Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl"

Transkrypt

1 Modelowanie i wizualizowanie 3W-grafiki Transformacje Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki ul. Słoneczna Olsztyn Modelowanie i wizualizowanie 3W-grafiki p. 1

2 Transformacje Najnowsza wersja tego dokumentu dostępna jest pod adresemhttp://wmii.uwm.edu.pl/~denisjuk/uwm Modelowanie i wizualizowanie 3W-grafiki p. 2

3 Zastosowania przekształceń Powtarzajace się obiekty (diabelski młyn) Animacja Renderowanie (rendering) Modelowanie i wizualizowanie 3W-grafiki p. 3

4 Î Û Ë Ð Ø ÓÒ È Ö Ô Ø Ú Ú ÓÒ Uroszczony Schemat Renderowanie ÅÓ Ð Ò ÔÐ Ý Ò ÙÖ ÁÁº½ Ì ÓÙÖ Ø Ó Ø Ö Ò Ö Ò Ô Ô Ð Ò Ò ÇÔ Ò Äº Modelowanie i wizualizowanie 3W-grafiki p. 4

5 Przekształcenia w R 2 1 Przekształcenia liniowe Definicja 1. A : R 2 R 2 jest przekształceniem liniowym, jeśli 1. α R oraz x R 2,A(αx) = αax, 2. x 1,x 2 R 2,A(x 1 +x 2 ) = Ax 1 +Ax 2. Modelowanie i wizualizowanie 3W-grafiki p. 5

6 Przekształcenia liniowe 1.1 Przykłady 1. (x,y) ( y,x) 2. (x,y) (x,2y) 3. (x,y) (x+y,y) 4. (x,y) (x, y) 5. (x,y) ( x, y) Modelowanie i wizualizowanie 3W-grafiki p. 6

7 Przekształcenia Definicja 2. T : R 2 R 2 jest przesunięciem równoległym, jeżeli u R 2, takie że x R 2,Tx = x+u, T u x = x+u. Definicja 3 (Złożenie przekształceń). A B(x) = A(Bx) Definicja 4 (Przekształcenie jednostkowe). I : x x Modelowanie i wizualizowanie 3W-grafiki p. 7

8 Przekształcenia Definicja 5 (Przekształcenie odwrotne). A 1 A = A A 1 = I Definicja 6 (Przekształcenie afiniczne). B : R 2 R 2 jest przekształceniem afinicznym, jeżelib = T u A, gdzieajest przekształceniem liniowym. Twierdzenie 7. NiechB = T u A będzie przekształceniem afinicznym. Wtedy przesunięciet u oraz przekształcenie linioweaokreślone sa jednoznacznie. Modelowanie i wizualizowanie 3W-grafiki p. 8

9 Macierz przekształcenia liniowego Definicja 8. Niechi = (1,0) ij = (0,1) będzie baza przestrzenir 2, w = (x w,y w ) = x w i+y w j. NiechA : R 2 R 2 będzie przekształceniem liniowym. Niechu = Ai = (x u,y u ) oraz v = Aj = (x v,y v ). Macierza przekształceniaajest M A = ( ) xu x v. y u y v Twierdzenie 9. M A 1 = M 1 A. Modelowanie i wizualizowanie 3W-grafiki p. 9

10 ¼ ¼ ¼ ½ ½ ¼ Obrót Ò Ó Ó Ò ¼ ÙÖ ÁÁº «Ø Ó ÖÓØ Ø ÓÒ Ø ÖÓÙ Ò Ð º Ì ÓÖ Ò ¼ Ð Ü Ý Ø ÖÓØ Ø ÓÒº R θ = ( ) cosθ sinθ sinθ cosθ Modelowanie i wizualizowanie 3W-grafiki p. 10

11 Przekształcenia 2D 2 Przekształcenia Sztywne Definicja 10. PrzekształcenieA : R n R n jest sztywnym, jeżeli ono przechowuje Odległości pomiędzy punktami Katy między liniami Modelowanie i wizualizowanie 3W-grafiki p. 11

