4 Analiza input-output i jej zastosowania w modelowaniu ekonomiczno-ekologicznym

Podobne dokumenty
Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Wykład 2 - model produkcji input-output (Model 1)

Wykład 3 - model produkcji i cen input-output (Model 2)

Wykład 2 - model produkcji input-output (Model 1)

Wady klasycznych modeli input - output

Analiza tworzenia i podziału dochodów na podstawie modelu wielosektorowego

Model przepływów międzygałęziowych (model Leontiewa)

Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

Stosowane modele równowagi. Wykład 1

Wykład 14. Elementy algebry macierzy

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

Modele wielorownaniowe

Program Analiza systemowa gospodarki energetycznej kompleksu budowlanego użyteczności publicznej

Podstawy rachunków narodowych. I rok AG 2014/2015

ZAGADNIENIE TRANSPORTOWE

Analiza korespondencji

5. Rozwiązywanie układów równań liniowych

Programowanie celowe #1

1X1. Metody i tablice przepływów międzygałęziowych w analizach handlu zagranicznego Polski MICHAŁ PRZYBYLINSKI B

Wykład z równań różnicowych

3. Wykład Układy równań liniowych.

Wykład 8. Rachunek dochodu narodowego i model gospodarki

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

3. Macierze i Układy Równań Liniowych

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

ZMIANY KOSZTÓW PRACY W GOSPODARCE NARODOWEJ POLSKI W ŚWIETLE PRZEPŁYWÓW MIĘDZYGAŁĘZIOWYCH W LATACH

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

Wzrost gospodarczy definicje

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Modelowanie niezawodności prostych struktur sprzętowych

Układy równań liniowych. Krzysztof Patan

Ekonometryczna analiza popytu na wodę

1 Układy równań liniowych

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

Makroekonomia I. Jan Baran

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Podana tabela przedstawia składniki PKB pewnej gospodarki w danym roku, wyrażone w cenach bieżących (z tego samego roku).

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Macierze. Rozdział Działania na macierzach

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Dopasowywanie modelu do danych

0 + 0 = 0, = 1, = 1, = 0.

Produkt i dochód narodowy. mgr Katarzyna Godek

Rozwiązywanie układów równań liniowych

8. WYBRANE ZASTOSOWANIA MODELI EKONOMETRYCZNYCH

Układy równań liniowych

Przyczynowa analiza rentowności na przykładzie przedsiębiorstwa z branży. półproduktów spożywczych

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Układy równań i nierówności liniowych

Analiza składowych głównych. Wprowadzenie

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

Model Davida Ricardo

ZESTAW 5 FUNKCJA PRODUKCJI. MODEL SOLOWA (Z ROZSZERZENIAMI)

Prognozowanie popytu. mgr inż. Michał Adamczak

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

Algebra liniowa. Macierze i układy równań liniowych

Ekonometria_FIRJK Arkusz1

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Bardzo dobra Dobra Dostateczna Dopuszczająca

Metody numeryczne Wykład 4

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

Własności wyznacznika

Definicja problemu programowania matematycznego

1. PODSTAWY TEORETYCZNE

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

V. WYMAGANIA EGZAMINACYJNE

A.Światkowski. Wroclaw University of Economics. Working paper

Makroekonomia. Rachunek dochodu narodowego Dr Gabriela Przesławska. Uniwersytet Wrocławski Instytut Nauk Ekonomicznych

Wnioskowanie bayesowskie

III. STRUKTURA I FORMA EGZAMINU

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Algebra WYKŁAD 3 ALGEBRA 1

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozdział 1 PROGRAMOWANIE LINIOWE

Inwestycje (I) Konsumpcja (C)

Zajęcia nr. 3 notatki

Programowanie liniowe

Matematyka dyskretna dla informatyków

1 Macierz odwrotna metoda operacji elementarnych

Głównym celem opracowania jest próba określenia znaczenia i wpływu struktury kapitału na działalność przedsiębiorstwa.

Powiązania leśnictwa z otoczeniem gospodarczym na przykładzie Nadleśnictwa Kozienice

Produkt Krajowy Brutto. dr Krzysztof Kołodziejczyk

Etapy modelowania ekonometrycznego

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:

Zaawansowane metody numeryczne

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Definicje i przykłady

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Transkrypt:

Mariusz Plich Budowa i wykorzystanie wielosektorowych modeli ekonomiczno-ekologicznych Wydawnictwo Uiniwersytetu Łódzkiego 2002 4 Analiza input-output i jej zastosowania w modelowaniu ekonomiczno-ekologicznym W nurcie badań e-e poświęconych modelowemu przedstawieniu powiązań gospodarki i środowiska szczególne miejsce zajmuje analiza i-o, nazywana w polskim piśmiennictwie również analizą nakładów i wyników lub analizą przepływów międzygałęziowych. Jest to prawdopodobnie najczęściej wykorzystywana w tym kontekście metoda badawcza (zob. Hafkamp 1991, Integrated 1993, Bergh 1996). Początki analizy i-o sięgają XVIII w., kiedy to Quesnay przedstawił swoje tablice ekonomiczne (zob. Blaug 1994). Dopiero jednak prace Leontiefa z lat trzydziestych i czterdziestych (Leontief 1936, 1941) rozpoczęły lawinowy wprost rozwój tej dziedziny. Tablica przepływów międzygałęziowych jest systemem rachunków, pozwalającym śledzić przepływ dóbr i usług oraz dochodów i wydatków w gospodarce. Modele i-o w klasycznej postaci służą do oceny wpływu zmian w popycie finalnym na produkcję różnych sektorów gospodarki narodowej i w tej postaci są do dziś wykorzystywane. Klasyczne modele analizy i-o zainspirowały badania teoretyczne i empiryczne, których owocem było wyodrębnienie analizy i-o jako ważnej dziedziny zastosowań matematyki w ekonomii. Na początku lat pięćdziesiątych pojawiły się pierwsze zastosowania regionalne z wykorzystaniem analizy i-o (Isard 1951; Isard i Kuenne 1953). W latach sześćdziesiątych zaczęto wykorzystywać analizę i-o do konstrukcji wielkich modeli ekonometrycznych (The Brookings 1965, Klein 1982). Również w latach sześćdziesiątych w ślad za wzmożonym zainteresowaniem ekonomistów związkami gospodarki i środowiska pojawiły się pierwsze opracowania poświęcone tym zagadnieniom, w których wykorzystano analizę i-o w roli narzędzia badawczego. Zastosowania te dotyczyły problematyki regionalnej (Cumberland 1966), międzyregionalnej (Isard 1968, 1971), a także narodowej (Daly 1968, Victor 1972) i globalnej (Leontief 1973, Carter i in. 1976). Pomimo upływu lat i krytyki, jakiej można poddać metody i-o, są one nadal i należy przypuszczać, że jeszcze długo będą wykorzystywane. Przyczyna tak wielkiej popularności metod i-o w tkwi prostocie zastosowań, łatwej

