Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.
|
|
- Łucja Szulc
- 7 lat temu
- Przeglądów:
Transkrypt
1 Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano na podstawie materiałów udostępnionych przez dr hab. A. Przelaskowskiego Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
2 Idea metod predykcyjnych Plan wykładu Modulacja delta Dynamiczna modulacja delta Liniowa predykcja (Differential Pulse Code Modulation) Konteksty, skanowanie Omówienie współczesnych metod predykcji Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
3 Idea metod predykcyjnych Do tej pory przedstawione były metody kodowania entropijnego i słownikowego zmiana sposobu reprezentacji informacji MoŜliwe jest zwiększenie efektywności poprzez wykorzystanie lokalnych i globalnych zaleŝności (korelacji). Modelowanie umoŝliwia przekształcenie ciągu wejściowego do reprezentacji pośredniej bardziej podatnej na kodowanie słownikowe i entropijne Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
4 Paradygmat kompresji - przypomnienie Uaktualnianie modelu Modelowanie Modelowanie Wiadomość wejściowa Kodowanie Wiadomość zakodowana Dekodowanie Wiadomość wyjściowa Współczesny paradygmat kompresji Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
5 Modulacja delta Bazuje na kodowaniu róŝnicy wartości bieŝącej próbki x n oraz odtworzoną wartością poprzedniej próbki x n e = x xˆ n n n RóŜnica zostaje kwantowana zgodnie z równaniem: eˆ sign( e ) n n = n = n i przesłana do odbiorcy! Otrzymana wartość po stronie odbiorcy jest odtwarzana jako: 1 1 jesli e > 0 n n 1 n 1 jesli e 0 xˆ = xˆ + eˆ Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
6 Przykład Przykładowy ciąg wejściowy: {3, 7, 10, 17, 22, 30, 40, 50, 49, 44, 48, 50, 49, 48, 45, 40, 38, 38, 43, 44, 48, 47, 48, 47, 48, 45, 40, 30, 20, 12, 8} Stała delta równa 5 ZałoŜenie poprzedni symbol = 3 Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
7 Modulacja delta = dane wejściowe Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
8 PrzeciąŜenie zbocza = PrzeciąŜenie zbocza dane wejściowe Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
9 Granulacja = 5, = Granulacja dane wejściowe Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
10 Problemy Zwiększenie delty powoduje zmniejszenie przeciąŝenia zbocza w przypadku zmiany próbek wejściowych Zmniejszenie delty powoduje zmniejszenie granulacji w przypadku zbliŝonych lub stałych próbek wejściowych Wymagania redukujące przeciąŝenie oraz granulacje są wzajemnie sprzeczne a moŝe regulować deltę w zaleŝności od poprzednich próbek Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
11 Dynamiczna modulacja delta Bazuje na kodowaniu róŝnicy wartości bieŝącej próbki x n oraz odtworzoną wartością poprzedniej próbki x n eˆ ( ) ( ˆ n = sign en = sign xn xn 1) RóŜnica zostaje kwantowana zgodnie z równaniem: min jesli 0< n-1 < min n = min jesli 0> n-1 > min 1 ˆ ˆ n 1 en + 2 en 1 w pozostaych przypadkach Otrzymana wartość po stronie odbiorcy jest odtwarzana jako: xˆ = xˆ + eˆ n n 1 n Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
12 Dynamiczna modulacja delta dyn 10 dane wejściowe Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
13 Jak porównać, która modulacja jest lepsza??? Kumulatywny błąd predykcji: n E = x ˆ i x i= 1 i E MD =5 = 211 E MD =10 = 203 E MDD 0 = 5 = 234!! chociaŝ wizualnie lepiej odpowiada Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
14 MoŜliwe jest wprowadzenie innych zaleŝności delty, MoŜliwe jest wprowadzenie szerszego kontekstu (uzaleŝnienie od większej liczby poprzedzających próbek), tzw. adaptacja wstecz MoŜliwe jest wprowadzenie zaleŝności od następnych próbek (niezbędny jest bufor kodowanie/dekodowanie opóźnione), tzw. adaptacja w przód Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
15 Metoda DPCM Metoda róźnicowej modulacji kodowo-impulsowej DPCM (differential pulse code modulation) Przewidywana wartość próbki zaleŝy od kombinacji liniowej N poprzedników: xˆ α xˆ n i n i i= 1 gdzie α i to współczynniki predykcji N = Błąd predykcji oznaczany jest jako: eˆ = Q( x xˆ ) n n n gdzie Q() jest funkcją kwantyzująca (np. zaokrąglającą wynik do liczby całkowitej) Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