12 ¼ ¼ ÁÁº Ö ÓÖ ÒØ Ø ÓÒ ÔÖ ÖÚ Ò Ð Ò Ö ØÖ Ò ÓÖÑ Ø ÓÒ Ø Ò ÓÒ Ø ÙÖ Ú ØÓÖ Ò º ÙÒ Ø Przekształcenia 2D Twierdzenie 11. Każde sztywne przekształcenie liniowe, przechowujace orientację jest obrotem. Ý Ü Wniosek 12. Każde sztywne przekształcenie afiniczne, przechowujace orientację jest jednoznaczna suma przesunięcia równoległego i obrotu. Modelowanie i wizualizowanie 3W-grafiki p. 12

13 Przekształcenia 2D 2.1 Przykłady sztywnych przekształceń afinicznych, przechowujacych orientację Przesunięcie równoległe Obrót (afiniczny) Ý ¼ ¼ ½ ½ ½ ¼ ¼ Ü ½ ¼ ¼ ½ ÙÖ ÁÁº Ò Ö Ð Þ ÖÓØ Ø ÓÒ Ê Ù º ÒØ Ö Ó ÖÓØ Ø ÓÒ Ù ¼ º Ì Ì Ò Ð Æ º Modelowanie i wizualizowanie 3W-grafiki p. 13

14 Przekształcenia 2D Twierdzenie 13. Każde sztywne przekształcenie afiniczne, przechowujaca orientację jest przesunięciem równoległym lub obrotem (afinicznym). Modelowanie i wizualizowanie 3W-grafiki p. 14

15 Przekształcenia 2D 3 Współrzędne jednorodne Definicja 14. Trójka liczb x, y, w R (w 0) reprezentuje punkt o współrzędnych(x/w,y/w) R 2. Przykład (2,1) (2 : 1 : 1) (6 : 3 : 3) ( 2 : 1 : 1) Modelowanie i wizualizowanie 3W-grafiki p. 15

16 Przekształcenia 2D 4 Macierz przekształcenia afinicznego Definicja 15. NiechA = T u B będzie przekształceniem afinicznym, u = ( u1 u 2 M A = ), M B = ( ) b11 b 12. b 21 b 22 b 11 b 12 u 1 b 21 b 22 u Modelowanie i wizualizowanie 3W-grafiki p. 16

17 Macierz przekształcenia afinicznego αb 11 αb 12 αu 1 αb 21 αb 22 αu α b 11 b 12 u 1 b 21 b 22 u Modelowanie i wizualizowanie 3W-grafiki p. 17

18 Przekształcenia 3D 5 Przekształcenia 3D 5.1 Podstawowe definicje Przekształcenie liniowe. Przekształcenie afiniczne. Współrzędne jednorodne. Macierz przekształcenia liniowego. Macierz przekształcenia afinicznego. Modelowanie i wizualizowanie 3W-grafiki p. 18

19 Ú½ Ú Ê Ù Úµ ÁÁº½ Ì Ú ØÓÖ Ú Ò ÖÓØ Ø ÖÓÙÒ Ùº Ì Ú ØÓÖ Ú½ Ú ³ ÙÖ ÓÒØÓ Ùº Ì Ú ØÓÖ Ú¾ Ø ÓÑÔÓÒ ÒØ Ó Ú ÓÖØ Ó ÓÒ Ð ØÓ Ùº Ì ÔÖÓ Ø ÓÒ Ú Ú¾ ÖÓØ Ø ¼ Æ ÖÓÙÒ Ùº Ì Ð Ò Ñ ÒØ Ò Ø ÙÖ Ú ØÓÖ Ñ Ø Ø Ö Ø Ò Ð º ÐÐ Ú¾ Przekształcenia 3D Przekształcenie sztywne. Przekształcenie sztywne przechowujace orientację. Twierdzenie 16. Każde sztywne przekształcenie linowe, przechowujace orientację jest obrotem. Ú Ù ¼ Modelowanie i wizualizowanie 3W-grafiki p. 19

20 Przesunięcie równoległe Przesunięcie o wektor u = (u 1,u 2,u 3 ). Równoważne mnożeniu przez macierz u u u Modelowanie i wizualizowanie 3W-grafiki p. 20

21 Obrót Obrót dookoła osi wychodzacej z poczatku układu współrzędnych w kierunku u = (u 1,u 2,u 3 ) o kat θ stopni. Kierunek obrotu określany jest orientacja. Równoważne mnożeniu przez macierz (1 c)u 2 1 +c (1 c)u 1 u 2 su 3 (1 c)u 1 u 3 +su 2 0 (1 c)u 1 u 2 +su 3 (1 c)u 2 2 +c (1 c)u 2 u 3 su 1 0 (1 c)u 1 u 3 su 2 (1 c)u 2 u 3 +su 1 (1 c)u 3 3 +c gdzie c = cosθ, s = sinθ., Modelowanie i wizualizowanie 3W-grafiki p. 21

