DIGRAFY. Szkielet digrafu D - graf otrzymany z D po usunięciu strzałek Digraf prosty - gdy wszystkie łuki są parami różne i nie ma pętli

Wielkość: px
Rozpocząć pokaz od strony:

Download "DIGRAFY. Szkielet digrafu D - graf otrzymany z D po usunięciu strzałek Digraf prosty - gdy wszystkie łuki są parami różne i nie ma pętli"

Transkrypt

1 DIGRAFY Digraf ( V(D), A(D) ) V(D) - biór ierchołkó A(D) - skońcona rodina porądkoanych par elementó bior V(D) łki P T Q S R Skielet digraf D - graf otrymany D po snięci strałek Digraf prosty - gdy systkie łki są parami różne i nie ma pętli Da ierchołki i digraf D są sąsiednie, gdy rodinie A(D) istnieje łk postaci lb. Wierchołki i są incydentne takim łkiem. Da digrafy są iomorficne, jeżeli istnieje iomorfim ich skieletó achojący kolejność ierchołkó każdym łk. Nie są iomorficne. Barbara Głt

2 Trasa digrafie D skońcony ciąg łkó... n Podobnie definicja ścieżka, droga, cykl Ścieżka trasa, której systkie łki są różne. Droga ścieżka, której systkie ierchołki są różne. Ścieżka lb droga są amknięte, gdy = m. Cykl droga amknięta aierającą prynajmniej jeden łk. Ale: chociaż ścieżka nie może aierać danego łk ięcej niż jeden ra, to może aierać oba łki i. Ścieżka: Barbara Głt

3 Stopnie ierchołkó Stopień yjścioy ierchołka d r () otdeg() - licba łkó postaci. Stopień ejścioy ierchołka d s () indeg() - licba łkó postaci. Sma stopni yjścioych systkich ierchołkó D jest róna smie ich stopni ejścioych. Źródło digraf D - ierchołek o stopni ejścioym rónym. Ujście digraf D- ierchołek o stopni yjścioym rónym. Digraf jest spójny (słabo spójny): jeżeli nie może być predstaiony postaci smy dóch rołącnych digrafó skielet digraf jest spójny Digraf jest silnie spójny: dla dóch doolnych ierchołkó i digraf D istnieje droga do. spójny silnie spójny Barbara Głt 3

4 Macier incydencji Digraf D ma n ierchołkó i m łkó Macier M ymiar n x m m ij = gdy j-ta kraędź jest incydentna i-tego ierchołka gdy j-ta kraędź jest incydentna i-ty ierchołek gdy j-ta kraędź nie jest incydentna i-tym ierchołkiem e e e 3 5 e 5 e 3 e 6 Macier pryległości (Macier sąsiedta, prejść, relacji, poprednikó) D -digrafo n ierchołkach X =[x ij ] nxn x ij = licba łkó od i-tego ierchołka do j-tego ierchołka e e e 3 5 e 5 e 3 e 6 Barbara Głt

5 Nieeroy element na prekątnej repreentje pętlę Da digrafy są iomorficne tedy i tylko tedy, gdy ich maciere pryległości różnią się jedynie prestaionymi iersami połąconymi prestaieniem odpoiadających kolmn. Jeśli X jest macierą pryległości digraf D, to macier transponoana X T jest macierą pryległości digraf otrymanego pre mianę kiernk każdego łk D. Graf G jest orientoalny, jeśli każdą jego kraędź można skieroać tak, by otrymany digraf był silnie spójny. Doolny graf eleroski jest orientoalny (idąc dłż cykl Elera możemy orientoać kraędie godnie kiernkiem, jaki je prechodimy). Tierdenie: Niech G graf spójny. Graf G jest orientoalny tedy i tylko tedy, gdy każda kraędź graf G jest aarta co najmniej jednym cykl. Barbara Głt 5

