Podstawy Informatyki. Jednostki informacji. Metalurgia, I rok. Systemy pozycyjne. Konwersja kodu dziesiętnego na dwójkowy. System dwójkowy (binarny)
|
|
- Gabriela Tomczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Iformatyk Metalurga, I rok Wykład 3 Lczby w komuterze Jedostk formacj Bt (ag. bt) (Shao, 948) Najmejsza lość formacj otrzeba do określea, który z dwóch rówe rawdoodobych staów rzyjął układ. Jedostka formacj (b). Bajt (ag. byte) (Shao, 948) Najmejsza adresowala jedostka formacj amęc komuterowej, składająca sę z btów. Zazwyczaj rzyjmuje sę, że B = 8b (oktet), ale e jest to reguła! Najbardzej zaczący bt (bajt) - bt (bajt) o ajwększej wadze (w zase z lewej stroy). Najmej zaczący bt (bajt) - bt (bajt) o ajmejszej wadze (w zase z rawej stroy). Systemy ozycyje W ozycyjych systemach lczbowych te sam symbol (cyfra) ma różą wartość w zależośc od ozycj, którą zajmuje w zase daej lczby. 4 x = c4c3c2cc = c = odstawa systemu ozycyjego. Do zasu lczby służą cyfry c (których jest ) ustawae a kolejych ozycjach.pozycje umerujemy od zaczyając od stroy rawej zasu. Każda ozycja osada swoją wagę rówą. Wartość lczby oblczamy sumując loczyy cyfr rzez wag ch ozycj. Systemy ozycyje zas lczby ułamkowej x = c c2cc c c 2... c m = c = m.... Część ułamkowa lczby m ozycj. Część całkowta lczby ozycj. Wartość lczby oblczamy sumując loczyy cyfr rzez wag ch ozycj. System dwójkowy (bary) Gottfred Lebtz, XVIIw. Cyfry:,. Przykład:. (2) = *2 5 + *2 4 + *2 3 + *2 2 + *2 + *2. + *2 - + *2-2 + *2-3 + *2-4 System te jest wygody maszyy. Rerezetacja cyfry barej zajmuje dokłade jede bt. -cyfrowa lczba bara bez zaku zajmuje btów w amęc komutera. Kowersja kodu dzesętego a dwójkowy Część całkowtą lczby dzelmy sukcesywe rzez 2 berzemy reszty () = (2) Część ułamkową lczby możymy sukcesywe rzez 2 berzemy część całkowtą () =. (2) () =. (2)
2 System szesastkowy Cyfry:,, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. System łaczy zalety systemu barego (dobre wykorzystae amęc) oraz dzesątkowego (zwęzłość). Rerezetacja cyfry szesastkowej zajmuje 4 bty: Cyfra () (2) Cyfra () (2) A B C D E F Rerezetacja lczb całkowtych Założee: lczba całkowta ze zakem jest zasywaa w słowach -btowych. (Dla rzykładu weźmy = 8). zak (ajbardzej zaczący bt) moduł lczby (7 btów). Lczba eujema jest kodowaa jako: zak kod bary modułu tej lczby.. lczba 55 w rzykładze owyżej. Przykład: 37.D = 3*6 + 7*6 + D*6 - Lczba ujema jest kodowaa jako: zak kod bary modułu tej lczby. Lczba -55 bo (2) =55 () = Sosób wygody dla człoweka. Przy oeracjach arytmetyczych trzeba orówać zak. Podwója rerezetacja lczby : oraz (redudacja). Zakres lczb: [-2 - +, ] (2 - lczb). Kod uzuełeń do (U) Lczba ujema x (aalogcze rzecwa) jest kodowaa a jede z dwóch (rówoważych) sosobów: egujemy (btowo) kod bary modułu x albo berzemy kod bary lczby 2 - +x. Sosób : lczba -55 ) Kod bary modułu (=55): 2) Negacja btowa: Sosób 2: lczba -55 ) Kod bary lczby = =2: Sosób mało wygody dla człoweka. + Łatwe oeracje arytmetycze. Dwe rerezetacje lczby : oraz. Zakres lczb: [-2 - +, ] (2 - lczb). Zasady dodawaa Lczby zasae w kodze U dodajemy zgode z zasadam dodawaa dwójkowego, ale 2 jeżel wystą rzeesee oza bt zaku, to do wyku ależy dodać. (77) + (-43) + (34) Z rzeeseem (-77) + (-43) + (-2) Kod uzuełeń do 2 (U2) Lczba ujema x (aalogcze rzecwa) jest kodowaa a jede z dwóch (rówoważych) sosobów: egujemy (btowo) kod bary modułu x dodajemy ; berzemy kod bary lczby 2 +x. Sosób : lczba -55 ) Kod bary modułu (=55): Sosób 2: lczba -55 ) Kod bary lczby 2) Negacja btowa: = =2: 3) Dodae : Sosób mało wygody dla człoweka. + Łatwe oeracje arytmetycze. Jeda rerezetacja lczby : Zakres lczb: [-2 -, 2 - -] (2 lczb).