22 Skalowanie α α α symetria względem płaszczyzny y z. Modelowanie i wizualizowanie 3W-grafiki p. 22

Wprowadzenie do grafiki maszynowej. Wprowadenie do geometrii maszynowej

Wprowadzenie do grafiki maszynowej. Wprowadenie do geometrii maszynowej Wprowadzenie do grafiki maszynowej. Wprowadenie do geometrii maszynowej Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 61 Wprowadenie do geometrii

Bardziej szczegółowo

Elementy grafiki komputerowej. Elementy geometrii afinicznej

Elementy grafiki komputerowej. Elementy geometrii afinicznej Elementy grafiki komputerowej. Elementy geometrii j Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 28 Elementy geometrii j Najnowsza wersja

Bardziej szczegółowo

Grafika Komputerowa Podstawy animacji

Grafika Komputerowa Podstawy animacji Grafika Komputerowa Podstawy animacji Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Grafika Komputerowa

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Układy równań liniowych, macierze, Google

Układy równań liniowych, macierze, Google Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania

Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 19 Wprowadenie do teksturowania

Bardziej szczegółowo

Elementy grafiki komputerowej. Elementy krzywych Béziera

Elementy grafiki komputerowej. Elementy krzywych Béziera Elementy grafiki komputerowej. Elementy krzywych Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 36 Elementy krzywych Najnowsza wersja tego dokumentu

Bardziej szczegółowo

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja

Bardziej szczegółowo

Algebra linowa w pigułce

Algebra linowa w pigułce Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Grafika Komputerowa. Teksturowanie

Grafika Komputerowa. Teksturowanie Grafika Komputerowa. Teksturowanie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 19 Teksturowanie Najnowsza

Bardziej szczegółowo

Þ Á Ö Ø ØÙÖÝ ÓÑÔÙØ ÖÓÛÝ À Ö Ö ÔÖÓØÓ Ó Û Ð Ù ØÛ Ò ÔÖÓ Ù ÔÖÓ ØÓÛ Ò Û Ô Þ ÒÝ ÓÑÔÙØ ÖÓ¹ ÛÝ ÔÖÞÝ ØÓ Þ Ó Ò ÓÒ ÔÓ Û Ñ Ö ÔÖÓ Ø ØÖÙ ØÙÖ ÐÓ ÞÒ º Ç Ø Ø ÞÒ Þ Ý ÓÛ ÒÓ ÓÑÔÙØ ÖÓÛ Þ ÞÓÖ Ò ÞÓ¹ ÊÝ ÙÒ ½ Ï Ö ØÛÓÛ ØÖÙ ØÙÖ

Bardziej szczegółowo

ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò

ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ½º Ò ¾º ÈÖÞÝ º Ï ÒÓ Ð ÓÖÝØÑÙ Þ ÒÓ Ù Ý Ó ÛÖ ÐÒ ÔÖÞ ÔÐ Ø Ò Ù ÐÒÓ µ º Ê Ó¹ Ð Û ÐÐ Þ º ÈÖ Ò Ð ÓÖÝØÑ Å º ÏÔÖÓÛ Þ Ò Ó Û ÐÓÛÝÑ ÖÓÛ Ó ÔÖ Ò Ò Ù Ý Ó Ò ÖÓÛ Ò Þ Û ØÓÖ ÐÓ ÓÛ Ó (, ) Ó ÔÓÛ Ò ÔÖ Ý ( ½, ½ ),( ¾, ¾ ),...