2 Część II Metody wielosektorowego modelowania powiązań gospodarki i środowiska interpretacji wyników i możliwości klarownego przedstawienia wzajemnych powiązań elementów złożonych systemów. Metody i-o przedstawiają szczegółowo gospodarkę od strony produkcji uwzględniają powiązania międzygałęziowe, a także zapotrzebowanie na nakłady i podaż produkcji. Są one elastyczne, umożliwiając z jednej strony rozszerzenie analizy na inne niż ekonomia dziedziny ludzkiej działalności, a z drugiej wykorzystanie w połączeniu z metodami innego typu. 4.1 Podstawowe modele analizy input-output 4.1.1 Tablice przepływów międzygałęziowych Tablice przepływów międzygałęziowych są jednym ze sposobów przedstawiania przebiegu strumieni produktów w gospodarce. Produktami są w tym kontekście wszystkie dobra i usługi będące przedmiotem płatności w transakcjach dokonywanych w gospodarce, w szczególności produktami są w tym rozumieniu usługi pierwotnych czynników produkcji. Miejsce i powiązania tablic przepływów międzygałęziowych z innymi elementami systemu rachunków narodowych prezentowane były w rozdziale 2 (zob. też np. Heesterman 1975, Tomaszewicz 1994, Miller i Blair 1985). Na rysunku 4.1 przedstawiony jest schemat typowej tablicy. Jak widać, każdy przepływ produktów klasyfikowany w niej jest według dwóch kryteriów: miejsca pochodzenia (wiersze tablicy); miejsca przeznaczenia (kolumny tablicy). Produkty według miejsca pochodzenia dzieli się na: pierwotne czynniki produkcji, do których tu zalicza się dobra importowane, siłę roboczą, podatki pośrednie i zyski 1 ; 1 Podział ten nie jest w pełni zgodny z tradycyjnym rozumieniem pierwotnych czynników produkcji, rozumianych jako te, które nie są wynikiem procesów gospodarczych (Samuelson 1970: 46). W tym kontekście wymienia się na ogół pracę i ziemię (lub szerzej zasoby naturalne). Sama definicja nie jest jednak jednoznaczna. Zarówno praca, jak i zasoby naturalne mogą być traktowane jako majątek (kapitał), podlegają bowiem przemianom pod wpływem procesów gospodarczych (inwestycje w ludzi, poszukiwanie, opracowywanie procesów przetwarzania i pozyskiwanie zasobów naturalnych). Dla potrzeb przepływów międzygałęziowych czynniki pierwotne definiuje się jako czynniki produkcji, które nie są wytworami sektorów wyróżnionych w tablicy, a konieczność ich użycia potwierdzona jest przepływem odpowiedniego strumienia pieniężnego (Heerserman 1975: 62).

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 3 wtórne czynniki produkcji, czyli dobra i usługi ekonomiczne, będące wytworami sektorów produkcji.

4 Część II Metody wielosektorowego modelowania powiązań... Produkty według miejsca przeznaczenia klasyfikuje się jako: produkty przeznaczone na zużycie pośrednie (wtórne czynniki produkcji dla sektorów); produkty przeznaczone na zużycie końcowe 2, wśród których wyodrębnia się spożycie prywatne, wydatki rządowe, eksport, inwestycje, zmiany zapasów. W zastosowaniach zarówno klasyfikacje czynników produkcji, jak i produktu końcowego przedstawiane są z dużo większą szczegółowością niż w tym przykładzie. Klasyfikacje użyte tutaj są jednak wystarczająco szczegółowe na etapie omawiania podstawowych zagadnień z zakresu analizy i-o. Rysunek 4.1 Schemat tablicy przepływów międzygałęziowych Miejsce przeznaczenia zużycie pośrednie zużycie końcowe 1 sektory 2 n spożycie indywidualne wydatki rządowe kategorie inwestycje eksport zmiany zapasów Produkt globalny Miejsce pochodzenia czynniki wtórne czynniki pierwotne sektory wartość dodana 1 2 n import podatki pośrednie wynagrodzenia zyski X 11 X 21 X n1 M 1 T 1 W 1 Z 1 X 12 X 22 X n2 M 2 T 2 W 2 Z 2 X 1n X 2n X nn M n T n W n Z n C 1 C 2 C n M c T W Z G 1 G 2 G n M g J 1 J 2 J n M j E 1 E 2 E n E R 1 R 2 R n R X 1 X 2 X n X Produkt globalny X 1 X 2 X n X Źródło: opracowanie własne na podstawie: Heesterman 1975. Oznaczmy przez Y i sumę elementów popytu finalnego na produkty i-tego sektora: Yi = C i + G i + J i + R i (4.1) 2 Będziemy używali zamiennie, w zależności od kontekstu, pojęć produkt końcowy i produkt finalny oraz popyt końcowy i popyt finalny.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 5 natomiast przez D j, sumę elementów wartości dodanej j-tego sektora: D j = T j + W j + Z j (4.2) Związek pomiędzy produkcją globalną, zużyciem pośrednim i produktem końcowym można zapisać w postaci następującego układu równań, znanego jako układ równań bilansowych produkcji: n X i = j=1 X ij + Y i dla i = 1,..., n (4.3) Przepływy w tablicy i-o mogą być przedstawiane wartościowo lub ilościowo. Ponieważ wartość = ilość $ cena, zatem zależności między elementami tablicy i-o w ujęciu ilościowym i analogicznej tablicy w ujęciu wartościowym są następujące: X i = Q i p i Y i = F i p i X ij = Q ij p i (4.4) gdzie: p i Q i Q ij F i cena jednostkowa produktu i-tej gałęzi; ilość produktów wytworzonych prze i-tą gałąź; ilość produktów wytworzonych przez i-tą gałąź, przeznaczonych na zaspokojenie popytu pośredniego j-tej gałęzi; ilość produktów wytworzonych prze i-tą gałąź, przeznaczonych na zaspokojenie popytu finalnego. Gdyby ceny dóbr i-tej gałęzi były zróżnicowane w zależności od odbiorcy, wówczas w ostatniej równości zamiast jednorodnego symbolu ceny dostawcy p i pojawiłby się symbol p ij, oznaczający cenę i-tego dostawcy dla j-tego odbiorcy. Podstawiając (4.4) do (4.3), mamy: n Q i p i = j=1 Q ij p i + F i p i dla i = 1,..., n (4.5) a stąd, po obustronnym podzieleniu przez cenę p i, otrzymujemy układ równań produkcji w ujęciu ilościowym: n Q i = j=1 Q ij + F i dla i = 1,..., n (4.6) Pojedyncze równania układu równań bilansowych produkcji w postaci (4.3) i (4.6) pokazują produkcję globalną i-tego sektora jako sumę produkcji przekazanej odbiorcom pośrednim i końcowym, a więc rozdysponowanie wytworzonej produkcji. Wartość produkcji globalnej można przedstawić również jako sumę nakładów poszczególnych czynników (pierwotnych i wtórnych) poniesionych na produkcję, czyli sumę nakładów materiałowych i wartości dodanej:

6 Część II Metody wielosektorowego modelowania powiązań... X j = n X i + D j i=1 dla j = 1,..., n (4.7) Powyższe równania nazywane są równaniami kosztów, a cały układ (4.7) określany jest mianem układu równań kosztów. Układ równań bilansowych produkcji (4.3) lub (4.6) jest podstawą do wyprowadzenia klasycznego modelu Leontiefa, natomiast wychodząc od układu równań kosztów (4.7), wyprowadza się klasyczny model cen w analizie i-o. 4.1.2 Klasyczny model Leontiefa Warunkiem koniecznym harmonijnego przebiegu procesów produkcyjnych jest zachowanie takich relacji pomiędzy produkcją różnych sektorów, aby rynki produktów tych sektorów pozostawały w równowadze. Relacje produkcji zależą od technologii stosowanej w sektorach. Klasyczny model i-o służy do wyznaczania wielkości produkcji, zapewniającej równowagę popytu i podaży na rynkach produktów, przy uwzględnieniu technologicznych warunków produkcji. Technologia produkcji może być przedstawiona jako nakłady czynników produkcji niezbędnych do wyprodukowania jednostki produktu określonego sektora, np. wytworzenie 1000 t stali wymaga określonych ilości rudy żelaza, węgla, siły roboczej itp. Proporcje wielkości nakładów czynników produkcji do spodziewanej wielkości wytworzonego za ich pomocą produktu nazywane są technicznymi współczynnikami produkcji. W klasycznym modelu i-o zakłada się, że współczynniki są stałe. Współczynniki techniczne mogą być szacowane kilkoma sposobami: metodami statystycznymi (na podstawie tablicy przepływów międzygałęziowych wyznaczonej w oparciu o dane statystyczne); na podstawie norm technicznych (wyznaczonych statystycznie lub w oparciu o dane inżynierskie); na podstawie danych inżynierskich (o charakterze nienormatywnym), opartych na znajomości procesów technologicznych; metodą ekspercką. W modelach i-o wykorzystuje się na ogół współczynniki techniczne otrzymane pierwszym sposobem, tj. na podstawie tablicy przepływów międzygałęziowych. Podejmowane są również próby wykorzystywania danych inżynierskich i norm technicznych (np. Duchin 1988). Metoda ekspercka wykorzystywana jest często w celu określenia potencjalnych kierunków zmian współczynników, a więc na etapie wykorzystania modelu. Mając do dyspozycji macierz przepływów międzygałęziowych w ujęciu ilościowym, techniczne współczynniki produkcji oblicza się według wzoru: ã ij = Q ij Q j dla i, j = 1,..., n (4.8)

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 7 Przy założeniu, że współczynniki techniczne są już oszacowane, przekształcając formułę (4.8) do postaci: Q ij = ã ij Q j układ równań bilansowych produkcji możemy zapisać jako: n Q i = j=1 ã ij Q j + F i (4.9) dla i, j = 1,..., n (4.10) a w zapisie macierzowym: gdzie: Q = ÃQ + F (4.11) à = ã 11 ã 12 ã 1n ã 21 ã 22 ã 2n ã n1 ã n2 ã nn, Q = Q 1 Q 2, F = Q n F 1 F 2 F n (4.12) Macierz à nazywa się macierzą współczynników technicznych. Jeśli co założyliśmy wcześniej dane są współczynniki techniczne, wówczas niewiadomymi w równaniu macierzowym (4.11) są n-elementowe wektory Q i F. Chcąc znaleźć jednoznaczne rozwiązanie układu (4.11), liczącego n równań musimy założyć znajomość n spośród ogólnej liczby 2n niewiadomych. Możliwe są trzy następujące sytuacje: 1) zakładamy znajomość wektora produktów globalnych Q wówczas z układu równań (4.11) wyznaczona zostanie produkcja końcowa (popyt końcowy) według sektorów; 2) zakładamy znajomość wektora popytu końcowego F wówczas układ (4.11) służy do wyznaczenia produktów globalnych; 3) zakładamy znajomość pewnej ilości produktów globalnych i pewnej ilości składowych popytu finalnego (razem n wielkości) wówczas układ (4.11) służy do wyznaczenia pozostałych n produktów globalnych i końcowych. Najczęściej przyjmowane jest założenie 2. Rozwiązanie przyjmuje wtedy postać: Q = (I à 1 )F (4.13) Układ ten pokazuje, w jaki sposób popyt końcowy (zapotrzebowanie na produkcję) transformowany jest w produkcję globalną.

8 Część II Metody wielosektorowego modelowania powiązań... 4.1.3 Klasyczny model cen Dynamika cen dóbr i usług występujących w sferze tworzenia produktu krajowego (w szczególności w sferze produkcji) oraz w sferze jego podziału jest zróżnicowana w ramach tych sfer, a także między nimi. Przyczyny tego zróżnicowania tkwią w międzygałęziowym zróżnicowaniu struktury i dynamiki kosztów produkcji (w sferze tworzenia) oraz w gałęziowej strukturze dóbr i usług występujących w sferze podziału. Z tego właśnie powodu rozważa się oddzielnie równania cen uzyskiwanych przez producentów (ceny producentów) i równania cen płaconych przez odbiorców finalnych (ceny odbiorców finalnych). Ceny producentów Uwzględniając relację zachodzącą pomiędzy wartością a ilością produkcji (4.4), równanie kosztów (4.7) dla j-tej gałęzi można zapisać w następującej formie: n Q j p j = i=1 Q ij p i + D j (4.14) Z kolei uwzględniając relację (4.9), powyższe równanie możemy zapisać w postaci: n Q j p j = i=1 ã ij Q j p i + D j a stąd, po obustronnym podzieleniu przez mamy: n p j = i=1 ã ij p i + d j Q j (4.15) i uporządkowaniu równania dla j = 1,..., n (4.16) gdzie d j oznacza jednostkową wartość dodaną w j-tej gałęzi, tj. wartość dodaną w przeliczeniu na jednostkę produkcji globalnej: d j = Dj Q j. Zapiszmy układ (4.16) macierzowo: gdzie: p = Ã T p + d p = p 1..., d = p n d 1... d n (4.17) (4.18) Układ równań (4.17) nosi nazwę układu równań cen producenta (układu równań cen). To samo równanie w formie zredukowanej, tj. po rozwiązaniu względem wektora p, przyjmuje postać: p = (I Ã T ) 1 d (4.19)

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 9 Układ (4.19) pokazuje ceny producentów jako funkcję współczynników technicznych (czyli stosowanych technologii produkcji) i jednostkowych nakładów czynników pierwotnych. Zwróćmy uwagę, że uwzględniając zależności pomiędzy produkcją wyrażoną ilościowo i wartościowo w postaci (4.4) oraz definicje współczynników technicznych (4.8) możemy zapisać następującą zależność: a ij = ã ij p i p j (4.20) Współczynniki a ij = Xij X j nazywane są współczynnikami kosztów. Zależność (4.20) pokazuje związek pomiędzy współczynnikami technicznymi a współczynnikami kosztów. Ceny odbiorców finalnych Ceny odbiorców finalnych w analizie i-o przedstawia się jako średnie ważone cen producentów. Wagami są wskaźniki struktury zużycia końcowego według produktów. W takim razie jeśli wyodrębniono m kategorii zużycia końcowego, to układ równań cen odbiorców finalnych przyjmuje postać: m p jf = i=1 b ij p i dla j = 1,..., m (4.21) przy czym b ij oznacza udział i-tego produktu w j-tej kategorii zużycia końcowego, tzn. gdzie: B j B ij b ij = Bij B j wielkość zużycia końcowego j-tej kategorii; wielkość zużycia końcowego i-tego produktu w j-tej kategorii. (4.22) Współczynniki b ij zwane są współczynnikami konwersji lub współczynnikami transformacji 3. Ponieważ współczynniki te dla danej kategorii zużycia końcowego są udziałami zużycia poszczególnych produktów, więc ich suma z definicji równa jest 1, tzn. n b ij = 1 i=1 Wprowadźmy następujące oznaczenia: p f = p 1 f p 3 f, B = b 11 b 1m b n1 b nm (4.23) (4.24) 3 Współczynniki te służą w modelach i-o do konwersji popytu finalnego według kategorii w popyt finalny na produkcję określonych sektorów.

10 Część II Metody wielosektorowego modelowania powiązań... Możemy teraz zapisać model cen odbiorców finalnych (4.21) w postaci macierzowej: p f = B T p Podstawiając (4.19) do (4.25), mamy p f = B T (I A) 1 d (4.25) (4.26) Ceny odbiorców finalnych można więc przedstawić jako funkcję jednostkowych nakładów czynników pierwotnych, współczynników technicznych i współczynników konwersji. 4.1.4 Modele input-output w zastosowaniach Model Leontiefa i model cen W modelu Leontiefa (4.13) oraz w modelu cen producentów (4.19) wykorzystuje się wielkość produkcji w ujęciu ilościowym i współczynniki techniczne, które również opierają się na produkcji wyrażonej ilościowo. W rachunkach narodowych produkty to na ogół agregaty, których wielkość przedstawiana jest w ujęciu wartościowym 4, wobec czego nie można im w jednoznaczny sposób przypisać żadnej ceny. Bezpośrednie zastosowanie modeli (4.13) i (4.19) jest więc niemożliwe. Można jednak zapisać te modele w przekształconej postaci: wartości produktów w cenach stałych zamiast ilości produktów; deflatory 5 zamiast cen produktów; współczynniki kosztów w cenach stałych zamiast współczynników technicznych. Oznaczając okres bazowy, będący podstawą do wyznaczenia deflatorów i wielkości wyrażonych w cenach stałych superskryptem 0, model Leontiefa można teraz zapisać jako X t0 = (I A t0 ) 1 Y t 0 a model cen w postaci p t0 = (I A t 0T) 1 Y t 0 gdzie subskrypt t oznacza czas. (4.27) (4.28) 4 Dane o produkcji w ujęciu ilościowym dotyczą jedynie wybranych produktów. W tym kontekście obiecującą propozycją wydają się macierze i-o w jednostkach fizycznych (ang. pysical i-o tables lub w skrócie PIOT) zob. np. Stahmer i in. 1998. 5 Deflatory to inaczej indeksy cen o stałej podstawie, obliczane dla zmiennych agregatowych w wyniku podzielenia wielkości zmiennej wyrażonej w cenach bieżących przez odpowiednią wielkość w cenach stałych.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 11 W zastosowaniach często zakłada się stałość w czasie macierzy współczynników kosztów, tzn. przyjmuje się, że: A t0 = A 0. W takim przypadku model Leontiefa i model cen producenta przyjmują odpowiednio postacie: X t0 = (I A 0 ) 1 0 Y t (4.29) p t0 = (I A 0 T ) 1 d t 0 Powyższe wzory bywają również zapisywane prościej: X t = (I A) 1 Y t (4.30) (4.31) p t = (I A T ) 1 d t (4.32) tj. bez jawnego określenia okresu bazowego dla danych w cenach stałych, lub nawet: X = (I A) 1 Y p = (I A T ) 1 d (4.33) (4.34) tj. bez uwzględniania subskryptu czasu. Interesującą własnością macierzy (I A) 1 jest możliwość dokonania jej rozwinięcia w następujący szereg: (I A) 1 = I + A + A 2 + A 3 + (4.35) Ta formuła może służyć do wyliczania przybliżonych wartości pełnych współczynników materiałochłonności. Prognozowanie współczynników i-o Ważnym problemem związanym z wykorzystaniem analizy i-o jest prognozowanie współczynników i-o. Przyjmowane w klasycznym modelu Leontiefa założenie o ich stałości jest zbyt dużym uproszczeniem, w przypadku gdy model miałby być wykorzystywany do prowadzenia średnio- czy tym bardziej długookresowych symulacji. Dotyczy to zwłaszcza gospodarek takich jak polska w ostatnim dziesięcioleciu, przechodzących okres zasadniczych zmian społecznych i gospodarczych. Faktu tego nie można pomijać na etapie wykorzystania modelu. Istnieje wiele metod prognozowania współczynników i-o. Dzieli się je na dwie podstawowe klasy: metody ex post i ex ante (np. Tomaszewicz 1983 i 1994, Miller i Blair 1985). Metody ex post bazują na danych statystycznych z przeszłości. Typowe podejście polega na sporządzeniu prognoz w oparciu o modele opisowe lub modele trendu, których parametry szacuje się na podstawie szeregów czasowych współczynników. Problemem w tym przypadku jest duża pracochłonność

12 Część II Metody wielosektorowego modelowania powiązań... badań, wynikająca z ogromnej na ogół liczby współczynników macierzy i-o, a tym samym i modeli do oszacowania i przeanalizowania. Dlatego często ogranicza się ich liczbę przez modelowanie wyłącznie tzw. współczynników ważnych (Lipiński 1997), zakładając jednocześnie stałość pozostałych współczynników. Kolejna grupa z klasy metod ex post to metody budowy prognoz zbilansowanych. Gwarantują one spełnienie przez prognozowane współczynniki ich formalnych własności (takich jak nieujemność, suma w kolumnach nie przekraczająca jedności). Do grupy tej zalicza się metodę RAS (najpopularniejszą, jak się wydaje, metodę prognozowania współczynników i-o) oraz metody oparte na technikach programowania matematycznego. Klasa metod ex ante nie ma tak bogatej reprezentacji jak metody ex post. Ogranicza się ona do stosowania metod heurystycznych, opartych na opiniach ekspertów reprezentujących różne sektory gospodarki (na ogół najważniejsze lub ważne z punktu widzenia celu badania), dotyczących przewidywanych zmian sektorowej struktury nakładów lub zmian pojedynczych współczynników energoczy materiałochłonności. Są to głównie informacje inżynierskie, charakteryzujące technologie produkcji, które muszą być przetłumaczone na język współczynników i-o (Klein 1989). W praktyce podejście najczęściej wykorzystywane do budowy prognoz współczynników i-o nie opiera się jednak na zastosowaniu wyłącznie jednej z wyżej wymienionych metod. Na ogół stosuje się kombinacje dwóch lub nawet większej ich liczby. Na przykład dla wybranych (ważnych) współczynników i-o konstruuje się prognozy w oparciu o modele ekonometryczne lub koryguje je w oparciu o opinie ekspertów, a następnie informacje te wykorzystuje się do sporządzenia metodą RAS prognozy zbilansowanej obejmującej wszystkie współczynniki. Znane są również techniki ominięcia problemu prognozowania współczynników i-o. Opierają się one na znajomości tablicy i-o z jednego punktu w czasie oraz szeregów czasowych pewnych zmiennych (przede wszystkim produkcji globalnej i końcowej). W oparciu o te dane przy wykorzystaniu relacji i-o oblicza się reszty 6 ex post pomiędzy wartościami empirycznymi i teoretycznymi obliczonymi przy założeniu stałości współczynników i-o dla wybranej zmiennej (np. produkcji globalnej czy cen producenta). Następnie stosuje się metody ekonometryczne w celu oszacowania parametrów modelu reszt. Modele reszt przyjmują często formę trendu lub formę autoregresyjną, jednakże listę zmiennych objaśniających można również rozszerzać o czynniki mające bezpośredni lub pośredni wpływ na zmiany współczynników i-o, jak np. ceny relatywne (Klein 1975, Plich 1990). 6 Stąd określa się tego typu techniki jako metodę reszt. W podrozdz. 8.1 zaproponowano metodę oceny i prognozowania zmian strukturalnych bazującą na analizie reszt.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 13 4.1.5 Mnożniki analizy input-output Mnożniki produkcji Model Leontiefa wyrażony równaniem (4.33), uzależniający produkt globalny od produktu finalnego, to zredukowana wersja modelu w postaci strukturalnej X = AX + Y (4.36) wynikającej z równań bilansowych produkcji. Zauważmy, że postać zredukowana jest jednocześnie postacią końcową modelu, gdyż model Leontiefa jest modelem statycznym. W postaci końcowej zmienne endogeniczne zależą wyłącznie od zmiennyh egzogenicznych i parametrów, pokazujących mnożnikowe efekty jednoczesnych sprzężeń modelu. W naszym przypadku oznacza to, że elementy macierzy (I A) 1 są mnożnikami modelu Leontiefa (por. pkt 3.2.2). Macierz (I A) 1, nazywana jest macierzą pełnej materiałochłonności (także macierzą pełnych nakładów materiałowych lub macierzą odwrotną Leontiefa). Oznaczmy element i-tego wiersza i j-tej kolumny macierzy pełnych nakładów symbolem A ij, tzn. (I A) 1 = A ij (4.37) Współczynnik pełnych nakładów A ij jest mnożnikiem oznaczającym wielkość, o jaką zwiększy się produkt globalny i-tej gałęzi, aby produkt finalny gałęzi j-tej mógł wzrosnąć o jednostkę. Warunkiem koniecznym wzrostu produktu finalnego j-tej gałęzi o jednostkę jest jednak wzrost produktów globalnych we wszystkich gałęziach gospodarki, a nie tylko w i-tej gałęzi. Aby możliwy był jednostkowy wzrost produktu końcowego w j-tej gałęzi, produkt globalny w całej gospodarce musi wzrosnąć o n j = i=1 A ij (4.38) Wielkość nazywa się prostym mnożnikiem produkcji 7 j (mnożnikiem produkcji) dla j-tej gałęzi. Na prosty mnożnik produkcji składają się trzy różne efekty, które można prześledzić, analizując rozwinięcie macierzy odwrotnej Leontiefa dane wzorem (4.35): efekt początkowy, czyli jednostkowa zmiana w popycie finalnym, obrazowana przez macierz I; efekt bezpośredni w postaci elementów macierzy A; efekt pośredni wyrażony sumą kolejnych potęg ( A 2 + A 3 + A 4 + ). 7 Ang. simple output multiplier.

14 Część II Metody wielosektorowego modelowania powiązań... Mnożniki produkcji dla wszystkich gałęzi gospodarki można wyrazić w postaci wektora wierszowego, obliczanego według następującego wzoru: a = i T (I A) 1 (4.39) Oprócz prostych mnożników produkcji w analizie i-o definiuje się również całkowite mnożniki produkcji. Mnożniki całkowite wyliczane są jednak na podstawie rozszerzonej koncepcji modelu Leontiefa, domkniętego ze względu na sektor gospodarstw domowych (czyli głównie ze względu na indywidualny popyt konsumpcyjny), przez dołączenie go do tablicy i-o w charakterze kolejnego sektora produkcyjnego. W rezultacie całkowite mnożniki produkcji zawierają wszystkie trzy efekty składające się na mnożniki proste, a ponadto tzw. efekt indukowany, wynikający z faktu, iż zwiększenie produkcji spowoduje zwiększenie dochodów gospodarstw domowych i dodatkowe (ponad efekt początkowy) zwiększenie popytu finalnego. Zauważmy jednak, że, po pierwsze, rozszerzenie modelu Leontiefa w scharakteryzowany powyżej sposób nie jest jedyną metodą jego domknięcia ze względu na sektor gospodarstw domowych, a po drugie, że tak rozbudowany model w dalszym ciągu pozostaje otwarty ze względu na inne sektory tworzące popyt końcowy (głównie inwestycje, spożycie rządowe, a także eksport). Zatem efekty indukowane (a tym samym mnożniki całkowite) nie są jednoznaczne 8 ich siła może ulegać zmianom w zależności od metody użytej w celu domknięcia modelu Leontiefa w zakresie popytu indywidualnego. Można też stwierdzić, że mnożniki całkowite analizy i-o nie są mnożnikami całkowitymi w ogólnym sensie, bo zawierają tylko jeden z możliwych efektów indukowanych, wynikający ze sprzężenia pomiędzy dochodami gospodarstw domowych, wydatkami i produkcją. Nie zawierają natomiast efektów indukowanych innymi sprzężeniami występującymi w gospodarce 9. Warto podkreślić, że modele analizy i-o, a w szczególności model Leontiefa domknięty ze względu na gospodarstwa domowe, są modelami liniowymi, co umożliwia ich rozwiązanie metodami analitycznymi, przez określenie postaci końcowej, a więc i mnożników. Jednakże w przypadku, gdy domknięcia modelu dokonuje się przy użyciu funkcji nieliniowych, wyprowadzenie odpowiednich wzorów może się okazać zbyt trudne i wówczas rozwiązuje się model metodami numerycznymi (symulacje), a odpowiednie mnożniki przyjmują postać mnożników uogólnionych (por. pkt 3.2.2). 8 Oczywiście, również proste mnożniki produkcji nie są, w tym sensie, jednoznaczne, bo mogą być wyliczone na podstawie odmiennych (w stosunku do propozycji Leontiefa) systemów równań produkcji (zob. np. rozdz. 5 i 7). 9 W modelu gospodarki prezentowanym w części poświęconej zastosowaniom zaproponowany jest inny sposób domknięcia modelu Leontiefa ze względu na popyt indywidualny, a ponadto zendogenizowane są także inne elementy popytu finalnego.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 15 Inne mnożniki Omówione w poprzednim punkcie mnożniki produkcji nie wyczerpują problematyki mnożników analizy i-o. Pojęcie to można uogólnić na dowolny czynnik produkcji lub jej pozaprodukcyjne rezultaty, niezależnie od sposobu ich pomiaru. Można np. analizować nakłady pracy (w formie zatrudnienia, wynagrodzeń czy dochodów), nakłady dóbr ekologicznych, nakłady energii i efekty zewnętrzne (w tym emisję zanieczyszczeń) w jednostkach naturalnych. Załóżmy, że analizowany czynnik (rezultat) produkcji pozostaje w pewnych proporcjach w stosunku do wielkości produkcji w gałęziach, w których jest zużywany (produkowany). Proporcję tę dla j-tej gałęzi oznaczymy symbolem c j : gdzie: j X C c j = C j X j numer gałęzi; produkt globalny; nakłady czynnika (rozmiary rezultatu). (4.40) Zauważmy, że współczynniki c j zdefiniowane są analogicznie do współczynników bezpośrednich nakładów materiałowych, czyli jako nakład czynnika (rezultat produkcji) przypadający na jednostkę produktu j-tej gałęzi. Współczynniki tego typu określamy mianem współczynników bezpośrednich nakładów czynnika (rezultatu produkcji). Warto też podkreślić, że o ile produkt globalny mierzony jest na ogół w jednostkach pieniężnych, o tyle czynniki (rezultaty) mogą być wyrażone zarówno w ujęciu pieniężnym, jak i naturalnym. Tablice i-o, w których produkt globalny i czynniki lub rezultaty produkcji np. zużycie energii, zanieczyszczenia itp. wyrażone są w różnych jednostkach, określa się często jako tablice o strukturze hybrydowej. Łączną wielkość nakładów czynnika (rozmiarów rezultatu) można zapisać w postaci następującego równania wektorowego: gdzie: c X C = c T X (4.41) wektor (kolumnowy) współczynników bezpośrednich nakładów czynnika (rezultatów produkcji); wektor produktów globalnych w gałęziach. Podstawiając (4.33) do (4.41) otrzymujemy C = c T (I A) 1 Y (4.42)

16 Część II Metody wielosektorowego modelowania powiązań... Powyższy wzór uzależnia wielkość poniesionych nakładów czynnika (uzyskanych rezultatów produkcji) od wielkości produktu końcowego. Wyrażenie ujęte w nawiasy kwadratowe to wektor prostych mnożników czynnika (rezultatu) 10 : T = c T (I A) 1 (4.43) Mnożnik dla j-tej gałęzi interpretujemy jako łączną zmianę nakładów czynnika (rezultatów produkcji) w całej gospodarce, związaną z jednostkową zmianą produktu końcowego j-tej gałęzi. Można teraz zdefiniować tzw. mnożnik typu I (pierwszego) 11 (4.44) M j I = j c j Powyższy mnożnik pokazuje łączne nakłady czynnika (rezultaty produkcji) w całej gospodarce, wynikające z jednostkowej zmiany tego czynnika (rezultatu) w j-tej gałęzi (a nie, jak w przypadku mnożnika prostego, wynikające z jednostkowej zmiany produktu końcowego j-tej gałęzi). 4.1.6 Techniki dekompozycji strukturalnej Dekompozycja strukturalna (SDA 12 ) jest metodą badania zmian zjawisk ekonomicznych w czasie. Polega ona na rozdzieleniu zaobserwowanych wielkości zmian na ich źródła. Prawzorów tej metody można doszukiwać się we wczesnych pracach Leontiefa, poświęconych zmianom strukturalnym w gospodarce amerykańskiej (1941, 1953, Leontief i Ford 1972). Na uwagę zasługują również prace Chenery ego (Chenery i in. 1962), Carter (1970). Techniki dekompozycji strukturalnej znaczną popularność zyskały jednak dopiero w ostatnich kilkunastu latach. Co ciekawe, mimo iż własności metody nie są dobrze rozpoznane, liczba publikacji poświęconych zastosowaniom SDA wielokrotnie przewyższa liczbę prac teoretycznych. Do tej ostatniej grupy można zaliczyć publikacje Skolki (1989), Rose a i Casler a (1996), a także Dietzenbacher a i Los a (1998, 2000) oraz Ang a (1999). Techniki SDA bazują na modelach statycznych, ale umożliwiają analizowanie różnic pomiędzy alternatywnymi stanami stacjonarnymi układu gospodarczego, 10 Podobnie jak w przypadku produkcji, również w przypadku czynników (rezultatów) określenie mnożniki całkowite dotyczy modeli domkniętych. 11 W przypadku modeli domkniętych definiuje się tzw. mnożniki typu II (drugiego), które są ilorazem mnożnika całkowitego i efektu bezpośredniego. 12 Ang. structural decomposition analysis. Metodą pokrewną w stosunku do SDA jest index number analysis (INA), co można przetłumaczyć jako dekompozycję indeksów (lub analizę indeksów). SDA wykorzystuje model i-o, podczas gdy INA poprzestaje na analizie agregatów na poziomie sektorowym.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 17 np. pomiędzy wielkościami produkcji w dwóch różnych okresach 13. Mimo że dotychczas znane techniki dekompozycji są krytykowane jako zbyt arbitralne (Schumann 1994), ich popularność, mierzona liczbą publikacji, stale rośnie i nie sposób ich wszystkich wymienić (przykładami nowszych publikacji są: Aying i Saal 2001, Haan 2001, Jacobsen 2000, Albala-Bertrand 1999 itd.). Przyczyną jest, jak się wydaje, fakt, że SDA jest alternatywą dla estymacji ekonometrycznej, która co prawda może pokazywać związki w ujęciu dynamicznym, ale wymaga znacznie większej liczby obserwacji. Idea SDA zasadza się na założeniu, że wielkość badanego zjawiska daje się przedstawić w postaci iloczynu dwóch zmiennych (komponentów): y = x$z (4.45) Jeśli operator oznacza zmiany, które zaszły pomiędzy okresami 0 i 1, to zmiany y można zapisać w postaci następującej formuły: y = x 1 $ z 1 x 0 $ z 0 którą z kolei można zapisać jako y = x$z 1 + x 0 $ z (4.46) (4.47) W powyższym wzorze zmiany zmiennej y zostały przedstawione jako ważona suma zmian jej komponentów x i z i w tym sensie zdekomponowane. Wagami dla zmian x są poziom z w okresie 1, a w przypadku zmian z poziom x w okresie 0. Wzór (4.47) pokazuje jeden z dwóch sposobów dekompozycji zmiennej. W drugim ze sposobów zmieniają się wagi: wagami dla zmian x są poziom z w okresie 0, a dla z poziom x w okresie 0, tzn. y = x$z 0 + x 1 $ z (4.48) Obie dekompozycje są traktowane równoważnie z teoretycznego punktu widzenia, choć dają odmienne wyniki zarówno w jednym, jak i w drugim przypadku mówi się o wyodrębnieniu udziałów zmian komponentów x i z w zmianach y 14. Podobną dekompozycję można przeprowadzić w przypadku, gdy zmienna y składa się z większej liczby komponentów. Wówczas jednak liczba równoważnych alternatyw wzrasta i dla n komponentów wynosi n! (czyli jest równa liczbie permutacji z liczby komponentów) 15. 13 Wspominaliśmy o tym w pkt 3.1.2 przy okazji klasyfikowania modeli. 14 Zauważmy że postępowanie to jest analogią do wyodrębniania wpływu ilości i cen na zmiany wartości za pomocą indeksów Laspeyres a i Paasche go 15 W zastosowaniach często spotyka się podejścia mieszane, w których stosuje się uśrednione wagi dla zmian komponentów. Więcej informacji na ten temat oraz wyniki analizy wrażliwości różnych podejść można znaleźć w artykule Dietzenbacher a i Los a (1998).

18 Część II Metody wielosektorowego modelowania powiązań... Opisany powyżej sposób dekompozycji zmian zjawiska na zmiany w komponentach można uogólnić na sytuacje, w których wielkośći y, x i z są wektorami lub macierzami, jak ma to miejsce, np. w modelu Leontiefa postaci X = (I A) 1 Y (4.49) Model ten jest bowiem zbudowany według wzorca (4.45) wektor produkcji globalnych jest wyrażony w postaci iloczynu macierzy współczynników pełnych nakładów materiałowych (I A) 1 i wektora popytu finalnego Y. Można więc w tym przypadku przedstawić przyrost produkcji globalnej analogicznie do wzoru (4.47), czyli jako następującą sumę: X = (I A 0 ) 1 Y 1 + (I A 0 ) 1 Y (4.50) Przyrost produkcji globalnych jest tu ważoną sumą zmian w technologii produkcji (reprezentowanych przez macierz odwrotną Leontiefa) pomiędzy okresem 0 a okresem 1 i zmian w popycie końcowym na produkty sektorów (wektor Y). W roli wag występują odpowiednio popyt końcowy na produkty sektorów w okresie 1 i technologie produkcji z okresu bazowego 0. Warto w tym miejscu zauważyć powiązania pomiędzy dekompozycją daną np. r(4.47) a wynikami pewnych symulacji wykonanych przy użyciu modelu zawierającego równanie (4.45). Okazuje się, że składniki dekompozycji mogą być wyznaczane poprzez symulacje. Jeśli np. wykonać symulację kontrfaktyczą na takim modelu, przyjmując, że wartości zmiennej x są stałe i pochodzą z okresu 0, to jej wynikiem będzie hipotetyczna wielkość zmiennej y dana równaniem 16 (4.51) y = x 0 $ z Odejmując stronami (4.45) i (4.51) mamy y y = x$z x 0 $ z = (x x 0 )$z = x$z (4.52) Jeśli w powyższej zależności skoncentrować uwagę na wyliczeniach dla okresu oznaczonego jako 1, to otrzymana różnica pomiędzy y i wyniesie y y 1 y 1 = x$ z 1 (4.53) Widać, że pierwszy ze składników dekompozycji (4.47) jest równy prawej stronie powyższego równania. Oznacza to, że składnik ów może być wyznaczony techniką symulacji. Wykonując inne symulacje i znajdując odpowiednie odchylenia, jak pokazane zostało to w (4.53), można obliczyć wszystkie składniki dekompozycji, niezależnie od liczby wyróżnionych komponentów. 16 W zapisie pomijamy subskrypt czasu.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 19 4.2 Modele produktowo-gałęziowe W klasycznej analizie i-o zakłada się, że każda gałąź produkcji wytwarza jeden i tylko jeden produkt. Ten rodzaj analizy można określić mianem gałąź na gałąź. Ponieważ w analizie gałąź na gałąź każdy produkt wytwarzany jest tylko przez jedną gałąź (sektor) i każda gałąź wytwarza tylko jeden produkt, nie ma potrzeby wprowadzania rozróżnienia pomiędzy produktami i gałęziami. Założenie to może być jednak uchylane, prowadząc do analizy określanej mianem produkt na gałąź (analizy produktowo-gałęziowej). W podejściu produktowo- -gałęziowym możliwe staje się prowadzenie analiz, w których przepływy dóbr wyrażone są w różnych jednostkach, a w szczególności w jednostkach naturalnych. Przedstawiony tutaj model produktowo-gałęziowy systemu ekonomicznego jest podstawą konstrukcji modelu e-e, przedstawionego w punkcie 4.4.2. 4.2.1 Od macierzy produkcji i macierzy zużycia do macierzy produktowo-gałęziowych Założenie klasycznego modelu Leontiefa o jednorodności produkcji gałęzi w zetknięciu z praktyką okazuje się założeniem bardzo mocnym. W praktyce bowiem przedsiębiorstwa, oprócz produktów wynikających z głównego profilu działalności, prowadzą działalność uboczną, która powiększa wartość wytworzonego przez nie produktu globalnego. W przypadku, gdy produkty pochodzące z działalności ubocznej (ich wartość może w szczególnych przypadkach przekraczać wartość produktów profilu podstawowego) z punktu widzenia zastosowanej klasyfikacji gałęziowej powinny być traktowane jako produkt innej gałęzi, pojawia się problem, którego nie można rozstrzygnąć bez uchylania założenia o jednorodności produkcji gałęzi. Konstruowanie klasycznych tablic przepływów międzygałęziowych (gałąź na gałąź), dla układów gospodarczych, w których produkcja uboczna w gałęziach stanowi istotną część wartości produktu globalnego, może prowadzić do błędnych wniosków na etapie wykorzystania modeli. Odpowiedzią na opisane powyżej problemy związane z zastosowaniem klasycznych tablic przepływów międzygałęziowych są tablice produktowo-gałęziowe. W tablicach tych dane dotyczące nakładów pokazane są nie w układzie produktów, do których wytwarzania zostały one zużyte, ale w układzie gałęzi, które je wykorzystały, tzn. przepływy dóbr w gospodarce przedstawione są jednocześnie w przekroju gałęziowym i w przekroju produktowym. Dane do takich tablic gromadzi się przy wykorzystaniu dwóch metod. Są to:

20 Część II Metody wielosektorowego modelowania powiązań... metoda przedsiębiorstw, w której produkt uboczny zaliczany jest do rodzaju działalności wyznaczonego przez podstawowy profil produkcji przedsiębiorstwa wytwarzającego ten produkt; metoda produktu, w której produkt zaliczany jest do działalności zgodnie z jego właściwościami, niezależnie od tego, czy mieści się on w profilu podstawowym czy ubocznym przedsiębiorstwa. Metody te 17 dają identyczne rezultaty w przypadku, gdy produkcja wytwarzana przez poszczególne przedsiębiorstwa jest jednorodna, tj. gdy zgodnie z przyjętą klasyfikacją gałęziową przedsiębiorstwa nie mają produkcji ubocznej. W związku z dwiema metodami agregacji danych tablicę pokazującą przepływy produktów można przedstawić również na dwa sposoby, tzn. jako: macierz produkcji 18, której wiersze pokazują produkcję gałęzi według profilu działalności elementy na głównej przekątnej pokazują wartości produktów profilu podstawowego, a pozostałe elementy wartość wytworzonych produktów ubocznych; kolumny tej macierzy pokazują strukturę produktu według gałęzi wytwarzania; macierz zużycia 19, w której wierszach przedstawia się rozdysponowanie produktów wytworzonych w układzie gospodarczym pomiędzy różne gałęzie produkcji, a w kolumnach zapotrzebowanie gałęzi na produkty (materiały niezbędne do produkcji). Wprowadźmy nastepujące oznaczenia: m liczba wytwarzanych w gospodarce produktów; n liczba gałęzi w gospodarce; V macierz produkcji [v ij ] n%m ; v ij oznacza ilość j-tego produktu wytwarzaną przez i-tą gałąź; U macierz zużycia [u ij ] m%n ; u ij oznacza ilość i-tego produktu zużywaną przez j-tą gałąź; E wektor produktów finalnych [e ij ] m%1 ; Q wektor produktów globalnych [q ij ] m%1 według metody produktu; W wektor produktów dodanych [w ij ] n%1 ; X wektor produktów globalnych gałęzi [x ij ] m%1 według metody przedsiębiorstw. 17 Użyte tutaj nazwy metoda przedsiębiorstw i metoda produktu pochodzą z systemu MPS i (pominąwszy oczywiste różnice pomiędzy systemem MPS i SNA) odpowiadają metodom gromadzenia danych w systemie SNA bazującym na lokalnych jednostkach rodzaju działalności i jednostkach jednakowego produktu zob. pkt 2.2.1. Używamy ich tutaj, ponieważ w naszym przekonaniu dobrze odzwierciedlają istotę metod. 18 Ang. make matrix. 19 Ang. use matrix lub absorption matrix.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 21 Schemat tablicy produktowo-gałęziowej, uwzględniający powyższe oznaczenia, prezentujemy na rysunku 4.2. Rysunek 4.2 Schemat tablicy produktowo-gałęziowej Produkty Gałęzie Produkt finalny Produkt globalny Produkty U macierz zużycia E Q Gałęzie V macierz produkcji X Produkt dodany W produkt krajowy Produkt globalny Q T X T Źródło: Miller i Blair 1985. Poniżej przedstawiony jest przykład produktowo-gałęziowej tablicy przepływów. Dane użyte w przykładzie zostały przygotowane na podstawie tablicy przepływów międzygałęziowych z roku 1990 dla gospodarki Polski. Dla celów przykładu dane te zostały zagregowane do poziomu dwóch sektorów. W gospodarce wyróżniono dwie gałęzie: przemysł (Przemysł), którego główny produkt określamy jako Przem; pozostałe gałęzie (Pozostałe), których główny produkt nazywamy Poz. Łączna wartość produkcji Przemysłu wynosi 59,1 mld zł. Łączna wartość produkcji Pozostałych wynosi 65,3 mld zł, z czego 5,5 mld zł przypada na uboczną produkcję dobra Przem. Macierz produkcji zbudowana na podstawie powyższych danych przedstawiona jest w tabeli 4.1. Wiersze macierzy produkcji pokazują strukturę produkcji gałęzi wyróżnionych w gospodarce, a kolumny strukturę gałęziową produktów. Elementy diagonalne obrazują wielkość produkcji głównych produktów w gałęzi, a wielkości poza główną przekątną obrazują produkcję uboczną.

22 Część II Metody wielosektorowego modelowania powiązań... Tabela 4.1 Macierz produkcji dla gospodarki Polski Przem Produkty Poz Produkt globalny Gałęzie Przemysł Pozostałe 59.0 5.5 0.1 59.8 59.1 65.3 Produkt globalny 64.5 59.9 124.4 Źródło: obliczenia własne na podstawie: Bilans 1992. Uzupełnijmy powyższy przykład dodatkowymi informacjami. Załóżmy, że Przemysł zużywa produkty Przem o wartości 18,6 mld zł i produkty Poz o wartości 10,4 mld zł, natomiast gałąź Pozostałe zużywa produkty Przem o wartości 15,2 md zł i Poz o wartości 14,2 mld zł. Na podstawie tych danych zbudowana została macierz pokazana w tabeli 4.2. W celu uproszczenia przykładu wiersz importu, występujący w oryginalnej tablicy, potraktowaliśmy jako element wartości dodanej. Tabela 4.2 Macierz zużycia dla gospodarki Polski Przemysł Gałęzie Pozostałe Produkty finalny Produkt globalny Produkty Przem Poz 18.6 10.4 15.2 14.2 30.7 35.3 64.5 59.9 Wartość dodana 30.1 35.9 66.0 Produkt globalny 59.1 65.3 124.4 Źródło: obliczenia własne na podstawie: Bilans 1992.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 23 Informacje zawarte w macierzy produkcji i macierzy zużycia można przedstawić w postaci jednej macierzy produktowo-gałęziowej, co pokazuje tabela 4.3. Tabela 4.3. Macierz produktowo-gałęziowa dla gospodarki Polski Przem Produkty Poz Gałęzie Przemysł Pozostałe Produkt finalny Produkt globalny (wyniki) Produkty U E Q Przem 18.6 15.2 30.7 64.5 Poz 10.4 14.2 35.3 59.9 Gałęzie V X Przemysł 59.0 0.1 59.1 Pozostałe 5.5 59.8 65.3 Wartość dodana 30.1 W 35.9 66.0 Produkt globalny (nakłady) 64.5 Q T 59.9 59.1 X T 65.3 124.4 Źródło: obliczenia własne na podstawie: Bilans 1992. 4.2.2 Model nakładów i wyników oparty na macierzach produktowo-gałęziowych W tradycyjnym modelu Leontiefa centralne miejsce zajmuje macierz (I A) 1, transformująca popyt finalny w popyt całkowity. W modelach opartych na tablicach produktowo-gałęziowych można wyprowadzić kilka wariantów takiej macierzy, bo zarówno popyt finalny, jak i popyt całkowity mogą być przedstawione w układzie produktowym lub gałęziowym. Stąd też, w zależności od celu badania, macierz całkowitego zapotrzebowania może być skonstruowana jako macierz typu produkt na produkt, produkt na gałąź, gałąź na produkt lub gałąź na gałąź. Drugim kryterium prowadzącym do różnych postaci macierzy całkowitego zapotrzebowania jest zastosowane w badaniu założenie dotyczące technologii. Mając macierz produkcji, można przyjąć założenie o technologii produktowej lub o technologii gałęziowej (zob. Almon 2000, Rainer i Richter 1992).