3 Dodawae w kodze U2 Dodawae w kodze U2 odbywa sę zgode z zasadam dodawaa dwójkowego (-77) + (43) (-34) (-77) + (-43) (-2) (77) + (-43) (34) Lczby ułamkowe stałorzeckowe Lczba stałoozycyja ( +m)-btowa osada btów rzezaczoych a część całkowtą oraz m btów rzezaczoych a kodowae częśc ułamkowej. c... c3c2cc. c c 2... c m = c = m Założee: lczba bez zaku. Wartość ajwększa: m = 2 2 -m Wartość ajmejsza: + 2 -m = 2 -m Lczby zmeorzeckowe (floatg-ot umbers) Lczba zmeorzeckowa x =(-) s m c s zak lczby, m matysa, odstawa systemu, c cecha. m e = 9.9 x -3 kg G = 6.67 x - m 3 kg - s -2 N A = 6.22 x 23 mol - Normalzacja lczby zmeorzeckowej Położee rzecka w lczbe zmeorzeckowej e jest ustaloe = x 2 =.2736 x 3 = 2736 x -2 Zormalzowaa lczba zmeorzeckowa to taka lczba, której matysa seła zależość: W systeme dzesętym: czyl m= m < m W systeme dwójkowym zormalzowaa lczba zmeorzeckowa ma zawsze część całkowtą rówą ±. Stadard IEEE 754 Zatem, do zakodowaa lczby zmeorzeckowej otrzeba zakodować (rzyjmujemy, ze odstawa będze rówa 2): zak, matysę, cechę. W celu ujedolcea rerezetacj barej oraz oeracj umeryczych a różych latformach srzętowych, wrowadzoo stadard zasu zmeorzeckowego IEEE 754 (Wllam Kaha). Stadard te defuje: formaty rerezetacj lczb zmeorzeckowych: sgle-recso (32 bty), double-recso (64bty), sgle-exteded recso ( 43 btów) double-exteded recso ( 79 btów, zazwyczaj 8 btów), wartosc secjale (. eskończoość, NaN), zmeorzeckowe oeracje, modele zaokrąglaa, wyjątk.
4 Ogóly format w stadardze IEEE 754 Lczby ojedyczej recyzj sg(bt zaku): lczba dodata, lczba ujema, exoet (cecha): kod z admarem (BIAS = 2 e- - ), fracto (matysa): lczba stałorzeckowa, kod U, ozbawoa ajbardzej zaczącego btu rerezetującego część całkowtą bt te e jest rzechowyway. e lczba btów cechy Ty Cecha Matysa zera lczby ezormalzowae lczby zormalzowae eskończoośc NaN (eokreśloe) od do 2 e- 2 e - 2 e - dowola 3 23 bt zaku: lczba dodata, lczba ujema, cecha: (BIAS =27), zakres: , matysa: m =.fracto Zormalzowae lczby o ajmejszym module: ±2-26 ± Lczby o ajwększym module: ±(( - (/2) 24 )2 28 ) ± Lczby odwójej recyzj bt zaku: lczba dodata, lczba ujema, cecha: (BIAS =23), zakres: , matysa: m =.fracto Zormalzowae lczby o ajmejszym module: ±2-22 ± Lczby o ajwększym module: ±(( - (/2) 53 )2 24 ) ± Stałe zmee Podstawowym obektam wystęującym w rograme są stałe zmee. Ich zaczee jest take samo jak w matematyce. Stałe zmee muszą osadać azwę osadają rzysaą wartość. Nazwa jest cągem zaków, z których erwszy mus być lterą,.: x, alfa, erwastek, Obowązują tylko zak ASCII (abc...z, ABC...XYZ). Ne ma olskch lter a greckch. Charakter zmeych jest deklaroway we wstęej częśc rogramu (zazwyczaj zaraz a oczątku, rzed strukcjam właścwym rogramu) Zmee są różych tyów: całkowte :, 2, 28 rzeczywste :.456, logcze : true, false zakowe : me, adres t. Tyy zmeych w Fortrae INTEGER* ( bajt) INTEGER*2 (2 bajty) INTEGER*4 (4bajty) REAL*4 (4 bajty) ±.75494E E+38 REAL*8 (8 bajtów) COMPLEX (zesoloy) LOGICAL (logczy) CHARACTER* CHARACTER* ± D D+38 ara lczb REAL.true..false. długość jak INTEGER bajt bajtów