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

ÈÓÔÖ ÛÒ ÛÝ ÓÖÞÝ Ø Ò ÏÞÓÖ ÔÖÓ ØÓÛ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ½»

ÈÓÔÖ ÛÒ ÛÝ ÓÖÞÝ Ø Ò ÏÞÓÖ ÔÖÓ ØÓÛ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ½» ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ÈÒ ÛÝ Ù ÔÓ Ø ÛÓÛ ÔÓ Û ÔÓÛØ ÖÞ Ò µ Ø Ó ÞÝÞÒ Ó ÞÒ ÔÓÛØ ÖÞ Ò µ Ö Þ Þ Þ Ò ÔÓÛØ ÖÞ Ò µ ÛÞÓÖ ÔÖÓ ØÓÛ Ò ØÓÒ ÔÖÓØÓØÝÔ ¾» Ö Ò Ö ¹ Ý Ò Þ Ô ÛÒ Ò ÞÛ Ó ÒÓ Ó Þ Ó ÜØ ÖÒ ÒØ Ü»»

Bardziej szczegółowo

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ ÈÓð Ö Ò ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÔÓÑ ÖÝ ÔÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ó Ø Ð Ø ÖÒ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÎÁÁ æ ÊÅÁ æ È Å Ä æ Å˹¾ ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ

ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓÞÒ ¾ º½½º¾¼½¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ð ÓÖÝØÑ ÛÓÐÙÝ ÒÝ Ó ÖÓÞ

Bardziej szczegółowo

ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ

ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ Ç Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ Ï ÌÁ ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s. Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk.

Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk. Grafika Komputerowa Krzywe B-sklejane Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û Ð ØÓÔ ¾¼¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ Û ÒÝ ÒÝ Ð ÓÖÝØÑ ØÙÖÒ Ð ÔÖÓ Ð ÑÙ ¾¹ Ó Ó Ó Û Ð Ó Ð

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

N j=1 (η M η j ) Û Ö η 1... η N Ö

N j=1 (η M η j ) Û Ö η 1... η N Ö Ù ÔØ Ð ØÝ ÌÓÔÓÐÓ Ð ØÛ Ø Ñ ÖÑ ÓÒ ÖÓÑ Ù Ò Ô ØÖ Ð ÔÖÓ ØÓÖ Ý ÃÖÞÝ ÞØÓ Ë ÙØ Ò ÖÑ ÒÝ ÆÁ Ñ Å Û Þ ÍÒ Ú Ö ØÝ ÈÓÞÒ ÈÓÐ Ò ÓÐÐ ÓÖ Ø ÓÒ Û Ø Ò Ö Ê ÑÓ Ð Ò Ã ÖÐ Â Ò Ò Ä ÌÌÁ ¾¼½ ½» ¾ ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð ÒÓØ Ö Ð Ò Ò Ø

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Modelowanie i Wizualizowanie 3W grafiki. Geometria 3W

Modelowanie i Wizualizowanie 3W grafiki. Geometria 3W Modelowanie i Wizualizowanie 3W grafiki. Geometria 3W Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 66 Geometria 3W liniowar 3 Najnowsza wersja

Bardziej szczegółowo

½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ

½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ ½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ Ôº½»¾ Ï Þ ð Û Ø ÛÓÐÙ Ï Þ ð Û Ø ÏÔÖÓÛ Þ Ò Ö Û Ø Ç ÐÒ

Bardziej szczegółowo

Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11)

Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11) Janusz Przewocki Instytut Matematyczny PAN Zeroth Milnor-Thurston homology for the Warsaw Circle Praca semestralna nr 3 (semestr zimowy 2010/11) Opiekun pracy: Andreas Zastrow ÖÓØ Å ÐÒÓÖ¹Ì ÙÖ ØÓÒ ÓÑÓÐÓ

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne 46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

ËÞ ÐÓÒÝ ¹ ÔÓÛØ ÖÞ Ò ÈÖÓ Ð ÑÝ ÔÖÞÝ ØÓ ÓÛ Ò Ù Þ ÐÓÒ Û áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÐÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È

ËÞ ÐÓÒÝ ¹ ÔÓÛØ ÖÞ Ò ÈÖÓ Ð ÑÝ ÔÖÞÝ ØÓ ÓÛ Ò Ù Þ ÐÓÒ Û áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÐÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ÃÓ ÓÖÝØÑÝ ÈÓ Ò Þ Ò Ó ØÝÔÙ Ó ÒÔº Øݵ ÓÖÝØÑÝ ÒÔº ÞÒ ÓÛ Ò Ò Û Þ Ó Ñ ÒØÙµ Å Ò ÞÑÝ Ñ ÒÙ Ö ÙÒ Ò Ó Ùº Û Ô Ò ÞÓÛ ÛÝ ÓÖÞÝ Ø Ò Þ ÓÒ Û ¾» à ÞÓÛ ÒÙ

