KIEROWALNOŚĆ AGREGATU ROLNICZEGO CIĄGNIK SADZARKA DO ZIEMNIAKÓW
|
|
- Józef Skowroński
- 7 lat temu
- Przeglądów:
Transkrypt
1 nŝynieri Rolnicz /006 Tdeuz Pwłowki Przemyłowy ntytut zyn Rolniczych w Poznniu EROWANOŚĆ AGREGATU RONCZEGO CĄGN SADZARA DO ZENAÓW Strezczenie Prezentown prc przedtwi wtępną koncepcję uwzględnieni dziłni kierowcy w modelu zetwu ciągnik mzyn rolnicz. Agregt tki poruz ię po nieutwrdzonym, częto podmokłym, polu o urozmiconej powierzchni. W tk trudnym terenie kierowc mui wykonywć rdzo komplikowne mnewry związne z chrkterem prc polowych. odel ztoowno do zetwu ciągnik dzrk do ziemników. Półzwiezn dzrk połączon jet z ciągnikiem z pomocą dolnych cięgien TUZ. Do implementcji modelu ztoowno moduł Simulink środowik tl. Słow kluczowe: modelownie, kierowc, zetw ciągnik mzyn rolnicz Wprowdzenie Dynmik pojzdu jet jednym z njwŝniejzych ozrów dń w technice motoryzcyjnej. Jzd, przypiezenie, hmownie, zmin kierunku jzdy to typowe procey dynmiczne. Jkość ich relizcji jet uzleŝnion od kierowcy. Sterowny przez kierowcę pojzd moŝe yć ztem rozptrywny jko ytem regulcji, w którym kierowc jet regultorem mochód oiektem regulownym. Źródłem ił zewnętrznych docierjących do kierującego i wywierjących wpływ n dynmikę mochodu jet zmienijące ię otoczenie pojzdu. Dotrcz ono m. in. informcje otrzegwcze w potci rozmitych odźców docierjących do kierowcy, który je odier i w zleŝności od ich rozpoznni orz oceny podejmuje odpowiednie dziłni kierowni pojzdem. Efektywność dziłń kierowcy zleŝy od ytucji n drodze, włności pojzdu orz od cech pychofizycznych kierowcy, m. in. od czu jego rekcji. ierowc jet włączony w ukłd drog pojzd kierowc jko ogniwo przęŝeni zwrotnego. Jego funkcje dją ię opić jko przetwrznie pochodzących z zewnątrz informcji dotyczących ruchu pojzdu (nierówności drogi, wrunki tmoferyczne, połoŝenie innych '$
2 GTWXhfm CTjÄjf^\ pojzdów, itp.) n terownie tnem pozczególnych ukłdów pojzdu tkich jk ukłd kierowniczy, ukłd hmulcowy, ukłd npędowy [ozi i in. 995; Stńczy i in. 004]. Prezentown prc przedtwi wtępną koncepcję uwzględnieni dziłni kierowcy w modelu zetwu ciągnik mzyn rolnicz. Agregt tki poruz ię po nieutwrdzonym, częto podmokłym, polu o urozmiconej powierzchni. W tk trudnym terenie kierowc mui wykonywć rdzo komplikowne mnewry związne z chrkterem prc polowych. W modelu nleŝy ztem uwzględnić pecyfikę nwierzchni i iły wywierne n koł podcz jzdy w róŝnych kierunkch. odel ztoowno do zetwu ciągnik dzrk do ziemników (ry. ). Półzwiezn dzrk połączon jet z ciągnikiem z pomocą dolnych cięgien TUZ. Do implementcji modelu ztoowno moduł Simulink środowik tl. Ry.. Fig.. Półzwiezn dzrk do ziemników w trkcie prc polowych (w kinie ciągnik widoczny jet kierowc) Semi-upended potto plnter during field work (driver i viile in trctor c) temtyczny model ukłdu kierowc pojzd drog odel mtemtyczny pojzdu uwzględnijący dziłni kierowcy kłd ię z dwóch zdniczych części: modelu kierowcy orz modelu mego gregtu. '$
