Obraz jako funkcja Przekształcenia geometryczne
|
|
- Aleksandra Kaźmierczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała
2 Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych współrzędnych x,y określa intensywność (jasność) obrazu w tym punkcie, gdzie: 0 < f(x,y) < Dyskretyzacja obrazu dyskretyzacja funkcji f(x,y): przestrzenna (próbkowanie obrazu) amplitudowa (kwantyzacja poziomu szarości)
3 Definicja obrazu cyfrowego Obraz cyfrowy rozumiemy jako dwuwymiarową funkcję dyskretną g(x,y) taką, że jej argumentami są dyskretne piksele, a wartościami intensywności kolorów, np. w przestrzeni RGB, trójki liczb z przedziału [0,255].
4 Obraz jako funkcja dwuwymiarowa
5 Poziomy przekrój obrazu
6 Pionowy przekrój obrazu
7 Rozdzielczość przestrzenna obrazu
8 Powstawanie obrazu cyfrowego Pozyskiwanie obrazu w formie cyfrowej (kamery cyfrowe, skanery) Matryce światłoczułe(głównie CCD lub CMOS) złożone, 3 kolory na 1 chipie, tańsze monochromatyczne (po rozdzieleniu kolorów), droższe, wyższa jakość obrazu
9 Reprezentacja koloru Każdy z elementów dyskretnej reprezentacji obrazu może przyjmować tylko jeden z pośród ograniczonej ilości stanów. Ilość ta popularnie zwana ilością kolorów, może być także w komputerowej reprezentacji obrazu interpretowana jako ilość bitów przeznaczonych na zapamiętanie stanu jednego elementu (bpp bits per pixel). Najpopularniejsze formaty binarny 1 bpp 2 kolory monochromatyczny 8 bpp 256 stopni szarości kolorowy 24 lub 32 bpp ok. 17 milionów odcieni kolorów
10 Typy obrazów kolorowy monochromatyczny binarny
11 Obrazy indeksowane Nie zawsze wszystkie kolory są potrzebne Ze względu na objętość obrazu używa się palety tablicy kolorów użytych w obrazie, ponumerowanych i w pełnej formie Obraz zawiera wtedy ich indeksy w palecie Palety można wymieniać bez ingerencji w sam obraz
12 Podział algorytmów przetwarzania obrazów Przekształcenia geometryczne Przekształcenia punktowe (bezkontekstowe) Przekształcenia kontekstowe (filtry konwolucyjne, logiczne, medianowe) Przekształcenia widmowe Przekształcenia morfologiczne
13 Przekształcenia geometryczne Na przekształcenia geometryczne składają się: przesunięcia, obroty, odbicia, inne transformacje geometrii obrazu. Przekształcenia te wykorzystywane są do korekcji błędów wnoszonych przez system wprowadzający oraz do operacji pomocniczych
14 Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem [ x' y'] = [ x y] [ t x t y]
15 Skalowanie Skalowanie polegające na zmianie rozmiaru obrazu względem początku układu współrzędnych w postaci macierzowej można opisać zależnością [ x' y'] = [ s x 0 0 s y][ x y] Współczynnik skalowania s jest zwiększjący, jeżeli s > 1, a zmniejszający, jeżeli s < 1. Jeżeli sx = sy, to skalowanie nazywamy jednorodnym,a jeżeli sx sy niejednorodnym. Przy skalowaniu niejednorodnym proporcje skalowanego obiektu zmieniają się, natomiast przy skalowaniu jednorodnym proporcje nie ulegają zmianie.
16 Obrót Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco [ x' y'] [ = cos sin ][ x y] sin cos W celu wykonania obrotu względem innego punktu niż początek układu współrzędnych należy 1. Wykonać przesunięcie płaszczyzny, aby punkt obrotu znalazł się w początku układu współrzędnych. 2. Dokonać obrótu wokół nowego początku układu współrzędnych o kąt φ.