6 Digrafy eleroskie Digraf spójny D jest eleroski, jeżeli istnieje ścieżka amknięta aierająca każdy łk digraf D. digraf eleroski Skielet jest grafem eleroskim. Digraf nie jest eleroski. Digrafy eleroskie Warnkiem koniecnym jest, aby digraf był silnie spójny. W digrafie eleroskim nie ma źródeł ani jść. Tierdenie: Digraf spójny jest digrafem eleroskim tedy i tylko tedy, gdy dla każdego ierchołka digraf D achodi: r s d ( ) = d ( ) Definicja: Digraf nayamy półeleroskim, gdy nie jest digrafem eleroskim ora jeżeli istnieje ścieżka aierająca każdy łk digraf. Barbara Głt 6

7 Digrafy hamiltonoskie Digraf D nayamy hamiltonoskim, jeżeli istnieje cykl aierający każdy ierchołek D. Digraf D nayamy półhamiltonoskim, gdy istnieje droga prechodąca pre każdy ierchołek D. Trnieje Trniej - digraf, którym każde da ierchołki są połącone dokładnie jednym łkiem. Trnieje mogą mieć źródła i jścia na ogół nie są digrafami hamiltonoskimi. Tierdenie: (a) Każdy trniej nie będący digrafem hamiltonoskim jest półhamiltonoski. (b) Każdy trniej silnie spójny jest hamiltonoski. W doolnym trniej diałem n gracy można pryporądkoać gracom etykiety p, p,..., p n tak, że p pokonał p, p pokonał p 3,..., p n- pokonał p n. Barbara Głt 7

8 Porónania parami Wymaga się seregoania penej licby obiektó pre porónanie dokonyane a każdym raem na tylko dóch obiektach. Po n ykonani porónań staia się n obiektó porądk ich preferencji. Np. seregoać seść różnych potra dla psó. Każdego dnia podaano ps da prysmakó, a pies stalał yżsość jednego nad drgim (godnie tym, który taler opróżnił najpier). (, 3 ) (, 5, 6 ) ( ) 6 3 Ustaienie drogę Hamiltona tak, że każdy posiłek (grac) pokonał następnego: np lb W trniej diałem n gracy,,..., n niech b i onaca licbę gracy pokonanych pre graca i. Wócas b, b,..., b n są ynikami trniej. Tierdenie: Niech b, b,..., b n będą licbami całkoitymi. Licby te są ynikami trniej diałem n gracy tedy i tylko tedy, gdy: n (i) b + b + L+ bn = ora r (ii) dla r n każde r spośród licb smje się do co najmniej Barbara Głt 8

9 Prykład: Który następjących ciągó może być ektorem ynikó trniej seści gracy? A),,,,, B) 5, 3, 3,,, C) 5,,,,, A) nie, bo = 6 (5) (3) B) () (3) C) = 5 Ale: roażmy prebieg gier dla trech gracy, dla których yniki,,. Zagrają międy sobą 3 gry, cyli try ycięsta msą być rodielone międy nich, a + + < 3 () () digraf agami Prepłyy sieciach x 3 y Każdem łkoi a prypisjemy niejemną licbę ψ(a) - prepstoość otdeg() - sma prepstoości łkó postaci. indeg() - sma prepstoości łkó postaci. Zakładamy, że digraf ma dokładnie jedno źródło i jedno jście. Barbara Głt 9

10 Prepły sieci - fnkcja ϕ, która prypisje każdem łkoi a niejemną licbę ϕ(a), nayaną prepłyem dłż łk a tak, by: () dla każdego łk achodiła nieróność ϕ( a) ψ( a) () stopień ejścioy i yjścioy prepły dla każdego ierchołka różnego od źródła i jścia były róne. Łk a, dla którego achodi ϕ ( a) = ψ( a) nayamy nasyconym. Wartość prepły - sma prepłyó dłż łkó chodących do ierchołka jścia = sma prepłyó dłż łkó ychodących ierchołka źródła Prekrój - biór łkó A taki, że każda droga do msi prechodić pre peien łk należący do A. Prepstoość prekroj - sma prepstoości łkó należących do tego prekroj Prekrój minimalny - prekrój o najmniejsej prepstoości 3 y x Prekrój minimalny - łki:, x, y, x Prepstoość: = 6 Barbara Głt

