacji, v - prędkością

130 Bohdan Mochnacki przyrostu warstwy zakrzepej w kierunku normanym do granicy r (t). 12 Jeżei r ozw ażać meta, którego stan ciekły odpowiada temperaturom T > T L, stan stały zaś temperaturom T < T S, to w rozważanej objętości generują się trzy zmieniające w czasie swoje kształty podobszary cieczy, strefy przejściowej i ciała stałego. Układ równań różniczkowych okre ś ający niestacjonarne poe temperatury w obszarze krze,pnącego metau jest postaci (), przy czym m-, 2, 3. W szczegóności da strefy przejściowej równanie energii można zapisać w postaci ( T) ( ) at(x, t) c2 z T a t - qv2 - div [ A. 2 gradt(x, t) J, (9) gdzie c 2 (T) jest tzw. zastępczą pojemnością ciepną strefy przejściowej. Można wykazać, że przy założeniu 9 2 (T ) - 9s przy czym 9s jest gęstością masy generującego się w procesie krzepnięcia ciała stałego, parametr c 2 (T) okreśa zaeżność [7] gdzie F (T) jest okanym udziałem objętościowym ciała stałego w rozważanym eemencie 4V D/t), F(T) - - F(T) - udziałem cieczy, oczywiście F(T), F('i) [O, 1]. Ponieważ w pozostałych podobszarach układu F(T) - O (ciecz) i F(T) - (ciało stałe), zatem zaeżność (10) ze wskaźnikami m- ub m - 3 można formanie rozszerzyć na cały obszar kr zepnąc ego odewu, przy czym da m f. 2tC (T) - c (T). r m m Przyjęcie okreśonej hipotezy dotyczącej przebiegu funkcji F(T) w interwae temperatur [T S, T L] determinuje końcową postać wzoru (O). W iteraturze podawanych jest szereg zaeżności c 2 - C z{ T) [ 8, 9, O], z których dwie zostaną Niech T cp (z) będzie przedstawione niżej. równaniem inii granicznej ciecz-strefa przej ściowa w układzie równowagi, k( z) zaś współczynnikiem podziału: k(z) - zs/zl.

Modee matematyczne kierunkowej krystaizacji stopów 131 Jeżei pominąć strefową makroskopową ikwację w odewie, co odpowiada odrzuceniu członów dyfuzyjnego przenoszenia masy (współczynnik dyfuzji D O), to równanie różniczkowe opisujące procesy transportu w pobiżu inii T ~f (z) jest postaci d[z F(T )] k( ) d F(T) dt - z z dt (11) przy warunku z z, F(T) -, przy czym z jest koncentracją składnio o ka, odpowiadającą składowi ciekłego stopu wypełniającego formę bezpośrednio po zaaniu. Równanie (11) jest równaniem o zmiennych rozdzieonych z df + F(T) dz. k(z) zdf(t), (12) skąd "+ F en [ - k~:j],j o (13) Ponieważ. af(t) at )z(t) a F 1 ar -a; 'f'(z) (14) oraz ::- - [1- ktz)] z exp[- f [1- k~~)j z z z o (S) datego zastępczą pojemność ciepną strefy przejściowej opisuje równanie c,(t) c,ctj - [ - k(,~: +! '(,ry [ - o - k~:!]>, (16) Aby uzyskać efektywny wzór na zastępcze ciepło właściwe, wprowadza