17 Współrzędne jednorodne Obiekty na płaszczyźnie mogą być przekształcane przez zastosowanie transformacji takich jak przesunięcia, skalowaania, obroty. Składanie transformacji polega na dodawaniu i mnożeniu odpowiednich macierzy. Złożenie obrotów i skalowań otrzymujemy przez mnożenie macierzy, natomiast przesunięciom odpowiada dodawanie wektora. Widoczna jest zatem pewna niedogodność, związana z tym, że nie można każdego przekształcenia przedstawić w postaci jednej macierzy (ponieważ przesunięcie jest realizowane inaczej niż skalowanie i obrót).
18 Współrzędne jednorodne Żeby móc traktować wszystkie trzy przekształcenia w jednakowy sposób i umożliwić realizację dowolnego przekształcenia przez mnożenie macierzy należy zastosować alternatywny układ współrzędnych, w którym dowolne przekształcenie daje się opisać jako mnożenie przez macierz o wymiarach 3x3. Przekształcenie takie można opisać w sposób macierzowy zależnością [ L x, y = x' ] =[a1 b1 c1 ][ 1] x y' a 2 b 2 c 2 y
19 Współrzędne jednorodne Poszczególne współrzędne po wyliczeniu mają postać x '=a 1 x b 1 y c 1 y' =a 2 x b 2 y c 2 Z zależności widać, że w zależności od doboru współczynników macierzy można wykonywać zarówno translacje jak i obroty oraz skalowania.
20 Transformacje 2D we współrzędnych jednorodnych Przesunięcie T t x,t y =[1 0 t x 0 1 t y 0 0 1] Skalowanie względem początku układu współrzędnych S s x, s y =[s x s y ]
21 Transformacje 2D we współrzędnych jednorodnych Obrót wokół początku układu współrzednych cos sin 0 sin cos 0 R =[ 1] 0 0 Skalowanie względem dowolnego punktu x0, y0 S x 0, y 0 s x, s y =[s x 0 x 0 1 s x 0 s y y 0 1 s y ]
22 Transformacje 2D we współrzędnych jednorodnych Obrót wokół dowolnego punktu R x 0, y 0 =[cos sin x 0 cos y 0 sin x 0 sin cos x 0 sin y 0 cos y ]
Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco
Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x
Wprowadzenie do cyfrowego przetwarzania obrazów
Cyfrowe przetwarzanie obrazów I Wprowadzenie do cyfrowego przetwarzania obrazów dr. inż Robert Kazała Barwa Z fizycznego punktu widzenia światło jest promieniowaniem elektromagnetycznym, które wyróżnia
Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Przekształcenia geometryczne w grafice komputerowej. Marek Badura
Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń
Wprowadzenie do cyfrowego przetwarzania obrazów medycznych.
Przetwarzanie obrazów medycznych Wprowadzenie do cyfrowego przetwarzania obrazów medycznych. dr. inż Robert Kazała Diagnostyka obrazowa Diagnostyka obrazowa (obrazowanie medyczne) grupa badań wykorzystująca
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Metody komputerowego przekształcania obrazów
Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Obraz i komputer. Trzy dziedziny informatyki. Podział przede wszystkim ze względu na dane wejściowe i wyjściowe
Obraz i komputer Trzy dziedziny informatyki Grafika komputerowa Przetwarzanie obrazów Rozpoznawanie obrazów Podział przede wszystkim ze względu na dane wejściowe i wyjściowe Grafika komputerowa Dane wejściowe
Akwizycja obrazów. Zagadnienia wstępne
Akwizycja obrazów. Zagadnienia wstępne Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 A. Przelaskowski, Techniki Multimedialne,
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
POB Odpowiedzi na pytania
POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej
Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej
Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie
Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę
Ćwiczenia nr 4. TEMATYKA: Rzutowanie
TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Komputerowe obrazowanie medyczne
Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi
Przetwarzanie obrazów wykład 2
Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement)
POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement) Przetwarzanie obrazów cyfrowych w celu wydobycia / uwydatnienia specyficznych cech obrazu dla określonych zastosowań. Brak
Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
dr inż. Piotr Odya dr inż. Piotr Suchomski
dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Proste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ
INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ Przygotowała mgr Joanna Guździoł e-mail: jguzdziol@wszop.edu.pl WYŻSZA SZKOŁA ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH 1. Pojęcie grafiki komputerowej Grafika komputerowa