3 >\XejT_É} TZeXZTgh e_\vmxz!!! odel gregtu Dl gregtu jko podtwę przyjęto płki dwukołowy model pojzdu. Jet on częto wykorzytywny do opiu mochodu dl potrze ymulcji ukłdów utomtyki wpomgjących prcę kierowcy [PieniąŜek i in 000; Stevenon i in. 005]. Zotł zmodyfikowny przez dodnie trzeciego koł reprezentującego oś dzrki. Przedtwiono go n ry.. Ruchomy ukłd wpółrzędnych związny z gregtem, o początku w środku cięŝkości gregtu, oznczono SX Y ; O X Y to ruchomy ukłd związny z oią korytrz, po którym m poruzć ię gregt (oś O X jet kierown tycznie do oi korytrz, w tronę ruchu pojzdu; oś O Y reprezentuje normlną do oi korytrz punkcie O i przechodzi przez środek cięŝkości S gregtu). NleŜy zuwŝyć, Ŝe dzrk jet połączon z ciągnikiem tk, Ŝe tworzy z nim ukłd ztywny, nie dopuzczjący orotów dzrki względem ciągnik wokół oi Z protopdłej do płzczyzny O X Y modelu. Sdzrk wypoŝon jet w koł fortepinowe (ry. 3). Chrkteryzują ię one prktycznie zerowymi wpółczynnikmi odporności n poprzeczne znozenie (ez oporu dotoowują ię do kierunku ruchu wyznczonego przez koł ciągnik). Dltego w pierwzym przyliŝeniu przyjęto, Ŝe koł te mją wpływ tylko n połoŝenie środk cięŝkości gregtu, nie wpływją ntomit n pozotłe prmetry ruchu. Ry.. Fig.. Płki model gregtu ciągnik dzrk do ziemników D model of trctor potto plnter comintion '$,
4 GTWXhfm CTjÄjf^\ Przyjęto ntępujące oznczeni y liniowe odchylenie gregtu od oi korytrz. Ψ kąt orotu my reorownej gregtu Ψ kątowe odchylenie podłuŝnej oi mochodu od tycznej do oi korytrz v prędkość środk cięŝkości gregtu v y i v x rzuty prędkości punktu S n oś SY i SX ζ, ζ, ζ 3 oczne przemiezczeni przedniego i tylnego koł ciągnik orz koł dzrki γ, γ, γ 3 kąty znozeni przedniego i tylnego koł ciągnik orz koł dzrki θ średni kąt krętu koł kierownego F p, F t, F oczne rekcje n przedniej i tylnej oi ciągnik orz oi dzrki β i p = przełoŝenie ukłdu kierowniczego θ m gregtu moment ezwłdności gregtu względem oi pionowej przechodzącej przez środek cięŝkości c ξ i c ξ ztywności poprzeczne opon przedniej i tylnej oi i wpółczynniki odporności n poprzeczne znozenie koł przedniej i tylnej oi Równni więzów kinemtycznych gregtu dl przedtwionego n ry. płkiego modelu, z uwzględnieniem zmodyfikownej teorii iełdyz dotyczącej toczeni ię koł, przedtwiono poniŝej: Ry. 3. Fig. 3. Schemt koł dzrki Potto plnter wheel digrm '%#
5 >\XejT_É} TZeXZTgh e_\vmxz!!! '%$ Po doyć złoŝonych przekztłcenich i ztoowniu opertor plce otrzymujemy dw równni chrkterytyczne opiujące liniowe i kątowe odchylenie pojzdu w zleŝności od wrunków początkowych ruchu: odchylenie liniowe ( ) ( ) ( ) = v v A x x odchylenie kątowe ( ) ( ) ( ) = v v A x z Budow modelu kierowcy N ry. 4 przedtwiono powiązni między drogą, kierowcą i kierownym przez niego pojzdem. () () (3)
6 GTWXhfm CTjÄjf^\ y β POJAZD A () H Ψ DROGA EROWCA H() β POJAZD A () y - Ry. 4. Fig. 4. Uprozczony chemt powiązń elementów ukłdu drog kierowc pojzd z uwzględnieniem przęŝeni zwrotnego Simplified digrm of connection etween the element of rod driver vehicle et, tking into ccount feedck ąt orotu koł kierownicy β(t) i kąt odchyleni gregtu Ψ(t) orz przemiezczenie poprzeczne gregtu y z wrunkiem początkowym y = 0 ą określone przez ukłd równń β = H y H y y = A β A β (4) Ψ = A A H N podtwie powyŝzego ukłdu i gętości widmowych i wzjemnych gętości widmowe y y, β β, H H, β y, H y. zmierzonych ygnłów moŝn uzykć zleŝności określjące trnmitncję H. Jednk jej ezpośrednie wykorzytnie jet utrudnione ze względu n trudności z dokłdnym określeniem wrtości gętości widmowych proceów loowych. Niewielkie nwet łędy w określeniu funkcji trnmitncji H mogą powodowć, Ŝe wyniki otrzymywne z nlizownego modelu ędą itotnie róŝnić ię od zchowń ukłdu rzeczywitego. Podjęto próę znlezieni trnmitncji modelu kierowcy n podtwie minimlizcji energii n kole kierownicy. Zchownie kierowcy określono przez ntępujące czynniki: łędy oceny liniowych odchyleń mochodu od oi toru prc z mniejzymi łędmi wymg więkzego wyiłku, cz zwłoki τ prc z njmniejzym opóźnieniem tnowi wyiłek ndzwyczjny, intenywność ruchu powrotnego kierownicy i iły przykłdnej do koł kierownicy. '%%