11 Prepły maksymalny? Wartość doolnego prepły nie może prekrocyć prepstoości żadnego prekroj. Tierdenie (Forda, Flkersona, 955): W każdej sieci artość doolnego prepły maksymalnego jest róna prepstoości doolnego prekroj minimalnego. Algorytmy poskiania prepłyó maksymalnych polegają głónie na toreni dróg poięksających prepły. Drogi składają się łkó nienasyconych x i łkó x mających nieeroy prepły. s 5 t Na pocątk bieremy prepły eroy. Następnie konstrjemy drogi 3 x poięksające prepły: s t, dłż której możemy ięksyć prepły o. y Potem x, dłż której możemy ięksyć prepły o. Wrescie, dłż której s t możemy ięksyć prepły o. Otrymany prepły o artości 5. x 3 y Barbara Głt

12 Problem dróg krytycnych Dotycy seregoania adań. Sieć dareń, którym każdy łk ma prypisaną agę - np. cas ykonania adania. (Digraf acyklicny) W casie, gdy presamy się digrafie lea na prao, iążemy ierchołkiem licbę l() skającą dłgość najdłżsej drogi A do. A B l(a) + 3 = 3 C l(a) + = D l(b) + = 5 E max{l(a) + 9, l(b) +, l(c) + 6} = 9 F l(c) + 9 = G max{l(d) + 3, l(e) + } = H max{l(e) +, l(f) + } = I l(f) + = 3 J max{l(d) + 3, l(e) + } = K max{l(h) + 6, l(i) + } = 8 L max{l(h) + 9, l(j) + 5, l(k) + 3} = droga krytycna A B C D E F G I H J K L Barbara Głt

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow 9: Digrafy (grafy skierowane) Spis zagadnień Digrafy Porządki częściowe Turnieje Przykłady: głosowanie większościowe, ścieżka krytyczna Digraf (graf skierowany) Digraf to równoważny termin z terminem graf

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ ETAP SZKOLNY KONKURSU GEOGRAFICZNEGO

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ ETAP SZKOLNY KONKURSU GEOGRAFICZNEGO MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ ETAP SZKOLNY KONKURSU GEOGRAFICZNEGO Nr adania 1. 2. Prewidywana odpowiedź Punktacja Zasady oceniania Skala mapy Ali: C. 1:50 000 Skala mapy Iy: H. 1:200 000

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Zadania z gwiazdką - seria I, szkice rozwiązań

Zadania z gwiazdką - seria I, szkice rozwiązań Zadania z giazdką - seria I, szkice roziązań 1. Rozstrzygnij, czy język L = { {a, b, c} = v oraz # a () + # b () = # b (v) + # c (v)} jest reglarny. Szkic roziązania Język L nie jest reglarny, ykażemy,

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11)

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11) PR DOMOW ŁK NIEOZNZON / Zadanie Oblicć całki Wniki prawdić oblicając pochodne ormanch funkcji pierwonch ) d ) d ) d ) d Zadanie Oblicć całki nieonacone całkując pre cęści ) ln d ) co d ) ln d ) d ) arcg

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51]) P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Zawiadomienie o wyborze najkorzystniejszej oferty.

Zawiadomienie o wyborze najkorzystniejszej oferty. Krakó, dnia 13 sierpnia 2010 r. PR.VI.3321-7/10 Dotycy: amóienia publicnego, trybie pretargu nieograniconego nt. Realiacja kampanii promocyjnej Róność sans Programie Operacyjnym Kapitał Ludki 2007-2013

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W. DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

zane (warunkowe), mnożniki Lagrange a

zane (warunkowe), mnożniki Lagrange a Analia matematycna, ce ść cwarta Ekstrema wia ane warunkowe, mnożniki Lagrange a Posukuja c ekstremów lokalnych i globalnych funkcji pomijaliśmy do tej pory jeden bardo ważny prypadek. W wielu agadnieniach

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

DS-WPZN-MJ-420/208/2010 Warszawa,xpaździernika 2010 r.

DS-WPZN-MJ-420/208/2010 Warszawa,xpaździernika 2010 r. DS-WPZN-MJ-420/208/2010 Warsaa,xpaźdiernika 2010 r. Pan Rysard Proksa Preodnicący Sekcji Krajoej Ośiaty i Wychoania NSZZ Solidarność" ul. Wały Piastoskie 24 80-855 Gdańsk Sanony Panie Preodnicący, Odpoiadając

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a;

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a; emer leni 5/6 lgebra liniowa Znaleźć i nakicować biór 8 C j ; a) ( ) b) { C j j } c) { C Im( ) } ; Zadania rgoowjące do egamin Wkaówka Zaoować wór de Moire'a; d) C Im Wnacć licb dla kórch macier je odwracalna

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1)

1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1) nikanie_ciepla Wnikanie ciepła 1. Wnikanie ciepła podcas renia pęcherykoego na enętrnej poierchni rur Zależność Rohsenoa q 1/ g c pt W r (1.1) n C rr s m n = 1,0 dla ody n = 1,7 dla innych ciecy 3 Współcynnik

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Wykres 1: Liczba szkół do których zgłosili się kandydaci niepełnosprawni w roku 2010/2011

Wykres 1: Liczba szkół do których zgłosili się kandydaci niepełnosprawni w roku 2010/2011 Wyniki monitorowania rekrutacji młodieży niepełnosprawnej i prewlekle chorej do publicnych skół ponadgimnajalnych dla młodieży w wojewódtwie podlaskim. Badaniem objęto 18 skół ponadgimnajalnych wojewódtwa

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

Fraktale - wprowadzenie

Fraktale - wprowadzenie Fraktale - wprowadenie Próba definici fraktala Jak określamy biory naywane fraktalami? Prykłady procedur konstrukci fraktali W aki sposób b diała aą algorytmy generaci nabardie nanych fraktali? Jakie własnow

Bardziej szczegółowo

MOSTKI NIEZRÓWNOWAŻONE PRĄDU STAŁEGO

MOSTKI NIEZRÓWNOWAŻONE PRĄDU STAŁEGO Ćicenie 2 MOSTKI NIEZÓWNOWAŻONE PĄD STAŁEGO I. Cel ćicenia Celem ćicenia jest badanie łaściości metrologicnych mostkó nierónoażonych prądu stałego układach spółpracy ybranymi modelami cujnikó reystancyjnych.

Bardziej szczegółowo

ZAWIADOMIENIE z dnia 8 maja 2015 roku O WYBORZE OFERTY NAJKORZYSTNIEJSZEJ

ZAWIADOMIENIE z dnia 8 maja 2015 roku O WYBORZE OFERTY NAJKORZYSTNIEJSZEJ ZAWIADOMIENIE dna 8 maja 2015 roku O WYBORZE OFERTY NAJKORZYSTNIEJSZEJ Dotycy: pretargu neogranconego na organoane ypocynku letnego na terene kraju dla dec be abepecena socjalnego ojeódta łódkego. Na podstae

Bardziej szczegółowo

ZAWARTOŚĆ CEL GRY. v v v v. v w. u v. w Budynek ukończony Budynek w budowie. 40 monet. Przykład karty Robotnika:

ZAWARTOŚĆ CEL GRY. v v v v. v w. u v. w Budynek ukończony Budynek w budowie. 40 monet. Przykład karty Robotnika: Celem gry jest zdobycie jak najiększej liczby pnktó zycięsta poprzez znoszenie starożytnych bdoli. 37 prostokątnych kart ( tym 18 Robotnikó, 6 Więźnió, 4 Narzędzia, 4 Pożyczki, 4 Uniersytety i 1 karta

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Matematyka plusem dla gimnajum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

LICEALIŚCI LICZĄ ph różnych roztworów < materiały pomocnicze do sprawdzianu nr 2 > Przykładowe zadania:

LICEALIŚCI LICZĄ ph różnych roztworów < materiały pomocnicze do sprawdzianu nr 2 > Przykładowe zadania: LICEALIŚCI LICZĄ ph różnyh rotoró < materiały pomonie do spradianu nr > Spradian będie obejmoał 5 typó adań:. Oblianie artośi ph rotoró monyh kasó i asad uględnieniem spółynnika aktynośi jonó H + /OH -

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

W płaszczowo-rurowych wymiennikach ciepła pęczek rur umieszczany jest w płaszczu najczęściej o przekroju kołowym.