Bardziej szczegółowo

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ ÈÓð Ö Ò ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÔÓÑ ÖÝ ÔÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ó Ø Ð Ø ÖÒ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÎÁÁ æ ÊÅÁ æ È Å Ä æ Å˹¾ ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia

Bardziej szczegółowo

ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ÈÓ ÖÞÒ ½º¼ ÏÝ Ò ÖÓÛ ÒÓ ÔÖÞ Þ ÓÜÝ Ò ½º º Ï ÂÙÒ ½½ ¼ ¾¼¼ ËÔ ØÖ ½ ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ½ ½º½ ÇÔ ÔÖÓ ØÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ñ ÒØÝ

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ½¼ Ð ØÓÔ ¾¼¼ ½¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Û Ø

Bardziej szczegółowo

TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR

TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR W układzie współrzędnych zaznaczmy dowolny punkt A = (x, y) oraz wektor u r = [p, q]. Po przesunięciu punktu A o wektor u r otrzymamy punkt

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Grafika Komputerowa. Metoda śledzenia promieni

Grafika Komputerowa. Metoda śledzenia promieni Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia

Bardziej szczegółowo

Number of included frames vs threshold effectiveness Threshold of effectiveness

Number of included frames vs threshold effectiveness Threshold of effectiveness Ò Ð Þ ÒÝ Þ ÒÓÛ Ô Ö ØÙÖÝ Ø Ý Ò È Ó Ø Ë Ý ËÞÝÑÓÒ Å Þ ÞÑ Þ Ñ ÐºÓÑ ØÝÞÒ ¾¼½¾ ËÔ ØÖ ½ Ï ØÔ ½ ¾ ÇÔ Ñ ØÓ Ý ½ ¾º½ Ç Ò Ò Ö ÒÝ ÔÓÑ Ö Û º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¾º¾ Ç Ö Ð Ò ØÝÛÒÓ Ð

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Przestrzeń liniowa. Algebra. Aleksander Denisiuk

Przestrzeń liniowa. Algebra. Aleksander Denisiuk Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.

Bardziej szczegółowo

Elementy do grafiki komputerowej. Wprowadzenie

Elementy do grafiki komputerowej. Wprowadzenie Elementy do grafiki komputerowej. Wprowadzenie Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 16 Wprowadzenie Najnowsza wersja tego dokumentu

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Andrzej Marciniak GRAFIKA KOMPUTEROWA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku przez studentów

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

ØÖ Ò ÔÓÖØ Û ÖØÓ ÔÖÞ ÛÓ Ò ÐÙ ÔÖÞ ÒÓ Þ Ò Û ÖØÓ Ô Ò ÒÝ ÔÓÞ Ó Ö Ñ Ô Þ ÐÒ ºÓ ÒÓ Ø Ó Ð Þ Ò ÓÛ ÔÖÞÝ Ø Ó Ó Ö Ð Ò Ð Ñ ØÙ ÔÖÞ ÓÛÝÛ ¹ ÒÝ ÐÙ ØÖ Ò ÔÓÖØÓÛ ÒÝ Û ÖØÓ

ØÖ Ò ÔÓÖØ Û ÖØÓ ÔÖÞ ÛÓ Ò ÐÙ ÔÖÞ ÒÓ Þ Ò Û ÖØÓ Ô Ò ÒÝ ÔÓÞ Ó Ö Ñ Ô Þ ÐÒ ºÓ ÒÓ Ø Ó Ð Þ Ò ÓÛ ÔÖÞÝ Ø Ó Ó Ö Ð Ò Ð Ñ ØÙ ÔÖÞ ÓÛÝÛ ¹ ÒÝ ÐÙ ØÖ Ò ÔÓÖØÓÛ ÒÝ Û ÖØÓ ÁÒ ØÖÙ Ó ÔÓ Ö ÓÛ ½ ¹¼ ¹¾¼¼ ½ ÈÓ Ø ÒÓÛ Ò Ó ÐÒ ï½ ÁÒ ØÖÙ Ó Ö Ð Þ Ý Ó ÖÓÒÝ Û ÖØÓ Ô Ò ÒÝ ÔÖÓÛ Þ Ò Ó ÔÓ Ö ÓØ Û Û Ù Ó ÙÑ ÒØÓÛ Ò ÓÔ Ö ÓÛÝ ÈÖÞ Þ Ù ÝØ Û Ò ØÖÙ Ó Ö Ð Ò ÖÓÞÙÑ Ô Þ ÐÒ Ô Þ ÐÒ Ñ Þ Ò ÓÛ È ÓØÖÓÛÓ Þ ÖÞ