5 Tyy zmeych w Pascalu SHORTINT ( ) bajt INTEGER ( } 2 bajty LONGINT { } 4 bajty BYTE {..255} bajt WORD { } 2 bajty BOOLEAN {TRUE/FALSE} logczy /8 bajta CHAR zak bajt STRING -255 zaków REAL {2.9E E38} 6 bajtów DOUBLE {5.E E38} 8 bajtów EXTENDED {.9E E4932} bajtów Tyy daych w języku C t - ty całkowty. Zmee tego tyu tyu mogą rzyjmować wartośc całkowte dodate lub ujeme. short t - ty całkowty krótk log t - ty całkowty dług float - ty zmeorzeckowy ojedyczej recyzj. double - ty zmeorzeckowy odwójej recyzj. log double - ty zmeorzeckowy odwójej recyzj dług. vod - ty usty ozaczający brak wartośc (stosoway w ANSI C).Tylko arametry rzekazywae do fukcj mogą być tyu vod (ozacza wtedy, że do fukcj c sę e rzekazuje) lub zwracae rzez fukcję (fukcja c e zwraca). Orócz tego ty vod może być stosoway rzy tworzeu ewych tyów złożoych. char - ty zakowy. Moża za jego omocą rzechowywać zak w kodze ASCII. Na ogół ty char ma bajt długośc w zwązku z czym moża za jego omocą rzechowywać lczby z zakresu (jeśl jest ze zakem) lub (jeśl jest bez zaku). Tablce Tablca jest to struktura daych zawerająca uorządkoway zbór obektów tego samego tyu odowada matematyczemu ojęcu wektora, macerzy, zmeych deksowych, t a S = a + + a a Dlaczego tablce? Jeśl =3, to e tak waże. A jeśl =? - deklarujemy jedą zmeą tablcową a e zwykłych. - w rograme moża łatwo odwołać sę do elemetu, którego umer jest wylczay,.: k=2*- Dla =5 mamy k=9 Do zmeej tablcowej A odwołujemy sę: x:=a[9], lub x:=a[k], a awet x:=a[2*-] Proste? A gdyby e było zmeych tablcowych? Dlaczego tablce, cd. Przykład rogramu: k=2*- wyberz k z: : x:=a 2: x:=a2 3: x:=a3... 9: x:=a9... : x:=a Bez sesu! Deklraracje tablc FORTRAN: DIMENSION A() INTEGER B(55) Uwaga! Ideksy tablc od a()..a() PASCAL: A:array [..] of real; B:array[..55] of teger; C: double a[]; t b[55]; Uwaga! Ideksy tablc od a[]..a[99]
Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Elementy arytmetyki komputerowej
Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Prefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit)
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i
ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać
Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Matematyka dyskretna. 10. Funkcja Möbiusa
Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1
Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Szeregi czasowe, modele DL i ADL, przyczynowość, integracja
Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
X R>0 dzielenie znakowane (signed division) znak reszty = znak dzielnej R>0 dzielenie modularne (modulus division) znak reszty dodatni X D D R
} m ekwecyje dzelee całkowte Iloraz uotet rezta remader z dzelea dzelej dvded rzez dzelk dvor to lczby oraz take e rozw zaa oraz take e rzy tym oraz > dzelee zakowae ged dvo zak rezty zak dzelej > dzelee
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:
Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
Informacja - pojęcie abstrakcyjne Dane: konkretna reprezentacja informacji. 3 "Podstawy informatyki", Tadeusz Wilusz 2004
Współczesna technologa systemu nformacyjnego wedza wedza Podstawy nformatyk nformacja nformacja nformacja Temat 02 Maszynowa reprezentacja nformacj wykłady 2 3 źródło nformacj (nadawca nformacj) IBM Compatble
Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej
Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
System finansowy gospodarki
System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady
dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?
Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Podstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
Lista 6. Kamil Matuszewski 26 listopada 2015
Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
VI. TWIERDZENIA GRANICZNE
VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych
DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Algorytmy i struktury danych. wykład 1
Plan całego wykładu:. Pojęcie algorytmu, projektowanie wstępujące i zstępujące, rekurencja. Klasy algorytmów. Poprawność algorytmu, złożoność obliczeniowa. Wskaźniki, dynamiczne struktury danych: listy,
architektura komputerów w. 3 Arytmetyka komputerów
archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac
Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać
Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
Informatyka I. Typy danych. Operacje arytmetyczne. Konwersje typów. Zmienne. Wczytywanie danych z klawiatury. dr hab. inż. Andrzej Czerepicki
Informatyka I Typy danych. Operacje arytmetyczne. Konwersje typów. Zmienne. Wczytywanie danych z klawiatury. dr hab. inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2019 1 Plan wykładu
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
Statystyczne charakterystyki liczbowe szeregu
Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
Badanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Programowanie w C++ Wykład 2. Katarzyna Grzelak. 4 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44
Programowanie w C++ Wykład 2 Katarzyna Grzelak 4 marca 2019 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44 Na poprzednim wykładzie podstawy C++ Każdy program w C++ musi mieć funkcję o nazwie main Wcięcia
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Wstęp do programowania. Różne różności
Wstęp do programowania Różne różności Typy danych Typ danych określa dwie rzeczy: Jak wartości danego typu są określane w pamięci Jakie operacje są dozwolone na obiektach danego typu 2 Rodzaje typów Proste
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
IV. ZMIENNE LOSOWE DWUWYMIAROWE
IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję
Pascal - wprowadzenie
Pascal - wprowadzenie Ogólne informacje o specyfice języka i budowaniu programów Filip Jarmuszczak kl. III c Historia Pascal dawniej jeden z najpopularniejszych języków programowania, uniwersalny, wysokiego
Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu
Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.
Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
ANALIZA KORELACJI DEFINICJA ZALEŻNOŚCI KORELACYJNEJ, RODZAJE ZALEŻNOŚCI KORELACYJNYCH KLASYFIKACJA METOD ANALIZY ZALEŻNOŚCI STATYSTYCZNYCH
AALIZA KORELACJI DEFIICJA ZALEŻOŚCI KORELACYJEJ, Zależośd korelacyja (statystycza) występuje wtedy, gdy określoym wartoścom jedej zmeej są przyporządkowae pewe średe wartośc drugej zmeej e moża wyzaczyd
Pracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Programowanie w C++ Wykład 2. Katarzyna Grzelak. 5 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41
Programowanie w C++ Wykład 2 Katarzyna Grzelak 5 marca 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41 Reprezentacje liczb w komputerze K.Grzelak (Wykład 1) Programowanie w C++ 2 / 41 Reprezentacje
Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++
Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu
Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.
Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lecja 4 Nearametrycze testy stotośc ZADANIE DOMOWE www.etraez.l Stroa 1 Część 1: TEST Zazacz orawą odowedź (tylo jeda jest rawdzwa). Pytae 1 W testach earametryczych a) Oblczamy statystyę
Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja cz. 1
Podstawy programowania Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja cz. 1 1 I. Składnia Składnia programu Program nazwa; Uses biblioteki; Var deklaracje zmiennych; Begin
Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych:
UZUPEŁNIAJĄCE MATERIAŁY DYDAKTYCZNE DLA UCZNIÓW TECHNIKUM MECHANICZNEGO PRZYGOTOWUJĄCYCH SIĘ DO ZEWNĘTRZNEGO EGZAMINU KWALIFIKACYJNEGO METROLOGIA TECHNICZNA (materały wybrae) Materały zebrał : mgr ż. Aatol
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
typ zakres sposob zapamietania shortint integer bajty (z bitem znaku) longint byte word
Pascal - powtórka Alfabet, Nazwy W odróŝnieniu do C w Pascal nie odróŝnia małych i duŝych liter. Zapisy ALA i ala oznaczają tę samą nazwę. Podobnie np. słowo kluczowe for moŝe być zapisane: FOR. W Pascalu
Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania
Kodowae rócowe Pla 1. Zasada. Podstawowy algorytm 3. Kodowae adaptacyje 4. Zastosowaa Kodowae rócowe zasada Jako kwatyzacj szeroko przedzału waracja, rozpto daych Obrazy, dwk korelacja w daych Wykorzystae
Metoda Monte-Carlo i inne zagadnienia 1
Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów
L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
Modele wartości pieniądza w czasie
Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
Równania rekurencyjne
Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,
Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol.
Salae / 1 Salae Salae jet zybko rzebegającym roceem utleaa ołączoym z ydzelaem ę ceła. Salau z reguły toarzyzy emja śatła. Podtaoym eratkam alym alach ą ęgel odór. W ale moża yróżć część alą ealy balat.
FINANSE II. Model jednowskaźnikowy Sharpe a.
ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
Dynamiczne struktury danych: listy
Dynamiczne struktury danych: listy Mirosław Mortka Zaczynając rogramować w dowolnym języku rogramowania jesteśmy zmuszeni do oanowania zasad osługiwania się odstawowymi tyami danych. Na rzykład w języku
Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe
zelene ekwencyjne zelene la dzelnej X (dvdend) dzelnka (dvor) lczby Q oraz R take, Ŝe X=Q R, R < nazywa ę lorazem Q (uotent) reztą R (remander) z dzelena X rzez. Równane dzelena moŝe meć rozwązana ełnające