7 >\XejT_É} TZeXZTgh e_\vmxz!!! Ottecznie, po uprozczenich, przyjęto funkcję trnmitncji kierowcy gdzie: τ T i τ H = k τ C i C k ( T ) ( T ) 0 3 ( C T T )( C T T ) cz rekcji kierowcy tłe czowe wpółczynniki tłumieni ukłdu wpółczynnik wzmocnieni zleŝny od prędkości jzdy (5) Stłe T, T, T3 zwęŝją odchyleni wielkości y, Ψ i β. Stł T0 dotyczy łędu oceny przez kierowcę odchyleni mochodu od oi zdnego toru. Przykłdowe wyniki ymulcji odel opiny powyŝej zotł oprogrmowny i uruchomiony z pomocą modułu Simulink środowik tl. Przeprowdzono oliczeni dl róŝnych wrtości prmetrów modelu (ry. 5). Wykzły one poprwne zchownie modelu i wrŝliwość n zminę wrtości prmetrów. Ry. 5. Fig. 5. Przemiezczeni poprzeczne środk cięŝkości gregtu dl róŝnych prędkości jzdy (km/h). Czrną linią zznczono plnowną trę gregtu Trnvere diplcement of the unit grvity centre for vriou driving peed (km/h). Blck line indicte plnned unit route '%&
8 GTWXhfm CTjÄjf^\ Ry. 6. Fig. 6. ąt nchyleni podłuŝnej oi gregtu dl róŝnych prędkości jzdy (km/h) podcz mnewru pokznego n ry. 5 nclintion ngle of the unit longitudinl xi for vriou driving peed (km/h) during the mnoeuvre hown on fig. 5 Podumownie. Przeprowdzone oliczeni tetowe wykzły wtępnie, Ŝe zproponowny model zgodnie z oczekiwnimi odwzorowuje kierowlność gregtu ciągnik dzrk do ziemników. Zdniem utor moŝe yć podtwą do dlzych dń i uściśleń.. ontynucj prcy polegć ędzie przede wzytkim n identyfikcji prmetrów modelu opiujących zchownie kierowcy orz włności gregtu. Szczególny ncik połoŝony ędzie n dni zjwik kontktu opongle. Biliogrfi ozi Z. Guzek Przegląd metod dń tteczności i kierowlności pojzdów mochodowych. Zezyt ntytutu Pojzdów nr (4) 995. PieniąŜek A., PieniąŜek W Bdni dynmiki poprzecznej jednośldowego modelu mochodu w ujęciu tochtycznym. teriły konferencyjne ONOT AUTOPROGRES 000. '%'
9 >\XejT_É} TZeXZTgh e_\vmxz!!! Stńczy T.., Jurecki R. S Budow i weryfikcj modelu kierowcy do nlizy ytucji przedwypdkowych. Wydwnictwo Politechniki rkowkiej 004. Stevenon B., Ridley P Automted Vehicle Stility Control for Articulted Vehicle ( STEERABTY OF A FAR UNT: TRACTOR - POTATO PANTER Summry Thi work preent preliminry concept for tking into ccount driver ctivity in trctor - griculturl mchine unit model. Thi unit run on n unhrdened, often wterlogged field with diverified urfce. n thi hrd terrin, the driver h to crry out very complicted mnoeuvre depending on field work chrcter. The model h een pplied to the unit: trctor - potto plnter. Semi-upended plnter i connected to the trctor vi ottom TUZ flexile connector. The Simulink module of the tl environment w employed to implement the model. ey word: modelling, driver, trctor griculturl mchine unit '%(
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym
LISA0: Podtwowe człony (obiety) dynmii Przygotownie ) Wymień i opiz włności podtwowych członów (obiety) dynmii potć trnmitncji nzwy i ogrniczeni prmetrów ) Wymień podtwowe człony dynmii dl tórych trnmitncj
SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW
InŜynieria Rolnicza 11/2006 Jan Szczepaniak Przemysłowy Instytut Maszyn Rolniczych w Poznaniu SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW Streszczenie W artykule przedstawiono
SYSTEM STEROWANIA DRGANIAMI SEMI-AKTYWNEGO UKŁADU ZAWIESZENIA SIEDZISKA
Igor MACIEJEWSKI 1 Ukłd zwiezeni iedzik, Semi-ktywne terownie drgnimi, Optymlizcj włściwości wibroizolcyjnych SYSTEM STEROWANIA DRGANIAMI SEMI-AKTYWNEGO UKŁADU ZAWIESZENIA SIEDZISKA W prcy zwrto zgdnieni
Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).
Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy
Identyfikacja parametrów modelu maszyny synchronicznej jawnobiegunowej
Akemi Górniczo-Hutnicz im. Stniłw Stzic w Krkowie Wyził Elektrotechniki, Automtyki, Inormtyki i Elektroniki KATEA MASZYN ELEKTYCZNYCH Stuenckie Koło Nukowe Mzyn Elektrycznych Ientyikcj prmetrów moelu mzyny
Efektywne wyznaczenie częstotliwości interwencji w cyfrowych quasi-ciągłych systemach sterowania w transporcie 2
Logityk nuk Tdeuz Wcłwki Politechnik Krkowk w Krkowie Efektywne wyznczenie czętotliwości interwencji w cyfrowych qui-ciągłych ytemch terowni w trnporcie 2 Wprowdzenie Oecnie cechą chrkterytyczną ytemów
PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU
ODELOWNIE INŻYNIERKIE INN 1896-771X 3,. 37-44, Gliwice 6 PORÓWNNIE WYBRNYCH RÓWNŃ KONTYTUTYWNYCH TOPÓW Z PIĘCIĄ KZTŁTU KRZYZTOF BIEREG Ktedr Wyokich Npięć i prtów Elekt., Politechnik Gdńk trezczenie. W
Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji
Modelownie i obliceni technicne Model mtemtycny w potci trnmitncji Model mtemtycny w potci trnmitncji Zkłdjąc, że leżność międy y i u możn opić linowym równniem różnickowym lub różnicowym, możliwe jet
Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Praca dyplomowa
Politechni Ślą Wydził Automtyi, Eletronii i Informtyi Prc dyplomow Temt : Stnowio lbortoryjne do ymulcji obietów n terowniu SLC500. Promotor : Dr inż. J.przy Student : Tomz tuzczy Cel prcy Celem prcy było
Modelowanie i sterowanie obróbką ubytkową osiowosymetrycznych części o małej sztywności
Modelownie i terownie obróbką ubytkową oiowoymetrycznych części o młej ztywności Monogrfie Politechnik Lubelk Politechnik Lubelk Wydził Mechniczny ul. Ndbytrzyck 36-68 LUBLIN Antoni Świć, Wiktor rnenko,
Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL
Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL INSTYTUCJA PRZYJMUJĄCA WNIOSEK:... NUMER KONKURSU:... NUMER WNIOSKU
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony
KRYTER OCENN ODPOWEDZ Próbn Mtur z OPERONEM Fizyk i tronoi Pozio rozzerzony Litopd 3 W niniejzy checie ocenini zdń otwrtych ą prezentowne przykłdowe poprwne odpowiedzi. W teo typu ch nleży również uznć
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Zadania. ze zbioru 25 lat Olimpiad Fizycznych Waldemara Gorzkowskiego. a, skierowane równolegle do równi (w górę, ku
76 FOTON 4, Wion 04 Zdni ze zbioru 5 lt Olimpid Fizycznych Wldemr Gorzkowkiego Od Redkcji: Cytowny w tym zezycie profeor Iwo Biłynicki-Birul jet luretem I Olimpidy Fizycznej Poniżej przytczmy pouczjące
KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS
KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
Zadanie 5. Kratownica statycznie wyznaczalna.
dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;
METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH
Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono
2. PODSTAWY STATYKI NA PŁASZCZYŹNIE
M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć
KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0
Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA
Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni
Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych
TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A
POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi
MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH
Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.
PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012
PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zwsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 ZAŁOŻENIA PROGRAMU: progrm m być spójny z progrmem wychowwczym szkoły,
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g.
Studi dzienne, kierunek: Budownictwo, semestr IV Studi inżynierskie i mgisterskie (ilość godz. w2, ćw1, proj1) Wytrzymłość mteriłów. Ćwiczeni udytoryjne. Przykłdow treść ćwiczeń. Tydzień 1. Linie ugięci
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW
DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
LISTA ZADAŃ Z MECHANIKI OGÓLNEJ
. RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
3. F jest lewostronnie ciągła
Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )
TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT
TRNSCOMP XV INTERNTIONL CONFERENCE COMPUTER SYSTEMS IDED SCIENCE INDUSTRY ND TRNSPORT Łuksz DRĄG 1 modelownie symulcj ruchu pojzdu mikroskopowe modele ruchu OCEN ODWZOROWNI RUCHU PODĄśJĄCEGO POJZDU W MIKROSKOPOWYCH
Zasada ruchu środka masy i zasada d Alemberta 6
Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone
do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość
Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość
Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.
Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012
mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU
ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH
Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT
TRANSCOMP XIV INTRNATIONAL CONFRNC COMPUTR SYSTMS AIDD SCINC, INDUSTRY AND TRANSPORT Dignostyk, hmulce, pomiry drogowe trnsport, Andrzej GAJK Wojciech SZCZYPIŃSKI-SALA Piotr STRZĘPK 1 OCNA MTOD POMIARÓW
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Część 1 9. METODA SIŁ 1 9. METODA SIŁ
Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Twoje zdrowie -isamopoczucie
Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne
Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL
Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL INSTYTUCJA PRZYJMUJĄCA WNIOSEK:... NUMER KONKURSU:... NUMER WNIOSKU (KSI):... SUMA KONTROLNA WNIOSKU:... TYTUŁ PROJEKTU:... NAZWA
Wytrzymałość materiałów II
Wytrzymłość mteriłów II kierunek Budownictwo, sem. IV mteriły pomocnicze do ćwiczeń oprcownie: dr inż. Iren Wgner, mgr inż. Jont Bondrczuk-Siwick TREŚĆ WYKŁADU Sprężyste skręcnie prętów pryzmtycznych.