24 Część II Metody wielosektorowego modelowania powiązań... Sumując elementy macierzy produkcji w wierszach, otrzymujemy wektor produktów globalnych według gałęzi (wyznaczony metodą przedsiębiorstw): X = Vi (4.54) gdzie i jest wektorem, którego wszystkie elementy wynoszą 1. Dzieląc element v ij macierzy produkcji przez wielkość produktu globalnego i-tej gałęzi, otrzymujemy udział j-tego dobra w produkcie globalnym i-tej gałęzi: c ij = v ij /X i a w notacji macierzowej: C = V T Xˆ 1 (4.55) (4.56) Współczynniki c ij nazywa się współczynnikami towarowej struktury produktu gałęzi 20. Założenie o stałości współczynników macierzy C nazywane jest założeniem o technologii produktowej 21. Sumując elementy macierzy produkcji w kolumnach, otrzymujemy wektor produktów globalnych (wyznaczony metodą produktu): Q T = i T V (4.57) Dzieląc element v ij macierzy produkcji przez wielkość łącznej produkcji j-tego dobra, otrzymujemy udział produktu i-tej gałęzi w łącznej produkcji j-tego dobra: d ij = v ij /Q j lub w notacji macierzowej: D = VQˆ 1 (4.58) (4.59) Współczynniki d ij nazywa się współczynnikami gałęziowej struktury towarów 22. Założenie o stałości współczynników macierzy D nazywane jest założeniem o technologii gałęziowej 23. Rozważania dotyczące założenia o technologii produkcji skłaniają do sformułowania następujących wniosków: 1) Założenie o technologii gałęziowej oznacza, że gdy różne gałęzie wytwarzają taki sam produkt, to każda z nich stosuje do jego produkcji inną, własną technologię, charakterystyczną dla produktu podstawowego wytwarzanego w tej gałęzi, i że gałęziowa struktura wytwarzania tego produktu jest stała. 20 Ang. industry output proportion. 21 Ang. commodity-based technology assumption. 22 Ang. commodity output proportion. 23 Ang. industry-based technology assumption.

Rozdział 4 Analiza input-output i jej zastosowania w modelowaniu... 25 2) Założenie o technologii produktowej oznacza, że gdy ten sam produkt jest wytwarzany przez różne gałęzie, to gałęzie te stosują do jego produkcji technologię tej gałęzi, dla której jest on produktem podstawowym, i że produktowa struktura wytwarzania w każdej z gałęzi jest stała. W dalszych rozważaniach dotyczących tablic produktowo-gałęziowych i związanych z nimi modeli i-o uwaga zostanie skoncentrowana wyłacznie na jednym z możliwych wariantów macierzy całkowitego zapotrzebowania. Będzie to gałęziowo-produktowa macierz całkowitego zapotrzebowania, wyprowadzona przy założeniu technologii gałęziowej. Analogiczne rozważania można przeprowadzić wprowadzając założenie o technologii produktowej. W kategoriach macierzy produktowo-gałęziowej współczynniki kosztów (produktowo-gałęziowe współczynniki bezpośredniego zapotrzebowania) przyjmują postać: b ij = u ij /X j lub w ujęciu macierzowym: B = UX 1 (4.60) (4.61) gdzie Xˆ oznacza macierz diagonalną, w której główna przekątna utworzona została z elementów wektora X. Równanie bilansowe produkcji w konwencji macierzy produktowo-gałęziowej (w notacji macierzowej) ma następującą postać: Q = Ui + E Wykorzystując zależność (4.61) oraz fakt, że można zapisać w postaci: Q = BX + E (4.62) Xˆi = X, powyższe równanie (4.63) Równanie (4.63) odpowiada równaniu bilansowemu produkcji w tradycyjnym modelu Leontiefa. Korzystając z tej zależności, możemy zapisać równanie (4.54) w postaci: X = DQ Podstawiając równanie (4.64) do (4.63) mamy: Q = BDQ + E Równość tę można przekształcić do postaci: Q = (I BD) 1 E Podstawiając równanie (4.66) do (4.64) otrzymujemy następującą zależność: X = D(I BD) 1 E (4.64) (4.65) (4.66) (4.67)

26 Część II Metody wielosektorowego modelowania powiązań... Macierz ujęta w nawiasy kwadratowe jest gałęziowo-produktową macierzą całkowitego zapotrzebowania, wyznaczoną przy założeniu technologii gałęziowej. Jej elementy informują, o ile powinien wzrosnąć produkt globalny i-tej gałęzi, aby popyt finalny na j-ty produkt mógł wzrosnąć o jednostkę. Wracając do przykładu liczbowego, wyznaczone zostaną macierze B i D: B = 0, 315 0, 233 0, 176 0, 217, D = 0, 915 0, 002 0, 085 0, 998 (4.68) Obliczona na tej podstawie macierz całkowitego zapotrzebowania przyjmuje postać: D(I BD) 1 = 1, 432 0, 428 0, 492 1, 422 (4.69) Współczynnik w pierwszym wierszu i drugiej kolumnie powyższej macierzy, wynoszący 0,428, informuje o tym, że produkt globalny Przemysłu powinien wzrosnąć o 428 mln zł, aby produkt finalny Poz mógł wzrosnąć o 1 mld zł. 4.3 Regionalne modele input-output Modele i-o pomyślane były pierwotnie jako modele konstruowane dla całych gospodarek. W pierwszej połowie lat pięćdziesiątych zaczęto wykorzystywać je również do badania zjawisk ekonomicznych na szczeblu wewnątrz- i międzyregionalnym (Isard 1951, Isard i Kuenne 1953). Następne lata przyniosły ogromną liczbę publikacji w tej dziedzinie. Przegląd regionalnych modeli i-o można znaleźć m.in. w książkach Polenske (1980) i Miernyka (1982). Regionalne modele i-o mają szczególne znaczenie w badaniach nad powiązaniami gospodarki i środowiska, albowiem problematyka e-e ma w dużej mierze wymiar regionalny. Pojęcie regionu w modelowaniu regionalnym nie jest jednoznacznie sprecyzowane. Regionami mogą być: obszary administracyjne państw wówczas konstruktorzy modeli mają stosunkowo najmniej kłopotów związanych z bazą danych statystycznych; obszary jednorodne pod względem kierunków i natężenia wykorzystania gospodarczego najwłaściwsze z punktu widzenia celów budowy modeli e-e; obszary geograficzne są one na ogół jednorodne pod względem możliwości ich wykorzystania do celów gospodarczych i pod względem zdolności asymilacyjnych środowiska, ale ich modelowanie sprawia najwięcej kłopotów ze