132 Bohdan Mochnacki się dodatkowe założenie o iniowym przebiegu inii granicznych ikwidus -strefa przejściowa i strefa przejściowa-ciało stałe, w pobiżu rozważanej koncentracji z. Ostatecznie otrzymuje się zaeżność T(X,t).;;T, (17) o przy czym T jest temperaturą graniczną da z O, T temperaturą na o granicy ciecz-strefa przejściowa, odpowiadającą koncentracji z, w s póło czynnik podziału k(z) k. idem, co wynika z założenia o inearyzacji wy k resu '. rownowąg1 Przedstawione wyżej rozważania są przykładem konstrukcji wzoru, okreśającego zastępczą pojemność ciepną na podstawie pewnych inter. pretacji fizycznych warunków wymiany ciepła i masy w procesie krystaizacji (tu prowadzono je wychodząc z uproszczonego równania różniczkowego transportu masy). Podobny charakter mają rozwiązania przedstawione w pracach Samejłowicza [ 9] Wydaje się jednak, że _iczne uproszczenia konieczne do uzyskania efektywnego wyniku powodują, rezutat istotnie odbiega od założeń wyjściowego modeu matematycznego. W pracy [ 7] autor niniejszego artykułu przedstawił rozwiązanie podobnego 'probemu, tzn. wyznaczanie zastępczej pojemności ciepnej stopu, w której na podstawie anaizy krzywych stygnięcia przyjęto, że dobrym przybiżeniem funkcji c 2 (T) mogą by ć paraboe typu że (18) gdzie es jest ciepłem właściwym ciała stałego w pobiżu izotermy T T S, a i p współczynnikami. Ponieważ zmiana entapii jednostki masy stopu w procesie krzepnięcia musi wynosić 1 Funkcja (17) nie spełnia warunku F(T s) O, stąd naeży przyjąć pewną graniczną wartość F(T) odpowiadającą c akowitemu zakrzepnięciu stopu, np. F 0,05.

Modee matematyczne kierunkowej krystaizacji stopów 133 TL J c 2 (T)dT-~/TL -TS)+qx, (19) T s gdzie e2 jest średnim cał kowym ciepłem właściwym strefy przejściowej, datego współczynnik a w równaniu (18) c sp q X (20) oraz - c + s T (X, t) - T (p + ) (22 + c - c ) [ T T s sp s L - S p (21) Przeprowadzone badania, poegające na weryfikacji modeu matematycznego ze zmierzonymi na specjanie skonstruowanym odewie (próba schodkowa) krzywymi stygnięcia, wykazały, że da stopów Fe-C (ściśej stai w węgowych) optymana wartość parametru p wynosiła p"" 7. Równocześnie pokazano, że hipoteza (18) jest poprawna, ponieważ podstawienie zaeżności (21) do (10) prowadzi do równania różniczkowego iniowego, z którego można obiczyć funkcję F(T), przy czym jej postać wyznaczona da warunku F(T L) - O prowadzi do F(T S) -, co potwierdza prawidłowość przyjętej hipotezy. Podsumowując powyższy fragment pracy naeży zwrócić uwagę, że mode matematyczny procesu krzepnięcia i stygnięcia stopu, ae którego zmiana stanu zachodzi w interwae temperatury, odbiega istotnie od kasycznego modeu Stefana. Pojawia się mianowicie dodatkowe równanie różniczkowe przewodnictwa ciepnego w strefie przejściowej, w miejsce zaś warunku na granicy rozdziału faz - dwa warurki ciągłości poa temperatury i ciągłości strumieni ciepła w pobiżu izoterm T L i T S: - t.. 1 n grad T (X, t) - -.>.. 2 ii: grad T 2 (X,t) P(X) e. 12 (t) : { T (X, t) - T 2 (X, t) (22)

134 - Bohdan Mochnacki P(X) e (23) Anaizując proces krzepnięcia metau w formie ocenia się często, że krzepnięcie ma charakter warstwowy ub objętościowy (np. krzepnięcie metau w cieńkośdennej kokii ub grubościennej formie piaskowej). Znane jest powszechnie m.in. kryterium Wiejnika dotyczące oceny rodzaju krzepnięcia. Os zacowany w ten sposób jakościowy przebieg procesu wiąże się czasami z przyjęciem okreśonego modeu matematycznego. Festępowanie takie jest oczywiście błędne. C zys te metae ub niektóre stopy krzepną w okreśonej temperaturze i w takim przypadku będzie to z całą pewnością krzepnięcie warstwowe, zaś pozostałe krzepną w interwae temperatury i proces będzie przebiegał objętościowo. nnym probemem jest wiekość odpowiedniego podobszaru w odewie i rzeczywiście da warunków brzegowych zapewniających duże gradienty temperatury w pobiżu wnęki formy "szerokość" podobszaru strefy przejściowej będzie odpowiednio mała. Efekt ten jest szczegónie dobrze widoczny w cyfrowej symuacji procesu wymiany ciepła i masy w objętości odewu. Jednym ze sposobów sprowadzenia modeu matematycznego ze strefy przejściowej do zadania Stefana jest przyjęcie tzw. ekwiwaentnej tempe ratury krystaizac ji [ 11), której wartość wynika z uogónionego twierdzenia o wartości średniej w cace oznaczonej i wynosi T e TL r C2(T) T dt Ts TL r c (T ) dt 2 TL I C2(T) T dt Ts ~2(TL -T s)+ q X (24) T s Zan.iedbuje się wówczas w rozważaniach podobszar D 2 (t) i mode matematyczny sprowadza się do dwóch równań energii (ciecz i ciało stałe) wa-