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Algebra Przekształcenia liniowe Aleksandr Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej A (03-M01S-12-WALGA)

Bardziej szczegółowo

Grafika Komputerowa. Geometria 3W

Grafika Komputerowa. Geometria 3W Grafika Komputerowa. Geometria 3W Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 60 Geometria 3W liniowar

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

µ(p q) ( q p) µa B B c A c

µ(p q) ( q p) µa B B c A c Ä Ø ¼ Û ØÔ Ó ÑØÑØÝ ½ ¼º½º ËÔÖÛõ ÞÝ Ò ØÔÙ ÞÒ ÐÓÞÒ ØÙØÓÐÓÑ (p q) ( p q) (p q) ( p q) (p q) ( q p) [(p q) p] qº ¼º¾º ÍÞ Ò ÙÒØÓÖÝ ÐØÖÒØÝÛÝ ÓÒÙÒ Ñ Û ÒÓ ÞÒÓ ÓÖÞ ÔÖÞÑÒÒÓº ÞÝ Ø Ø Û ÔÖÞÝÔÙ ÙÒØÓÖ ÑÔÐ ¼º º ÈÖÞÝ ÔÓÑÓÝ

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼

Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ½» ¼ ÔÖÞÝ Ö Þ ÛÝÔ Ø Ö Ò Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ ¹ ¹ ¾¼ ÑÝ ¹½ ¹½ ¹¾ ½¼ ¹¾ ¹½ ¹¾ ÓÒ ¹½ ¹ ¾» ¼ ÔÖÞÝ Ö Ô ÖÞÝ ØÓ Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Þ Á Í Ù ÞÓÖ ÒØÓÛ Ò ÔÓ Þ Ò ÓÛÓ Ù Ù ÞÔÓ Þ Ò ÓÛ Ï Ö ØÛÝ ÑÓ Ó ÖÓÛ Û Ö ØÛÓÑ Ð ÝÑ Ó Ò ÔÓÞ ÓÑ ÛÝ Ù Ù ÞÔÓ Þ Ò ÓÛ Ù Ù ÛÝÑ ÔÓ Þ Ò º Ï Ù Ù ÓÛÝ ÞÓÖ ÒØÓÛ ÒÝ ÔÓ Þ Ò ÓÛÓ Ù ÝØ ÓÛÒ Ù Ù Ò Ô ÖÛ Ù Ø Ð ÔÓ Þ Ò ÔÓØ Ñ ÔÓ Þ Ò

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik 1A, 1B

Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik 1A, 1B 1A, 1B Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik Agata Faryniarz - Gumienna Program nauczania matematyki w liceach i technikach 16-2013/2014 Matematyka dla liceów i

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadzenie do wprowadzenia

Wprowadzenie do grafiki maszynowej. Wprowadzenie do wprowadzenia Wprowadzenie do grafiki maszynowej. Wprowadzenie do wprowadzenia Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 17 Wprowadzenie do wprowadzenia

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑ

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ¾ Ð ØÓÔ ¾¼¼ ¾ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð ÓÔ Ö Ò Ð Ø Ð ÓÖÝØÑ Ë ÔÖÞ Ó Þ Ò Ö Ù Ð ÓÖÝØÑ Ë ÔÖÞ

Bardziej szczegółowo

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Wyznaczniki. Algebra. Aleksander Denisiuk

Wyznaczniki. Algebra. Aleksander Denisiuk Algebra Wyznaczniki Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wyznaczniki

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û ÈÓÛØ ÖÞ Ò áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ½»

ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û ÈÓÛØ ÖÞ Ò áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ½» ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» È Ò ÛÝ Ù Ó ÞÑ ÓÓ Ø Ö Ü ÓÓ Ø ÜÔÖ Ú ÓÓ Ø Ô Ö Ø ÈÖÞÝ ÓÛ Þ Ò Ò ÓÓ Û ÙÑ ¾» ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û» ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÙÒ ÓÒÛ ÖØÙ Þ ³ ÍØÛÓÖÞ Ò Þ Ý Ò ÔÓ Ø Û Ò Ô Ù ÒÙ Ø ÒØ ØÓ ½¾

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo