KIEROWALNOŚĆ AGREGATU ROLNICZEGO CIĄGNIK SADZARKA DO ZIEMNIAKÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "KIEROWALNOŚĆ AGREGATU ROLNICZEGO CIĄGNIK SADZARKA DO ZIEMNIAKÓW"

Transkrypt

1 nŝynieri Rolnicz /006 Tdeuz Pwłowki Przemyłowy ntytut zyn Rolniczych w Poznniu EROWANOŚĆ AGREGATU RONCZEGO CĄGN SADZARA DO ZENAÓW Strezczenie Prezentown prc przedtwi wtępną koncepcję uwzględnieni dziłni kierowcy w modelu zetwu ciągnik mzyn rolnicz. Agregt tki poruz ię po nieutwrdzonym, częto podmokłym, polu o urozmiconej powierzchni. W tk trudnym terenie kierowc mui wykonywć rdzo komplikowne mnewry związne z chrkterem prc polowych. odel ztoowno do zetwu ciągnik dzrk do ziemników. Półzwiezn dzrk połączon jet z ciągnikiem z pomocą dolnych cięgien TUZ. Do implementcji modelu ztoowno moduł Simulink środowik tl. Słow kluczowe: modelownie, kierowc, zetw ciągnik mzyn rolnicz Wprowdzenie Dynmik pojzdu jet jednym z njwŝniejzych ozrów dń w technice motoryzcyjnej. Jzd, przypiezenie, hmownie, zmin kierunku jzdy to typowe procey dynmiczne. Jkość ich relizcji jet uzleŝnion od kierowcy. Sterowny przez kierowcę pojzd moŝe yć ztem rozptrywny jko ytem regulcji, w którym kierowc jet regultorem mochód oiektem regulownym. Źródłem ił zewnętrznych docierjących do kierującego i wywierjących wpływ n dynmikę mochodu jet zmienijące ię otoczenie pojzdu. Dotrcz ono m. in. informcje otrzegwcze w potci rozmitych odźców docierjących do kierowcy, który je odier i w zleŝności od ich rozpoznni orz oceny podejmuje odpowiednie dziłni kierowni pojzdem. Efektywność dziłń kierowcy zleŝy od ytucji n drodze, włności pojzdu orz od cech pychofizycznych kierowcy, m. in. od czu jego rekcji. ierowc jet włączony w ukłd drog pojzd kierowc jko ogniwo przęŝeni zwrotnego. Jego funkcje dją ię opić jko przetwrznie pochodzących z zewnątrz informcji dotyczących ruchu pojzdu (nierówności drogi, wrunki tmoferyczne, połoŝenie innych '$

2 GTWXhfm CTjÄjf^\ pojzdów, itp.) n terownie tnem pozczególnych ukłdów pojzdu tkich jk ukłd kierowniczy, ukłd hmulcowy, ukłd npędowy [ozi i in. 995; Stńczy i in. 004]. Prezentown prc przedtwi wtępną koncepcję uwzględnieni dziłni kierowcy w modelu zetwu ciągnik mzyn rolnicz. Agregt tki poruz ię po nieutwrdzonym, częto podmokłym, polu o urozmiconej powierzchni. W tk trudnym terenie kierowc mui wykonywć rdzo komplikowne mnewry związne z chrkterem prc polowych. W modelu nleŝy ztem uwzględnić pecyfikę nwierzchni i iły wywierne n koł podcz jzdy w róŝnych kierunkch. odel ztoowno do zetwu ciągnik dzrk do ziemników (ry. ). Półzwiezn dzrk połączon jet z ciągnikiem z pomocą dolnych cięgien TUZ. Do implementcji modelu ztoowno moduł Simulink środowik tl. Ry.. Fig.. Półzwiezn dzrk do ziemników w trkcie prc polowych (w kinie ciągnik widoczny jet kierowc) Semi-upended potto plnter during field work (driver i viile in trctor c) temtyczny model ukłdu kierowc pojzd drog odel mtemtyczny pojzdu uwzględnijący dziłni kierowcy kłd ię z dwóch zdniczych części: modelu kierowcy orz modelu mego gregtu. '$

3 >\XejT_É} TZeXZTgh e_\vmxz!!! odel gregtu Dl gregtu jko podtwę przyjęto płki dwukołowy model pojzdu. Jet on częto wykorzytywny do opiu mochodu dl potrze ymulcji ukłdów utomtyki wpomgjących prcę kierowcy [PieniąŜek i in 000; Stevenon i in. 005]. Zotł zmodyfikowny przez dodnie trzeciego koł reprezentującego oś dzrki. Przedtwiono go n ry.. Ruchomy ukłd wpółrzędnych związny z gregtem, o początku w środku cięŝkości gregtu, oznczono SX Y ; O X Y to ruchomy ukłd związny z oią korytrz, po którym m poruzć ię gregt (oś O X jet kierown tycznie do oi korytrz, w tronę ruchu pojzdu; oś O Y reprezentuje normlną do oi korytrz punkcie O i przechodzi przez środek cięŝkości S gregtu). NleŜy zuwŝyć, Ŝe dzrk jet połączon z ciągnikiem tk, Ŝe tworzy z nim ukłd ztywny, nie dopuzczjący orotów dzrki względem ciągnik wokół oi Z protopdłej do płzczyzny O X Y modelu. Sdzrk wypoŝon jet w koł fortepinowe (ry. 3). Chrkteryzują ię one prktycznie zerowymi wpółczynnikmi odporności n poprzeczne znozenie (ez oporu dotoowują ię do kierunku ruchu wyznczonego przez koł ciągnik). Dltego w pierwzym przyliŝeniu przyjęto, Ŝe koł te mją wpływ tylko n połoŝenie środk cięŝkości gregtu, nie wpływją ntomit n pozotłe prmetry ruchu. Ry.. Fig.. Płki model gregtu ciągnik dzrk do ziemników D model of trctor potto plnter comintion '$,

4 GTWXhfm CTjÄjf^\ Przyjęto ntępujące oznczeni y liniowe odchylenie gregtu od oi korytrz. Ψ kąt orotu my reorownej gregtu Ψ kątowe odchylenie podłuŝnej oi mochodu od tycznej do oi korytrz v prędkość środk cięŝkości gregtu v y i v x rzuty prędkości punktu S n oś SY i SX ζ, ζ, ζ 3 oczne przemiezczeni przedniego i tylnego koł ciągnik orz koł dzrki γ, γ, γ 3 kąty znozeni przedniego i tylnego koł ciągnik orz koł dzrki θ średni kąt krętu koł kierownego F p, F t, F oczne rekcje n przedniej i tylnej oi ciągnik orz oi dzrki β i p = przełoŝenie ukłdu kierowniczego θ m gregtu moment ezwłdności gregtu względem oi pionowej przechodzącej przez środek cięŝkości c ξ i c ξ ztywności poprzeczne opon przedniej i tylnej oi i wpółczynniki odporności n poprzeczne znozenie koł przedniej i tylnej oi Równni więzów kinemtycznych gregtu dl przedtwionego n ry. płkiego modelu, z uwzględnieniem zmodyfikownej teorii iełdyz dotyczącej toczeni ię koł, przedtwiono poniŝej: Ry. 3. Fig. 3. Schemt koł dzrki Potto plnter wheel digrm '%#

5 >\XejT_É} TZeXZTgh e_\vmxz!!! '%$ Po doyć złoŝonych przekztłcenich i ztoowniu opertor plce otrzymujemy dw równni chrkterytyczne opiujące liniowe i kątowe odchylenie pojzdu w zleŝności od wrunków początkowych ruchu: odchylenie liniowe ( ) ( ) ( ) = v v A x x odchylenie kątowe ( ) ( ) ( ) = v v A x z Budow modelu kierowcy N ry. 4 przedtwiono powiązni między drogą, kierowcą i kierownym przez niego pojzdem. () () (3)

6 GTWXhfm CTjÄjf^\ y β POJAZD A () H Ψ DROGA EROWCA H() β POJAZD A () y - Ry. 4. Fig. 4. Uprozczony chemt powiązń elementów ukłdu drog kierowc pojzd z uwzględnieniem przęŝeni zwrotnego Simplified digrm of connection etween the element of rod driver vehicle et, tking into ccount feedck ąt orotu koł kierownicy β(t) i kąt odchyleni gregtu Ψ(t) orz przemiezczenie poprzeczne gregtu y z wrunkiem początkowym y = 0 ą określone przez ukłd równń β = H y H y y = A β A β (4) Ψ = A A H N podtwie powyŝzego ukłdu i gętości widmowych i wzjemnych gętości widmowe y y, β β, H H, β y, H y. zmierzonych ygnłów moŝn uzykć zleŝności określjące trnmitncję H. Jednk jej ezpośrednie wykorzytnie jet utrudnione ze względu n trudności z dokłdnym określeniem wrtości gętości widmowych proceów loowych. Niewielkie nwet łędy w określeniu funkcji trnmitncji H mogą powodowć, Ŝe wyniki otrzymywne z nlizownego modelu ędą itotnie róŝnić ię od zchowń ukłdu rzeczywitego. Podjęto próę znlezieni trnmitncji modelu kierowcy n podtwie minimlizcji energii n kole kierownicy. Zchownie kierowcy określono przez ntępujące czynniki: łędy oceny liniowych odchyleń mochodu od oi toru prc z mniejzymi łędmi wymg więkzego wyiłku, cz zwłoki τ prc z njmniejzym opóźnieniem tnowi wyiłek ndzwyczjny, intenywność ruchu powrotnego kierownicy i iły przykłdnej do koł kierownicy. '%%

7 >\XejT_É} TZeXZTgh e_\vmxz!!! Ottecznie, po uprozczenich, przyjęto funkcję trnmitncji kierowcy gdzie: τ T i τ H = k τ C i C k ( T ) ( T ) 0 3 ( C T T )( C T T ) cz rekcji kierowcy tłe czowe wpółczynniki tłumieni ukłdu wpółczynnik wzmocnieni zleŝny od prędkości jzdy (5) Stłe T, T, T3 zwęŝją odchyleni wielkości y, Ψ i β. Stł T0 dotyczy łędu oceny przez kierowcę odchyleni mochodu od oi zdnego toru. Przykłdowe wyniki ymulcji odel opiny powyŝej zotł oprogrmowny i uruchomiony z pomocą modułu Simulink środowik tl. Przeprowdzono oliczeni dl róŝnych wrtości prmetrów modelu (ry. 5). Wykzły one poprwne zchownie modelu i wrŝliwość n zminę wrtości prmetrów. Ry. 5. Fig. 5. Przemiezczeni poprzeczne środk cięŝkości gregtu dl róŝnych prędkości jzdy (km/h). Czrną linią zznczono plnowną trę gregtu Trnvere diplcement of the unit grvity centre for vriou driving peed (km/h). Blck line indicte plnned unit route '%&

8 GTWXhfm CTjÄjf^\ Ry. 6. Fig. 6. ąt nchyleni podłuŝnej oi gregtu dl róŝnych prędkości jzdy (km/h) podcz mnewru pokznego n ry. 5 nclintion ngle of the unit longitudinl xi for vriou driving peed (km/h) during the mnoeuvre hown on fig. 5 Podumownie. Przeprowdzone oliczeni tetowe wykzły wtępnie, Ŝe zproponowny model zgodnie z oczekiwnimi odwzorowuje kierowlność gregtu ciągnik dzrk do ziemników. Zdniem utor moŝe yć podtwą do dlzych dń i uściśleń.. ontynucj prcy polegć ędzie przede wzytkim n identyfikcji prmetrów modelu opiujących zchownie kierowcy orz włności gregtu. Szczególny ncik połoŝony ędzie n dni zjwik kontktu opongle. Biliogrfi ozi Z. Guzek Przegląd metod dń tteczności i kierowlności pojzdów mochodowych. Zezyt ntytutu Pojzdów nr (4) 995. PieniąŜek A., PieniąŜek W Bdni dynmiki poprzecznej jednośldowego modelu mochodu w ujęciu tochtycznym. teriły konferencyjne ONOT AUTOPROGRES 000. '%'

9 >\XejT_É} TZeXZTgh e_\vmxz!!! Stńczy T.., Jurecki R. S Budow i weryfikcj modelu kierowcy do nlizy ytucji przedwypdkowych. Wydwnictwo Politechniki rkowkiej 004. Stevenon B., Ridley P Automted Vehicle Stility Control for Articulted Vehicle ( STEERABTY OF A FAR UNT: TRACTOR - POTATO PANTER Summry Thi work preent preliminry concept for tking into ccount driver ctivity in trctor - griculturl mchine unit model. Thi unit run on n unhrdened, often wterlogged field with diverified urfce. n thi hrd terrin, the driver h to crry out very complicted mnoeuvre depending on field work chrcter. The model h een pplied to the unit: trctor - potto plnter. Semi-upended plnter i connected to the trctor vi ottom TUZ flexile connector. The Simulink module of the tl environment w employed to implement the model. ey word: modelling, driver, trctor griculturl mchine unit '%(

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym

4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym LISA0: Podtwowe człony (obiety) dynmii Przygotownie ) Wymień i opiz włności podtwowych członów (obiety) dynmii potć trnmitncji nzwy i ogrniczeni prmetrów ) Wymień podtwowe człony dynmii dl tórych trnmitncj

Bardziej szczegółowo

SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW

SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW InŜynieria Rolnicza 11/2006 Jan Szczepaniak Przemysłowy Instytut Maszyn Rolniczych w Poznaniu SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW Streszczenie W artykule przedstawiono

Bardziej szczegółowo

SYSTEM STEROWANIA DRGANIAMI SEMI-AKTYWNEGO UKŁADU ZAWIESZENIA SIEDZISKA

SYSTEM STEROWANIA DRGANIAMI SEMI-AKTYWNEGO UKŁADU ZAWIESZENIA SIEDZISKA Igor MACIEJEWSKI 1 Ukłd zwiezeni iedzik, Semi-ktywne terownie drgnimi, Optymlizcj włściwości wibroizolcyjnych SYSTEM STEROWANIA DRGANIAMI SEMI-AKTYWNEGO UKŁADU ZAWIESZENIA SIEDZISKA W prcy zwrto zgdnieni

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Identyfikacja parametrów modelu maszyny synchronicznej jawnobiegunowej

Identyfikacja parametrów modelu maszyny synchronicznej jawnobiegunowej Akemi Górniczo-Hutnicz im. Stniłw Stzic w Krkowie Wyził Elektrotechniki, Automtyki, Inormtyki i Elektroniki KATEA MASZYN ELEKTYCZNYCH Stuenckie Koło Nukowe Mzyn Elektrycznych Ientyikcj prmetrów moelu mzyny

Bardziej szczegółowo

Efektywne wyznaczenie częstotliwości interwencji w cyfrowych quasi-ciągłych systemach sterowania w transporcie 2

Efektywne wyznaczenie częstotliwości interwencji w cyfrowych quasi-ciągłych systemach sterowania w transporcie 2 Logityk nuk Tdeuz Wcłwki Politechnik Krkowk w Krkowie Efektywne wyznczenie czętotliwości interwencji w cyfrowych qui-ciągłych ytemch terowni w trnporcie 2 Wprowdzenie Oecnie cechą chrkterytyczną ytemów

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU ODELOWNIE INŻYNIERKIE INN 1896-771X 3,. 37-44, Gliwice 6 PORÓWNNIE WYBRNYCH RÓWNŃ KONTYTUTYWNYCH TOPÓW Z PIĘCIĄ KZTŁTU KRZYZTOF BIEREG Ktedr Wyokich Npięć i prtów Elekt., Politechnik Gdńk trezczenie. W

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji

Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji Modelownie i obliceni technicne Model mtemtycny w potci trnmitncji Model mtemtycny w potci trnmitncji Zkłdjąc, że leżność międy y i u możn opić linowym równniem różnickowym lub różnicowym, możliwe jet

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Praca dyplomowa

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Praca dyplomowa Politechni Ślą Wydził Automtyi, Eletronii i Informtyi Prc dyplomow Temt : Stnowio lbortoryjne do ymulcji obietów n terowniu SLC500. Promotor : Dr inż. J.przy Student : Tomz tuzczy Cel prcy Celem prcy było

Bardziej szczegółowo

Modelowanie i sterowanie obróbką ubytkową osiowosymetrycznych części o małej sztywności

Modelowanie i sterowanie obróbką ubytkową osiowosymetrycznych części o małej sztywności Modelownie i terownie obróbką ubytkową oiowoymetrycznych części o młej ztywności Monogrfie Politechnik Lubelk Politechnik Lubelk Wydził Mechniczny ul. Ndbytrzyck 36-68 LUBLIN Antoni Świć, Wiktor rnenko,

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL INSTYTUCJA PRZYJMUJĄCA WNIOSEK:... NUMER KONKURSU:... NUMER WNIOSKU

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony KRYTER OCENN ODPOWEDZ Próbn Mtur z OPERONEM Fizyk i tronoi Pozio rozzerzony Litopd 3 W niniejzy checie ocenini zdń otwrtych ą prezentowne przykłdowe poprwne odpowiedzi. W teo typu ch nleży również uznć

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

Zadania. ze zbioru 25 lat Olimpiad Fizycznych Waldemara Gorzkowskiego. a, skierowane równolegle do równi (w górę, ku

Zadania. ze zbioru 25 lat Olimpiad Fizycznych Waldemara Gorzkowskiego. a, skierowane równolegle do równi (w górę, ku 76 FOTON 4, Wion 04 Zdni ze zbioru 5 lt Olimpid Fizycznych Wldemr Gorzkowkiego Od Redkcji: Cytowny w tym zezycie profeor Iwo Biłynicki-Birul jet luretem I Olimpidy Fizycznej Poniżej przytczmy pouczjące

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0

Bardziej szczegółowo

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.

Bardziej szczegółowo

PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012

PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zwsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 ZAŁOŻENIA PROGRAMU: progrm m być spójny z progrmem wychowwczym szkoły,

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g.

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g. Studi dzienne, kierunek: Budownictwo, semestr IV Studi inżynierskie i mgisterskie (ilość godz. w2, ćw1, proj1) Wytrzymłość mteriłów. Ćwiczeni udytoryjne. Przykłdow treść ćwiczeń. Tydzień 1. Linie ugięci

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ . RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRNSCOMP XV INTERNTIONL CONFERENCE COMPUTER SYSTEMS IDED SCIENCE INDUSTRY ND TRNSPORT Łuksz DRĄG 1 modelownie symulcj ruchu pojzdu mikroskopowe modele ruchu OCEN ODWZOROWNI RUCHU PODĄśJĄCEGO POJZDU W MIKROSKOPOWYCH

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH

Bardziej szczegółowo

Prędkość i przyspieszenie punktu bryły w ruchu kulistym

Prędkość i przyspieszenie punktu bryły w ruchu kulistym Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRANSCOMP XIV INTRNATIONAL CONFRNC COMPUTR SYSTMS AIDD SCINC, INDUSTRY AND TRANSPORT Dignostyk, hmulce, pomiry drogowe trnsport, Andrzej GAJK Wojciech SZCZYPIŃSKI-SALA Piotr STRZĘPK 1 OCNA MTOD POMIARÓW

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL INSTYTUCJA PRZYJMUJĄCA WNIOSEK:... NUMER KONKURSU:... NUMER WNIOSKU (KSI):... SUMA KONTROLNA WNIOSKU:... TYTUŁ PROJEKTU:... NAZWA

Bardziej szczegółowo

Wytrzymałość materiałów II

Wytrzymałość materiałów II Wytrzymłość mteriłów II kierunek Budownictwo, sem. IV mteriły pomocnicze do ćwiczeń oprcownie: dr inż. Iren Wgner, mgr inż. Jont Bondrczuk-Siwick TREŚĆ WYKŁADU Sprężyste skręcnie prętów pryzmtycznych.

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Diagnostyka uszkodzeñ wiæzadeæ krzyºowych w badaniu rezonansu magnetycznego

Diagnostyka uszkodzeñ wiæzadeæ krzyºowych w badaniu rezonansu magnetycznego Dignostyk uszkodzeñ wiæzdeæ krzyºowych w dniu rezonnsu mgnetycznego MRI dignostics of crucite ligments Zigniew Czyrny Crolin Medicl Center, Wrszw Streszczenie: W prcy omówiono zsdy rozpoznwni zerwñ wiæzdeæ

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Ćwiczenie 9. BADANIE UKŁADÓW ZASILANIA I STEROWANIA STANOWISKO I. Badanie modelu linii zasilającej prądu przemiennego

Ćwiczenie 9. BADANIE UKŁADÓW ZASILANIA I STEROWANIA STANOWISKO I. Badanie modelu linii zasilającej prądu przemiennego ortorium elektrotechniki Ćwiczenie 9. BADAIE UKŁADÓ ZASIAIA I STEOAIA STAOISKO I. Bdnie modelu linii zsiljącej prądu przemiennego Ukłd zowy (ez połączeń wrintowych) 30 V~ A A A 3 3 3 A 3 A 6 V 9 0 I A

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on:

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on: Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. interwencji ekologicznych CON/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do kndydtów

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

Weryfikacja modelowa jest analizą statyczną logiki modalnej

Weryfikacja modelowa jest analizą statyczną logiki modalnej Weryfikcj modelow jest nlizą sttyczną logiki modlnej Mrcin Sulikowski MIMUW 15 grudni 010 1 Wstęp Weryfikcj systemów etykietownych 3 Flow Logic 4 Weryfikcj modelow nliz sttyczn Co jest czym czego? Weryfikcj

Bardziej szczegółowo

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1 ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie

Bardziej szczegółowo

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i .. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

SZEREGOWY SYSTEM HYDRAULICZNY

SZEREGOWY SYSTEM HYDRAULICZNY LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia EOELEKTA Ogólnopolsk Olimpid Wiedzy Elektrycznej i Elektronicznej ok szkolny 204/205 Zdni dl grupy elektronicznej n zwody stopni Zdnie Dl diody półprzewodnikowej, której przeieg chrkterystyki prądowo-npięciowej

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

ZAMKNIĘCIE ROKU 2016 z uwzględnieniem zmian w prawie bilansowym. dr Gyöngyvér Takáts

ZAMKNIĘCIE ROKU 2016 z uwzględnieniem zmian w prawie bilansowym. dr Gyöngyvér Takáts ZAMKNIĘCIE ROKU 2016 z uwzględnieniem zmin w prwie bilnsowym dr Gyöngyvér Tkáts Podmioty rchunkowości 1) Mikro jednostki jednostki mogące korzystć z uproszeń jednostki niemogące korzystć z uproszczeń 2)

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Nowy system wsparcia rodzin z dziećmi

Nowy system wsparcia rodzin z dziećmi o Nowy system wsprci rodzin z dziećmi Projekt współfinnsowny ze środków Unii Europejskiej w rmch Europejskiego Funduszu Społecznego Brbr Kowlczyk Cele systemu wsprci rodzin z dziećmi dobro dzieci potrzebujących

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Metoda kropli wosku Renferta

Metoda kropli wosku Renferta Metod kropli wosku Renfert Metod Renfert zwn jest tkże techniką K+B. Jej podstwowym złożeniem jest dążenie do prwidłowego odtworzeni powierzchni żujących zęów ocznych podczs rtykulcji. Celem jest uzysknie

Bardziej szczegółowo

KARTA OCENY MERYTORYCZNEJ WNIOSKU O UDZIELENIE WSPARCIA FINANSOWEGO

KARTA OCENY MERYTORYCZNEJ WNIOSKU O UDZIELENIE WSPARCIA FINANSOWEGO ZAŁĄCZNIK NR 17 Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego KARTA OCENY MERYTORYCZNEJ WNIOSKU O UDZIELENIE WSPARCIA FINANSOWEGO Priorytet VI Rynek prcy otwrty

Bardziej szczegółowo