Modee matematyczne kierunkowej krystaizacji stopów 135 X runku Stefana, przy czym T g owych na styku odewu i formy. Wpływ T, oraz odpowiednich warunków brzee procesów ciepnych w obszarze niejednorodnej (w ogónym przypadku) formy na przebieg krzepnięcia i stygnięcia metau można uwzgędnić przez przyjęcie zastępczego warunku brzegowego na powierzchni odewu i "odrzucenie" obszaru formy. Przykładami takiego postępowania mogą być np. pierwsze i kasyczne już rozwiązania Stefana dotyczące zamarzania wigotnego gruntu, a z drugiej strony wykorzystanie danych doświadczanych dotyczących wiekości strumieni ciepnych, oddawanych w procesie odewania Ciągłego w obszarze krystaizatora [12]. Bardziej precyzyjne modee uwzgędniają wpływ formy, rozszerzając mode matematyczny procesu przez dołączenie do układu równań różniczkowych da obszaru metau anaogicznych równań da obszaru formy i przyjęcie odpowiednich warunków brzegowych.na zewnętrznej i wewnętrznej jej powierzchni. Iustracją takiego sposobu postępowania mogą być rozwiązania anaityczne podane w pracach Schwarza [11] iub modee numeryczne krzepnię cia masywnych złożonych geometrycznie odewów, przedstawione m.in. w [13]. W omawianym przypadku warunki brzegowe na styku metau i formy przyjmują postać warunków V rodzaju Tm(X, t) - TF(X, t) RmF(t) (25) gdzie m jest wskaźnikiem identyfikującym stan metau, pozostającego w oto c zen i u punktu P (X) w k ontakci,e z wnęką formy, indeks F odnosi się do materiału formy, RmF(t) jest oporem ciepnym styku. Gdy RmF(t) O, to musi być T T i warunki przyjmują postać anaogiczną do (22), (23). m F Na zewnętrznej powierzchni formy warunki brzegowe przyjmują pos tać warunków roqzaju

136 Bohdan Mochnacki W ostatnim równaniu ot (t) jest współczynnikiem wnikania ciepła od formy do otoczenia, T.., temperaturą czynnika otaczającego formę. 2. Wykorzystanie entapii w opisie matematycznym krzepnięcia stopu Przedstawione wyżej modee matematyczne przepływu ciepła w układzie meta-forma-otoczenie są bardzo złożone. Modee te są nieiniowe, przy czym występuje tu nieiniowość w równaniach różniczkowych ( zmienne parametry), jak i w warunkach brzegowych. Szczegóne trudności obiczeniowe wiążą się z warunkami na granicach rozdziału faz, w związku z czym efektywne rozwiązanie anaityczne modeu Stefana uzyskano jedynie da najprostszych przypadków geometrycznych i fizycznych, a modee numeryczne naeżą do najbardziej złożonych agorytmów w probemach przepływu ciepła. Nie naeży więc się dziwić, że iczne badania w zakresie teorii ciepnej procesów odewniczych, a szerzej w zakresie probemów wymiany ciepła w obszarach z ruchomą granicą, prowadzone były w kierunku formanych uproszczeń wyjściowego modeu matematycznego - bez zaniedbywania jego adekwatności do rzeczywistych warunków procesu. Jedną z możiwych reaizacji tak postawionego zadania jest wprowadzenie do opisu matematyc znego w miejsce temperatury - entapii fizycznej gtopu (odniesionej bądź do jednostki objętości, bądź do jednostki masy) [14]. Niech Tx będzie temperaturą graniczną ciecz-ciało stałe metau krzepnącego w stałej temperaturze, H(X, t ) entapią rozważanego metau odniesioną do jednostki objętości. Wprowadzając oznaczenia (27) oraz 1,? (T)- O, [ mamy

Modee matematyczne kierunkowej krystaizacji stopów :r H(X, t) - H(T) - J en) ij>(s)dt +?(T)!' 2 q~, T o 137 (28) gdzie T 0 jest dowonie przyjętym poziomem odniesienia (np. T 0 - O). Równania różniczkowe opisujące niestacjonarne poe temperatury w podobszarach D 1 (t), D 2 (t) przyjmują wówczas postać 3H (X, t) m ot m-, 2, (29) jeżei zaś w;5półczynniki cm' S'm ah (X, t) m ot Ą zaeżą tyko od fazy, to m m-, 2. (30) Warunek brzegowy Stefana sprowadza się do zaeżności Na froncie krzepnięcia pojawia się więc skokowa zmiana entapii jednostkowej, co stanowi pewien probem w reaizacji obiczeń (najczęściej numerycznych) Jednym z możiwych sposobów zapewnienia ciągłości funkcji H jest przedstawiona w pracy [15] metoda nazwana metodą "wygładzania współczynników". W otoczeniu izotermy Tx wybiera się dwa X X punkty T + Ó T oraz T - d T i zmianę entapii na tym odcinku pr zybi ż a się funkcją ciągłą kasy C, co pokazano na rysunku. Bardzo efektywny agorytm rozwiązania probemu krzepnięcia z wykorzystaniem entapii przedstawiono w pracy [16 J. Nazwano go metodą naprzemiennej fazy (the aternating phase truncation method) Rozpatruje się entapię jako funkcję temperatury H - H(T) Lewox i prawostronne granice entapii w punkcie T wynoszą (32)

138 Bohdan ~ochnacki H F /" -----r, cf : i"" T Przyjmując, że rozkład entapii w pewnej chwii t p jest znany, poszukuje się przybiżonego rozkładu entapii w chwii P+ p t t + LH. Pierwszy krok przedstawionego agorytmu poega na doprowadzeniu do każdego punktu obszaru D - D (t) U D (t) 1 2 takiej iości ciepła, by przeszedł on do fazy ciekłej. Odpowiada to okreśeniu pewnej,funkcji rozkładu entapii w chwii tp Rys.. Wygładzanie krzywej entapii czywistej entapii bez zmiany. c o oznacza narzucenie wszystkim punktom rozpatrywanego obszaru entapii A 1 ub (da części ciekłej) pozostawienie rze- Przy takim warunku początkowym rozwiązuje się równanie różniczkowe ijv(x, t) at div [a 1 grad V(X, t)] (34) z odpowiednimi warunkami brzegowymi, wynikającymi z rozpatrywanego zadania. Równanie to rozwiązuje się - wybr aną metodą numeryczną i otrzyp mu je się rozkład funkcji V(X, t) w chwii. t + Od otrzymanego rozwiązania V - odejmujemy dodane. p~pr zednio ciepło Przyjmując z koei V(X, tp+) jako wyjściowy rozkład entapii w chwii tp, sprov.iidza się cały obszar D do fazy staej. Odpowiada to okreśeniu rozkładu entapii w chwii tp w sposób następujący: p.. [ ( P+ J W(X, t ) mm A 2, V X, t ) (36)

Modee matematy~zne kierunkowej krystaizacji stopów 139 Przy takim warunku rozwiązuje się zadanie aw(x, t) at d.iv [ a 2 grad W(X, t) J, (37) wyznaczając rozkład funkcji V w chwii t tp+ 1 Do uzyskanego rozwiązania W dodaje się odprowadzone poprzednio ciepło p+1 - p+1 P+1 [ P+ H(X, t ) W(X, t ) + V(X, t ) - min A 2, V(X, t )J. (38) otrzymując rozkład entapii H(T) w chwii tp+ 1 Porównując równanie (34) i (37) widać, że każdy krok przedstawionego agorytmu poega na rozwiązaniu tego samego probemu (równania paraboicznego), co pozwaa na bardzo prostą reaizację zadania na maszynie cyfrowej, przy czym omija się trudności związane z nieiniowością warunku Stefana. Opis matematyczny wykorzystujący entapię da zagadnień ciecz-strefa przejściowa-ciało stałe przedstawiony w pracy (17 J poega na sprowadzeniu układu trzech równań różniczkowych typu (8) do jednego równania paraboicznego, obowiązującego w całej objętości formanie "u jednorodnego" odewu. Wprowadza się funkcje w których T H(T) f C(0?(~)d~, T_ r, ~,. C(T)s>(T). C 2 SJ 2, ;Ą.(T) cz5'3' T U(T) / T_ {'' - ).2: T 6 [T S, T L], T > TL, ~ 3,. T< TS. (39) (40) Moż na wykazać, że podstawienie to sprowadza układ równań typu (8) do równania ah(x, t) [ ( )] at d.iv grad U X, t (41)

140 Bohdan Mochnacki Ponieważ ah(x, t) ar dh au(x, t) du at (42) ostatecznie więc (43) Funkcję ~(U) można wyznaczyć na podstawie tabic parametrów termofizycznych da danego stopu, wykorzystując metody całkowania numerycznego (do obiczenia H(T) oraz U(T)), a następnie da koejnych wartości temperatur T, tworząc pary iczb H(T ), U(T ) i budując w ten o o o sposób funkcję q> (U) Pochodna tej funkcji występuje po ewej stronie równania (43). Zmodyfikowaną postać warunków brzegowo-początkowych da tak sformułowanego zadania przedstawiono w cytowanej pracy. [ 17]. 3. Mode matematyczny kinetyki krzepnięcia i segregacji w odewie krzepnącym kierunkowo Opis matematyczny makroskopowych procesów ciepnych w procesie kierunkowej krystaizacji sprowadza się do jednego z modei wyżej opisanych, przy czym, ze wzgędu na okreśoną sinie dominującą składową gradientu temperatury rozważa się przede wszystkim zadania jednowymiarowe, chociaż są wyjątki od tej reguły. W daszej części niniejszego rozdziału przedstawione zostanie jednowymiarowe sprzężone zadanie krzepnięcia i segregacji w płycie nieskończonej [ 4]. Założono, że meta krzepnie w temperaturze T e, będącej bądź temperaturą przemiany, bądź temperaturą ekwiwaentną (da zadań ze strefą przejściową) Z dużą dokładnością można przyjąć, że da większości stopów odewniczych temperatura ekwiwaentna jest biska temperaturze granicznej ciecz-strefa przejściowa, tzn. temperaturze T L (wynika to z podstawienia do wzoru (24) cytowanych w iteraturze hipotez dotyczących zastępczej pojemności c 2 (T)) Jeżei w obszarze płyty wyróżnić podobszary formy odewniczej oraz metau w stanie stałym i ciekłym, tzn. D 0, D 1 {t), DzCt) - jak na rys. 2 oraz zakładając, ż e

Modee matematyczne kierunkowej krystaizacji stopów 141 - wpływ efektów konwekcyjnych na poe temperatury w ciekłej części odewu uwzgędnia się przez zastępczy efektywny współczynnik przewodzenia 1, - stężenie składnika stopowego w cie kłym metau poza warstwą dy~ o Rys. 2. Modeowany układ fuzyjną d wyrównuje się, - temperatura i ciepło przemiany fazowej odpowiada temperaturze T L i zmianie entapii jednostki masy stopu i jest funkcją koncentracji składnika stopowego na froncie krzepnięcia, - powierzchnia rozdziału faz jest płaska, współczynnik dyfuzji w fazie ciekłej jest stały, rozdział zaś pierwiastków między fazami okreśony jest przez równowagowy współczynnik ro-zdziału k, o - pomija s ię ayfuzję w stanie stałym' to niestacjonarne poe temperatury opisuje układ równań a i\ - Tx m ot (x, t) m ox m - O,, 2, (44) przy czym Na granicy faz zadany jest warunek brzegowy P(x) e r 1 2 (t) : JT (x, t) dt 2 (x, t) -"-1 3x --;1..2 3x ( 45 ) gdzie q x jest sumą ciepła kr ze pnięci a i entapii stygnięcia w interwae at 1 (x, t); temperatur T L - T S. W osi symetrii odewu przyjęto j ch - O, na wewnętrznej zaś i zewnętrznej powierzchni formy warunki brzegowe odpowienic V i rodzaju. Rozprowadzenie nagromadzonego na powierzchni rozdziału faz pierwiastka stopowego (k < ) w głąb fazy ciekłej opisano za pomo cą U o.

142 -Bohdan ~ochnacki prawa Ficka, zapisanego w ruchomym układzie współrzędnych o początku na granicy rozdziału faz iz(~, t) a~z + v(t) azct' t) aę (46) ~ - w ostatnim równaniu v(t) - 'dt JeSt prędkością przemieszczania się frontu krzepni~cia, D - współczynnikiem dyfuzji. Zgodnie z przyjętym założeniem równanie (46) obowiązuje w obszarze ~ : (0, 6 ). Na granicach przedziału (O, <S) zadane są następujące warunki brzegowe: ~- o. chn, t) z(~, t) v(t)( - k 0 )- -D 0 ~ (47) ~- Ó : z(~, t)- z_(t). (48) Pierwsze z tych równań wynika z warunku ciągłości strumienia składnika segregującego po stronie fazy stałej i ciekłej, drugie zaś oznacza, że wartość stężenia na krań(;u warstwy dyfuzyjnej jest taka sama jak w pozostałej ciekłej części odewu, przy czym chwiową wartość z- (t) można obiczyć z zasady zachowania iości substancji [18]. Sprzężenie obu modei matematycznych zachodzi przez zaeżność temperatury granicznej T L od stężenia na froncie krystaizacji, ta temperatura zaś determinuje warunek brzegowy (45), zawierający szybkość krzepnięcia, stanowiącą jeden ze składników opisu matematycznego segregacji, przy czym można również uwzgędnić efekt przechłodzenia s tężeniowego [4]._ Sformułowane wyżej zadanie uzupełniają warunki początkowe zadania tzn. temperatura zaewania i wyjściowe stężenie w c iekłym metau. Rozwiązanie probemu wyznaczania niestacjonarnego poa temperatury,. i stężeń w przed-stawionym wyżej ujęciu jest mo~iwe tyko przy wykorzystaniu metod numerycznych. Zadanie takie rozwiązano kikoma metodami (w tym metodą różnic skończonych i metodą kookacyjną wykorzystującą funkcje gięte), wyniki zaś cyfrowej symuacji procesu przedstawiono m.in. w pracach [4, 18].

Modee matematyczne kierunkowej krystaizacji stopów 143 4. Zastosowanie modei matematycznych Przedstawione opisy matematyczne pozwaają (w szczegóności stosując metody numeryczne) na opracowanie efektywnych agorytmów symuujących na maszynie cyfrowej procesy zachodzące podczas kierunkowej krystaizacji. Dotychczas modee takie znajdują głównie zastosowanie w projektowaniu technoogii odewniczych, m.in. wewków wacowych i wieokątnych, odewów o złożonej geometrii [ 20 J. Wykorzystanie podobnych opracowań do symuacji bezpośrednich metod otrzymywania kompozytów oraz innych odewów o strukturze ukierunkowanej obserwuje się znacznie rzadziej [21]. najistotniejszym probemem jest tutaj poszukiwanie warun zapewniających utrzymanie makroskopowego płaskiego Oczywi ście ków stygnięcia, frontu krystaizacji. Obiczenia takie możiwe są zarówno da metod technoogicznych, np. HRS, jak i typowej krystaizacji kierunkowej w urządzeniu 'Bridgmana ub Br idgmana Stockbargera. Przykładowo w pracy [ 4 J porównano wyniki obiczeń numerycznych i doświadczeń da krzepnięcia kierunkowego odewu {płyta ze specjanie ukształtowaną wnęką) imitującego warunki metody HRS, Probem obiczeń poa temperatury i kinetyki krzepnięcia odewu w formie da dowonych warunków brzegowo-początkowych i geometrycznych jest, mimo icznych uproszczeń w opisie matematycznym procesu, zadaniem stosunkowo trudnym, nawet w ujęciu numerycznym. Kompikuje się on przez uwzgędnienie istotnych do oceny przebiegu pewnych procesów fizycznych w krzepnącym stopie - sprzężeń drugostronnych, tzn. związków tych zjawisk z przepływem ciepła, który je inicjuje. W iteraturze prezentowane są iczne prace, dotyczące modeowania numerycznego procesu segregacji i fitracji, powstawania jamy skurczowej, czy też_ oddziaływań mechanicznych w krzepnącym odewie. Bazą obiczeń właściwych są tu czasoprzestrzenne poa temperatury w rozważanym układzie i przebieg procesu krzepnięcia metau. Stosując wspomniane rozwiązania opracowano np. agorytmy symuujące segregację składników stopu da krzepnięcia kierunkowego w formie odewniczej [ 4, 18 J oraz da metody Bridgmana [ 4, 18, 19, 22]. Uwzgęd-

144 Bohdan Mochnacki niono tutaj, poza obustronnym sprzężeniem kinetyki krzepnięcia i zjawisk segregacji (głównie poprzez temperaturę i ciepło przemiany fazowej oraz stężenie na froncie i szybkość wzrostu), możiwość jednoczesnej segregacji wieu pierwiastków, mieszanie ciekłej części stopu, czy wreszcie zjawisko przechłodzenia stężeniowego. Już na podstawie tych kiku wybranych przykładów można stwierdzić, że wykorzystanie mocie i matematycznych (szczegónie w ich reaizacji numerycznej) daje szerokie możiwości optymaizacji procesu kierunkowej krystaizacji na drodze jej symuacji. Możiwa jest ocena wpływu na kinetykę tego procesu zarówno składu chemicznego stopu, jak i warunków odprowadzania ciepła, z uwzgędnieniem większości istotnych zjawisk towarzyszących krystaizacji. S. Literatura [] Suchy J.: Kinetics of soidification of castings and segregation, Conf. Soid. Techn., The Metas Society, Coventry 1980. [ 2 J Parkitny R. i in: Krzepnięcie Metai i Stopów, FAN Oddział w Katowicach, Ossoineum, Wrocław 1981, zesz. 4. [ 3] Bokota A., Parkitny R.: Krzepn. Metai i Stopów, FAN Oddział w Katowicach, Ossoineum, Wrocław 1982, zesz. 6. [ 4 ] Suchy J.: Zeszyty Naukowe Foitechniki Śąskiej, Mechanika, 76 (1983). [S] Grzymkowski R., Mochnacki B.: Krzepnięcie Metai i Stopów, FAN Oddział w Katowicach, Ossoineum, Wrocław 1980, zesz. 2. [ 6] Kapusta A.: Uogónienie metody przemiany fazy w probem modeowania dwóch przemian fazowych krzepnącej substancji, Konf. Modeowanie w Mechanice, PTMTiS, Giwice 1982. [ 7 J Mochnacki B. : Krzepnięcie Metai i Stopów, P AN Oddział w Kato~ wicach, Ossoineum, Wrocław 1982, zesz. S. [ 8] Wiejnik A. J.: Tieorija zatwierdiewanija otiwki, Mieta., Moskwa 1960. [9] Samejłowicz J.A.: Formirowanije sitka, Mieta., Moskwa 1977. [10] Borisow W.T.: Dokł. AN SSSR, 3 (1961) 130.

Modee matematyczne kierunkowej krystaizacji stopów 145 [11j Longa W.: Krzepnięcie odewów w kokiach, Śąsk, Katowice 1978. [ 12] Lait J. E., Brimacombe J. K. : Ironmaking and Steemaking, 44 (1973). [13] Jura S., Mochnacki B., Gawroński J.: T he mathematica modeing o f soidifying and cooing o f compex casting, 45 nt. F oundry Congress, Budapest 1978. [14] Kozdoba L.A.: Mietody rieszenija nieiniejnych zadacz tiepłoprowodnosti, Nauka, Moskwa 1975. [15] Budak B.M. i in: Żurn. Wycz. Mat. i Mat. Fiz., 5 (1965). [16] Rogers J.C., Berger A.E. i in.: J. Num. Ana., 14, 4 (1979). [ 17] Mochnacki B., Mazur K.: Zeszyty Naukowe Foitechniki Sąskiej. Energetyka, 67 (1978) (18] Jura S., Suchy J.: Krzepnięcie Metai i Stopów, PAN Oddział w Katowicach, Ossoineum, Wrocław 1980, zesz. 2. [19] Jura S., Mochnacki B., Suchy J.: Arch. Hutn., 2 (1980). [ 20] Mochnacki B.: Krzepnięcie Metai i Stopów, PAN Oddział w Katowicach, Ossoineum, Wrocław 1980, zesz. 2. [21] Borisow W.. i in.: J. Cryst. Growth, 56 (1982). [22] Kapturkiewicz W.: Krzepn.Metai i Stopów, PAN Oddział w Katowicach, Giwice 1979, zesz..