W płaszczowo-rurowych wymiennikach ciepła pęczek rur umieszczany jest w płaszczu najczęściej o przekroju kołowym. Wnikanie ciepła pry opłyie pęcka rur 1. Wdłużny opły pęcka W płascoo-ruroych ymiennikach ciepła pęcek rur umiescany jest płascu najcęściej o prekroju kołoym. Rys. 1-1. Wymiennik płascoo-ruroy, rónoległo

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem Wymagania edukacyjne matematyki w klasie V Matematyka plusem Poiomy wymagań edukacyjnych K koniecny ocena dopuscająca P podstawowy ocena dostatecna R roserający ocena dobra D dopełniający ocena bardo dobra

Bardziej szczegółowo

REGULAMIN ORGANIZACYJNY GRY MIEJSKIEJ pt. GRA O WOLNOŚĆ 1 ORGANIZATOR

REGULAMIN ORGANIZACYJNY GRY MIEJSKIEJ pt. GRA O WOLNOŚĆ 1 ORGANIZATOR REGULAMIN ORGANIZACYJNY GRY MIEJSKIEJ pt. GRA O WOLNOŚĆ 1 ORGANIZATOR 1. Regulamin (dalej: Regulamin ) określa warunki ucestnictwa i asady gry miejskiej w projekcie pt. Gra o Wolność 2019 (dalej Projekt

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Steroania i Systemó Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Semestr letni 2010 Laboratorium nr 4 LINIOWE

Bardziej szczegółowo

ŚRODA PIĄTEK trening DISCO ŚRODA PIĄTEK po przejściu do nowej siedziby: ŚRODA

ŚRODA PIĄTEK trening DISCO ŚRODA PIĄTEK po przejściu do nowej siedziby: ŚRODA elite 2000 2001 GRUPA ZAMKNIĘTA BRAK ZAPISÓW tylko wybrane osoby! wresień grudień sala DÓŁ sala w piwnicy od stycnia 2017: art 18.30-20.00 18.30-20.00 trening DISCO 20.00-20.30 17.45-18.30 po prejściu

Bardziej szczegółowo

REALIZACJA PROGRAMU NAUCZANIA Z MATEMATYKI DLA KLASY IV W ROKU 2015/2016 W SZKOLE PODSTAWOWEJ NR 2 IM. BP KONSTANTYNA DOMINIKA W PELPLINIE

REALIZACJA PROGRAMU NAUCZANIA Z MATEMATYKI DLA KLASY IV W ROKU 2015/2016 W SZKOLE PODSTAWOWEJ NR 2 IM. BP KONSTANTYNA DOMINIKA W PELPLINIE REALIZACJA PROGRAMU NAUCZANIA Z MATEMATYKI DLA KLASY IV W ROKU 2015/2016 W SZKOLE PODSTAWOWEJ NR 2 IM. BP KONSTANTYNA DOMINIKA W PELPLINIE Program naucania: Matematyka klucem, program godny podstawą programową

Bardziej szczegółowo

P o z b a w i e n i e w o l n o ś c i. Kara mieszana Doży- Rodzaje przestępstw

P o z b a w i e n i e w o l n o ś c i. Kara mieszana Doży- Rodzaje przestępstw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujadowskie 11, 00-950 Warsawa SO w Toruniu Okręg Sadu Apelacyjnego Apelacja Gdańska Numer identyfikacyjny REGON Diał 1. Osądeni wg rodajów prestępstw i kar MS-S6 SPRAWOZDANIE

Bardziej szczegółowo

Dział 1. Osądzeni wg rodzajów przestępstw i kar

Dział 1. Osądzeni wg rodzajów przestępstw i kar MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujadowskie 11, 00-950 Warsawa SO w Opolu [WYDZIAL] Okręg Sadu Apelacyjnego w Apelacja Wrocławska Numer identyfikacyjny REGON Diał 1. Osądeni wg rodajów prestępstw i kar

Bardziej szczegółowo