6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi
Przekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 3 Interpolacja i przekształcenia geometryczne obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb
Zad. 3: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB
Zygmunt Wróbel Robert Koprowski PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB EXIT 2004 2 3 SPIS TREŚCI Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 5 Przekształcenia geometryczne i arytmetyka obrazów Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
3. OPERACJE BEZKONTEKSTOWE
3. OPERACJE BEZKONTEKSTOWE 3.1. Tablice korekcji (LUT) Przekształcenia bezkontekstowe (punktowe) to takie przekształcenia obrazu, w których zmiana poziomu szarości danego piksela zależy wyłącznie od jego
Kolorowa płaszczyzna zespolona
Kolorowa płaszczyzna zespolona Marta Szumańska MIMUW/IX LO w Warszawie Sielpia, 27 października 2018 p. 1 of 64 Liczby zespolone Przez i oznaczamy jednostkę urojoną. Jest to obiekt spełniający warunek
Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka +
Plan wykładu Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie 2 Po co obrabiamy zdjęcia Poprawa jasności, kontrastu, kolorów itp. Zdjęcie wykonano w niesprzyjających warunkach (złe
Operacje morfologiczne w przetwarzaniu obrazu
Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
Przetwarzanie obrazu. Formaty zapisu obrazu cyfrowego Przetwarzanie geometryczne Przetwarzanie bezkontekstowe
Przetwarzanie obrazu Formaty zapisu obrazu cyfrowego Przetwarzanie geometryczne Przetwarzanie bezkontekstowe Zapis obrazu rastrowego Sprowadza się do zapisu barw poszczególnych punktów Główne cechy: ilość
Kompresja obrazów w statycznych - algorytm JPEG
Kompresja obrazów w statycznych - algorytm JPEG Joint Photographic Expert Group - 986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla
Propagacja w przestrzeni swobodnej (dyfrakcja)
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja
Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30
Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego
Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 2 Histogram i arytmetyka obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
Grafika komputerowa. Dla DSI II
Grafika komputerowa Dla DSI II Rodzaje grafiki Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji
Cyfrowe Przetwarzanie Obrazów. Karol Czapnik
Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja
Krystalochemia białek 2016/2017
Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Urządzenia i systemy automatyki. Wykład. Systemy wizyjne. dr inż. Robert Kazała
Urządzenia i systemy automatyki Wykład Systemy wizyjne dr inż. Robert Kazała Wybór systemu wizyjnego - pytania Jakie są dokładnie określone wymagania dla systemu? Jaka rozdzielczość i czujniki są potrzebne?
Zad. 4: Rotacje 2D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego
Zad. 4: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
maska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Symetria w fizyce materii
Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa
Przekształcenia punktowe i geometryczne
Przekształcenia punktowe i geometryczne 1 Przekształcenia punktowe Przekształcenia punktowe (bezkontekstowe) są to przekształcenia dotyczące stopnia szarości lub nasycenia barwy dla każdego punktu oddzielnie,
Podstawy fotogrametrii i teledetekcji
Podstawy fotogrametrii i teledetekcji Józef Woźniak Zakład Geodezji i Geoinformatyki Wrocław, 2013 Fotogrametria analityczna Metody pozyskiwania danych przestrzennych Plan prezentacji bezpośrednie pomiary
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.
GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
WYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.
WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy
Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne
46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,
Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu
Andrzej Marciniak GRAFIKA KOMPUTEROWA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku przez studentów
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty
Grafika komputerowa Opracowali: dr inż. Piotr Suchomski dr inż. Piotr Odya Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Czerwony czopek