16 Modelowanie - Nadawanie Wiadomość wejściowa + - e n Kwantyzator z -1 eˆn Kodowanie k e Wiadomość zakodowana α 1 α 2 z -1 z -1 ZaleŜne od N rzędu predyktora DPCM Predyktor liniowy z -1 α N Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
17 Odbieranie Wiadomość zakodowana k e Dekodowanie + Wiadomość wyjściowa + z -1 xˆn α 1 Predyktor liniowy α 2 z -1 z -1 ZaleŜne od N rzędu predyktora DPCM z -1 α N Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
18 Problem z DPCM Jak wyznaczyć optymalne wartości α 1 α N??? Na przykład korzystając z metody najmniejszych kwadratów t t t N 2 ˆ 2 2 σ = e = ( x x ) = x α x n n n n z i z i= 1 i= 1 i= 1 z= 1 ˆ 2 naleŝy minimalizować σ Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
19 Aby to zrobić naleŝy wyznaczyć pochodne cząstkowe po wszystkich współczynnikach α i i przyrównać je do zera: = 2 = 0 2 t N σ x ˆ i 1 xi α z xi z α i i= 1 z= 1 Przy czym: x α xˆ = x x t N t ( ) i 1 z i z i i 1 i= 1 z= 1 i= 1 W efekcie naleŝy rozwiązać układ N równań (zwane równaniami normalnymi, Wienera-Hopfa, Yule a-walkera) Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
20 Metoda najmniejszych kwadratów nie uwzględnia entropii Z doświadczeń wynika, Ŝe lepiej stosować kilka modeli uprzednio zdefiniowanych i umiejętnie je przełączać (najlepiej jeśli są to modele liniowe) Aby zwiększyć efektywność moŝna dzielić sygnał na bloki zbliŝone wyglądem do siebie (np. kodując sygnał dźwiękowy następujące po sobie frazy mają podobny charakter) MoŜna dynamicznie zmieniać współczynniki predykcji w zaleŝności od kontekstu (dynamiczny DPCM) Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
21 Dynamiczny DPCM MoŜliwość zmieniania współczynników DPCM MoŜliwość zmieniania poziomów kwantyzacji MoŜliwość zmieniania obu parametrów Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
22 Metoda najszybszego spadku (gradient search method) e 2 eˆ 2 = n 1 n 1 1, n 1, n 1 1, n 1 α 1 1 α α β α β α gdzie β jest współczynnikiem gradientu Funkcje gradientu moŝna określić z metody LMS e 2 n α 1 ( ) = 2 x α xˆ xˆ = 2e xˆ n 1 n 1 n 1 n n 1 = + 2 e x ˆ + 2 e ˆ x ˆ α α β α β 1, n 1, n 1 n 1 n 2 1, n 1 n 1 n 2 Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
23 Odpowiednio dobierając współczynnik β moŝliwe jest poprawienie efektywności metody DPCM Źródło: dr hab. A. Przelaskowski Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
24 Modele kontekstów obrazów Źródło: dr hab. A. Przelaskowski Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
25 RóŜne rodzaje skanowania Źródło: dr hab. A. Przelaskowski Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
26 RóŜne rodzaje predyktorów (przykłady): Standard JPEG (bezstratny) Standard PNG MED/MAP z gradientem GAP CALIC MoŜliwość stosowania interpolacji i przeplotu JBIG (obrazy cz-b) Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
27 JPEG bezstratny c b a x Numer predyktora Sposób predykcji 1 a 2 b 3 c 4 a+b-c 5 a+(b-c)/2 6 b+(a-c)/2 7 (a+b)/2 (wymagany IE) Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
28 Więcej informacji: Źródła elektroniczne oraz pozycje literaturowe Przemysław Sękalski, Przetwarzanie i transmisja danych multimedialnych, wykład 6,
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław
Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład
MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22
MODULACJE IMPULSOWE TSIM W10: Modulacje impulsowe 1/22 Fala nośna: Modulacja PAM Pulse Amplitude Modulation Sygnał PAM i jego widmo: y PAM (t) = n= x(nt s ) Y PAM (ω) = τ T s Sa(ωτ/2)e j(ωτ/2) ( ) t τ/2
Kwantowanie sygnałów analogowych na przykładzie sygnału mowy
Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze
Przetwarzanie i transmisja danych multimedialnych. Wykład 2 Podstawy kompresji. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład Podstawy kompresji Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Zawartość wykładu.
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Wybrane metody kompresji obrazów
Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.
Fundamentals of Data Compression
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Wybrane algorytmu kompresji dźwięku
[1/28] Wybrane algorytmu kompresji dźwięku [dr inż. Paweł Forczmański] Katedra Systemów Multimedialnych, Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie [2/28] Podstawy kompresji
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do pracowni specjalistycznej Temat ćwiczenia: Badanie własności koderów PCM zastosowanych do sygnałów
Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication)
Politechnika Śląska Katedra Elektryfikacji i Automatyzacji Górnictwa Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Opracował:
Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 3 Kodowanie Shannona Fano i Huffmana Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych
KOMPRESJA STRATNA SYGNAŁU MOWY. Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP
KOMPRESJA STRATNA SYGNAŁU MOWY Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP Śledzenie i upraszczanie zmian dynamicznych sygnałów ADPCM
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1
Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,
Kompresja video (MPEG)
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 8, strona 1. Kompresja video (MEG) Zasadniczy schemat kompresora video Typy ramek przy kompresji czasowej Analiza ramek przez syntezę Sposób detekcji
1. Wprowadzenie 1.1. Zdefiniowanie problemu badawczego
Spis treści 3 Spis treści Spis ważniejszych oznaczeń... 7 1. Wprowadzenie... 9 1.1. Zdefiniowanie problemu badawczego... 9 1.2. Istniejące rozwiązania bezstratnej kompresji obrazów... 10 1.3. Cel i zakres
Kompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Przetwarzanie i transmisja danych multimedialnych. Wykład 10 Kompresja obrazów ruchomych MPEG. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 10 Kompresja obrazów ruchomych MPEG Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych
Algorytmy kodowania entropijnego
Algorytmy kodowania entropijnego 1. Kodowanie Shannona-Fano 2. Kodowanie Huffmana 3. Jednoznaczność kodów Huffmana. Kod o minimalnej wariancji 4. Dynamiczne kodowanie Huffmana Poprzedni wykład - podsumowanie
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Kompresja sekwencji obrazów - algorytm MPEG-2
Kompresja sekwencji obrazów - algorytm MPEG- Moving Pictures Experts Group (MPEG) - 988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et TélégraphieT
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Przetwornik analogowo-cyfrowy
Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego
Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
są wielomianami nie jest wielomianem zerowym. Rozwiązując załoŝenie otrzymujemy dziedzinę wyraŝenia wymiernego.
6.. WYRAśENIE WYMIERNE W ( ) WyraŜenie wymierne wyraŝa się wzorem y, gdzie W () i P() są wielomianami P( ) i P () nie jest wielomianem zerowym. Dziedziną wyraŝenia wymiernego jest zbiór D { : P( ) 0} Przykład
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG
Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana
Kodowanie predykcyjne
Studia Wieczorowe Wrocław, 27.03.2007 Kodowanie informacji Wykład 5 Kodowanie predykcyjne Idea: przewidujemy następny element ciągu i kodujemy różnicę między wartością przewidywaną i rzeczywistą, w oparciu
Kodowanie i kompresja Streszczenie Studia Wieczorowe Wykład 10, 2007
1 Kompresja wideo Kodowanie i kompresja Streszczenie Studia Wieczorowe Wykład 10, 2007 Dane wideo jako sekwencja skorelowanych obrazów (ramek). Specyfika danych wideo: drobne zmiany kolorów w kolejnych
Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów
Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów 1. Przekształcenie sygnału analogowego na postać cyfrową określamy mianem: a. digitalizacji
Praca dyplomowa magisterska
Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12,
1 Kompresja stratna Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12, 5.05.2005 Algorytmy kompresji bezstratnej oceniane są ze względu na: stopień kompresji; czas działania procesu kodowania
Kody splotowe (konwolucyjne)
Modulacja i Kodowanie Labolatorium Kodowanie kanałowe kody konwolucyjne Kody splotowe (konwolucyjne) Główną różnicą pomiędzy kodami blokowi a konwolucyjnymi (splotowymi) polega na konstrukcji ciągu kodowego.
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Technika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
O sygnałach cyfrowych
O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
Drzewa Decyzyjne, cz.2
Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania
Algorytmy kodowania predykcyjnego
Algorytmy kodowania predykcyjnego 1. Zasada kodowania 2. Algorytm JPEG-LS 3. Algorytmy CALIC, LOCO-I 4. Algorytmy z wielokrotn rozdzielczoci. Progresywna transmisja obrazów Kompresja obrazów - zestawienie
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Podstawowe funkcje przetwornika C/A
ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze
Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości
W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (
PRZETWORNIKI C / A PODSTAWOWE PARAMETRY
PRZETWORIKI C / A PODSTAWOWE PARAMETRY Rozdzielczość przetwornika C/A - Określa ją liczba - bitów słowa wejściowego. - Definiuje się ją równieŝ przez wartość związaną z najmniej znaczącym bitem (LSB),
Optymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
Kodowanie predykcyjne
Kodowanie i kompresja informacji - Wykład 5 22 marca 2010 Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie. Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie.
Rozpoznawanie i synteza mowy w systemach multimedialnych. Analiza i synteza mowy - wprowadzenie. Spektrogram wyrażenia: computer speech
Slajd 1 Analiza i synteza mowy - wprowadzenie Spektrogram wyrażenia: computer speech Slide 1 Slajd 2 Analiza i synteza mowy - wprowadzenie Slide 2 Slajd 3 Analiza i synteza mowy - wprowadzenie Slide 3
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Operacja na dwóch funkcjach dająca w wyniku modyfikację oryginalnych funkcji (wynikiem jest iloczyn splotowy). Jest
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
Kodowanie informacji
Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie
dr inż. Piotr Odya dr inż. Piotr Suchomski
dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 4 Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych 1. CEL ĆWICZENIA Celem niniejszego ćwiczenia jest zapoznanie studentów z dwoma
Kompresja obrazów w statycznych - algorytm JPEG
Kompresja obrazów w statycznych - algorytm JPEG Joint Photographic Expert Group - 986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
wiadomość komunikat - informacja Caius Julius Cesar Człowiek zasztyletowany przez senatorów na forum Romanum w Idy Marcowe roku DCCIX ab urbe condita
wiadomość komunikat - informacja Caius Julius Cesar Człowiek zasztyletowany przez senatorów na forum Romanum w Idy Marcowe roku DCCIX ab urbe condita Wojna Bambadocji przeciwko Alandii i Cezji Alandia:
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
pobieramy pierwszą literę komunikatu i wypełniamy nią (wszystkie pozycje tą samą literą) bufor słownikowy.
komunikat do zakodowania: a a b a b b a b a c c a b a a a a a c a c b c b b c c a a c b a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 przyjmujemy długość bufora słownikowego
A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t
B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej
Przetworniki Analogowo-Cyfrowe i Cyfrowo-Analogowe Laboratorium Techniki Cyfrowej Ernest Jamro, Katedra Elektroniki, AGH, Kraków,
Przetworniki Analogowo-Cyfrowe i Cyfrowo-Analogowe Laboratorium Techniki Cyfrowej Ernest Jamro, Katedra Elektroniki, AGH, Kraków, --6. Przetwornik z rezystorami wagowymi lub drabinką R-R. Podłączyć układ
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia.
Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. TDM (Time Division Multiplexing) dzielenie przesyłanych sygnałów na części, którym później przypisuje się czasy transmisji (tzw. szczeliny czasowe).
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk
Wyższa Szkoła Informatyki Stosowanej i Zarządzania MODULACJA Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji dr inż. Janusz Dudczyk Cel wykładu Przedstawienie podstawowych
x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()
. Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja
Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn
Ćwiczenie 4. harakterystyki statyczne tranzystora bipolarnego 1. L ĆWIZNI elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami statycznymi oraz z najwaŝniejszymi parametrami i modelami tranzystora
Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA.
strona 1 PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA. Cel ćwiczenia Celem ćwiczenia jest przedstawienie istoty działania przetwornika C/A, źródeł błędów przetwarzania, sposobu definiowania
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęd: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi
Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz
Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem
Przetworniki analogowo-cyfrowe - budowa i działanie" anie"
Przetworniki analogowo-cyfrowe - budowa i działanie" anie" Wprowadzenie Wiele urządzeń pomiarowych wyposaŝonych jest obecnie w przetworniki A/C. Końcówki takich urządzeń to najczęściej typowe interfejsy
Kody Tunstalla. Kodowanie arytmetyczne
Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO
LAORATORIUM LKTRONIKI ĆWIZNI 4 HARAKTRYSTYKI STATYZN TRANZYSTORA IPOLARNGO K A T D R A S Y S T M Ó W M I K R O L K T R O N I Z N Y H 1. L ĆWIZNIA elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
dr inż. Artur Janicki pok. 414 Zakład Systemów Teletransmisyjnych Instytut Telekomunikacji PW
dr inż. Artur Janicki email: A.Janicki@tele.pw.edu.pl, pok. 414 Zakład Systemów Teletransmisyjnych Instytut Telekomunikacji PW Kodowanie źródła podstawowe informacje Sygnał mowy informacje ogólne, jak
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 5 - suplement
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 5 - suplement Realizacja na procesorze sygnałowym adaptacyjnego usuwania echa w łączu telefonicznym 1. SYMULACJA ECHA W ŁĄCZU TELEFONICZNYM I JEGO