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK
I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie
Diagnostyka uszkodzeñ wiæzadeæ krzyºowych w badaniu rezonansu magnetycznego
Dignostyk uszkodzeñ wiæzdeæ krzyºowych w dniu rezonnsu mgnetycznego MRI dignostics of crucite ligments Zigniew Czyrny Crolin Medicl Center, Wrszw Streszczenie: W prcy omówiono zsdy rozpoznwni zerwñ wiæzdeæ
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,
Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Ćwiczenie 9. BADANIE UKŁADÓW ZASILANIA I STEROWANIA STANOWISKO I. Badanie modelu linii zasilającej prądu przemiennego
ortorium elektrotechniki Ćwiczenie 9. BADAIE UKŁADÓ ZASIAIA I STEOAIA STAOISKO I. Bdnie modelu linii zsiljącej prądu przemiennego Ukłd zowy (ez połączeń wrintowych) 30 V~ A A A 3 3 3 A 3 A 6 V 9 0 I A
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on:
Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. interwencji ekologicznych CON/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do kndydtów
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi
Weryfikacja modelowa jest analizą statyczną logiki modalnej
Weryfikcj modelow jest nlizą sttyczną logiki modlnej Mrcin Sulikowski MIMUW 15 grudni 010 1 Wstęp Weryfikcj systemów etykietownych 3 Flow Logic 4 Weryfikcj modelow nliz sttyczn Co jest czym czego? Weryfikcj
ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1
ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie
1.5. Iloczyn wektorowy. Definicja oraz k. Niech i
.. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży
SZEREGOWY SYSTEM HYDRAULICZNY
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..
2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.
Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut
Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI
Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia
EOELEKTA Ogólnopolsk Olimpid Wiedzy Elektrycznej i Elektronicznej ok szkolny 204/205 Zdni dl grupy elektronicznej n zwody stopni Zdnie Dl diody półprzewodnikowej, której przeieg chrkterystyki prądowo-npięciowej
KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.
KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek
ZAMKNIĘCIE ROKU 2016 z uwzględnieniem zmian w prawie bilansowym. dr Gyöngyvér Takáts
ZAMKNIĘCIE ROKU 2016 z uwzględnieniem zmin w prwie bilnsowym dr Gyöngyvér Tkáts Podmioty rchunkowości 1) Mikro jednostki jednostki mogące korzystć z uproszeń jednostki niemogące korzystć z uproszczeń 2)
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Nowy system wsparcia rodzin z dziećmi
o Nowy system wsprci rodzin z dziećmi Projekt współfinnsowny ze środków Unii Europejskiej w rmch Europejskiego Funduszu Społecznego Brbr Kowlczyk Cele systemu wsprci rodzin z dziećmi dobro dzieci potrzebujących
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.
KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO
I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie
Metoda kropli wosku Renferta
Metod kropli wosku Renfert Metod Renfert zwn jest tkże techniką K+B. Jej podstwowym złożeniem jest dążenie do prwidłowego odtworzeni powierzchni żujących zęów ocznych podczs rtykulcji. Celem jest uzysknie
KARTA OCENY MERYTORYCZNEJ WNIOSKU O UDZIELENIE WSPARCIA FINANSOWEGO
ZAŁĄCZNIK NR 17 Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego KARTA OCENY MERYTORYCZNEJ WNIOSKU O UDZIELENIE WSPARCIA FINANSOWEGO Priorytet VI Rynek prcy otwrty